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In this paper, we consider the neutral integrodifferential equations

1 i ) ΛJz(t) - (*Z?(ί - s)Z(s)ds) = AZ(t) + [C(t - s)Z(s)ds, Z(0) = / ,
dt \ Jo / Jo

(2) -^-(lί(ί) - \[D(t - s)v(s)ds) = Ay(f) + J[c(ί - s)y(s)ds + f{t) ,

(3 ) —(x(t) - Γ D{t - s)x(s)ds) = Ax(t) + Γ C(t-s)x(s)ds + /(ί) ,
dt N J-°° / J-°°

where OJ, 2/6 J?n, Z, A, C, D and I are nxn matrices with A constant, C
and D continuous on (— oo, co), I the identity matrix, and / : (—°°, ©o)-»
i2π is continuous.

Our aim is to get nice formula for periodic solutions of these equa-
tions, and so this paper can be considered as an extension of [2], [3] and
[4].

Let us first consider the Volterra integral equations

( 4 ) H(t) = 1+ \*E(t - s)H(s)ds , H i s n x n ,
Jo

(5) £f(ί) = F(t) + \Έ(t - s)g(s)ds , g 6 Rn ,
Jo

(6) g(t) = F(t) + [* E(t - s)g(s)ds , geRn ,
J-oo

where E is an nxn matrix of functions continuous on (-co, co), and
jr: (_ oo, oo) —> En is continuous.

REMARK. It is easy to see that g(t) is a solution of (5) on (—<*>, 0]
if and only if g*(t*) : = ff(-ί*), ί* ^ 0, is a solution of

g*(t*) = F*(t*) + E*(t* - s)g*(s)ds
Jo

on [0, oo), where F*(ί*) : = F ( - ί * ) , E*(s) := E(-s). This fact shows that
if we have some properties of solutions of (5) on [0, oo), then we have
similar properties on (— oo, 0].
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The following theorem generalizes an analogous theorem of Burton
(see [1], [2]).

THEOREM 1. // F(t) and E(t) are continuous on (—°°, °°), then
( i ) there is one and only one solution H(t) of (4) on (— oo, oo),
(ii) there is one and only one solution g(t) of (5) on (— oo, oo),
(iii) the unique solution H(t) of (4) is given by

(7) H(t) = I+ [G(s)ds ,
Jo

where G(t) is the nxn matrix solution of

(8) G(t) = E(t) + [Ed - s)G(s)ds .
Jo

Therefore, H\t) is continuous and satisfies

(8*) H'(t) = E{t) + ^E(t - s)H\s)ds ,
Jo

(iv) the unique solution g(t) of (5) is

(9) g(jt) = F(t) + [*mt - s)F(s)ds .
Jo

Moreover, if F'(t) is continuous, then g(t) can be rewritten as

(10) g{t) = H(t)F(0) + [Ή(t - s)F'(s)ds .
J

PROOF. Combining the analogous theorem of Burton [2, Theorem 1.5]
with the remark above, we can show that the solution g{t) of (5) exists
and is unique on (— oo, oo) and so does H(t).

To prove (iii), we can show as in the cases (i) and (ii) that the
solution G(t) of (8) exists and is unique on (— oo, oo). Then we have by-
substitution,

Hit) = 1+ [G(s)ds
Jo

= I + [ΊEiv) + [E(V -

= I + ^E(v)dv + \t([tE(s)G(v - stfv

( J+
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= 1 + \*E(t - β)(l +

- s)H(s)ds .

This shows that H(t) = I + \ G(s)ds is a solution of (4).
Jo

To prove part (iv), we only need to show that

g(t) = F(t) + [mt - s)F(s)ds
Jo

is a solution of (5). Indeed, we have by substitution,

F(t) + [E(t - v)g(v)dv
Jo

= F(t) + [E(t - v)(F(v) + j V θ - s)F(s)dsyv

= F{t) + \Έ(t - s)F(s)ds + ['([&(* - v)H'(v - s)dvJF(s)ds

= F(t) + \*E(t - s)F(s)ds + [(^Έit - s - u)H'(u)dujF(s)ds
= F® + \[{E(f ~ S) + S!"'^(ί ~ S ~ u)H'Wdu)F&ds

= F(t) + \Ή'(t - s)F(s)ds (by (8*))
Jo

= g(t).

This proves Theorem 1.
Following Burton [2] and Miller [5], we can also get the following

theorem.

THEOREM 2. // F(t + T) = F(t) for some T > 0, and if g{t) is a
bounded solution of (5) on [0, oo) with jEeL^O, oo), then there is a sequence
of positive integers {n3), n3- —> oo as j -> oo, such that {g(t + nάT)} converges
uniformly on compact subsets of (— ©o, oo) to a function g*(t) which is a
solution of (6).

Burton [2, p. 1.15] asserted that if H and #eL 1[0, oo) and JEΓ(ί) -> 0

as t -> oo, then g(t + nάT) converges to I H(t — s)Fr(s)ds = g*(t) which
J-oo

is a periodic solution of (6). But this is not consistent with his assump-

tions. For, EeU[0, oo) and H(t)-*0 imply \E{t - s)H(s)ds->0, which
Jo

implies
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H{t) = I + [E(t - s)H(s)ds -> I Φ 0 as t -> oo ,
Jo

a contradiction.
Our next results improve this situation and put the ideas in the

correct context.

THEOREM 3. Let F(t) be T-periodic with Ff continuous, and let EeL1

[0, oo). // there is a T-periodic matrix JT*(£) such that H(t) — H*(t)eLι

[0, oo) with H(t) - H*(t) ->0 as t -> oo, and that Γfl*(ί - s)F'(s)ds is T-
Jo

periodic, then (6) has a T-periodic solution

g*(t) = H*(f)F(0) + Γfl*(ί - s)F'(s)ds

Jo

+ Γ (fl(t - 8) - fl*(ί - 8))F'(8)d8 .
J-oo

PROOF. For

S i

o

= (fl(t) - H*(t))F(0) + fl*(t)F(0) + Γiί*(ί - 8)F'(8)d8
Jo

- s) - H*(ί - β ^ ί β j d β ,Jo

we have that g{t) is bounded on [0, oo) under the assumptions of the
theorem. Then by Theorem 2, we have

g(f + nάT) = (fl(ί + nsT) - fl*(ί + nάT))F{0) + H*(t + nάT)F(0)

+ (ffl*(ί - s)F'(s)ds + Γ (fl(t - 8) - iϊ*(ί - 8))F\έ)d8
Jθ J - n 3 T

Γiϊ*(ί ~ 8)F'(8)d8
Jo

- β) - H*(ί - 8))F\8)d8 = flΓ*(ί) ,

which is a T-periodic solution of (6).

REMARK. In this case, H*(t) is a Γ-periodic solution of

fl*(ί).= / + Γ £?(ί - s)H*(s)ds .
J-oo

THEOREM 4. Suppose that F(t) is T-periodic with EeL^O, oo) αwd
ίΛαί there is a T-periodic matrix H'*(t) such that H'(t) — H'*(t) el/JΌ, oo)
and that \ H'*(t — s)F(s)ds is T-periodic. Then (6) has a T-periodic

Jo

Γ
J_e
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solution

g*(t) = F{t) + ΓfΓ*(ί - s)F(s)ds
Jo

+ Γ (H'(t - s) - H'*(t - s))F(s)ds .
J_oo

REMARK. In this case, if E(f)-^0 as t->oo, then JEP*(ί) is a Γ-
periodic solution of

JEΓ*(ί) = Γ #(t - s)H'*(s)ds .
J_oo

EXAMPLE 1. Consider the scalar integral equations

(11) H(t) = 1 + Γe-(ί-f)(3 cos(ί - s) + sin(t - s)-2)iϊ(s)ds ,
Jo

(12) g(t) = sin2ί + Γ e"(ί-8)(3 cos(ί - s) + sin(ί - s)-2)g(s)ds .
J-oo

It is easy to see that the unique solution H(t) of (11) is

H(t) = (e~2t + 7 sin t - cos ί)/5 + 1 ,

and that all the conditions of Theorem 3 with H*(t) = (7 sin t — cos£)/5 + 1
hold. Then (12) has a periodic solution

g*(f) = Γ((7 sin(ί - s) - cos(ί - s))/5 + 1)(2 cos 2s)ds
Jo

+ Γ (l/5)e~2(<-8)(2cos2s)ds
J-oo

= (28 cos t + 4 sin t - 25 cos 2ί + 25 sin 2ί)/30 .

Moreover, it is easy to verify that for each A, BeR, g(t) = Acosί + Bsint
is a periodic solution of

g(t) = Γ <r(f-8)(3 cos(ί - β) + sin(ί - s) - 2)#(s)ds .

J-oo

Then we have that the periodic solutions of (12) are

g*(t) = A cos t + B sin ί + (5/6)(sin 2ί - cos 2ί) ,
where A and E are arbitrary constants.

For this example, Theorem 4 is also applicable to (12), where

H'*{t) = (7 cos t + sin ί)/5 .

EXAMPLE 2. Consider the scalar integral equations
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(13) H(t) = 1 + ('(3 - 2(ί - s))e-2U- Ή(s)ds ,
Jo

(14) flr(ί) = cos ί + Γ (3 - 2(ί - s^e'21^ g{s)ds .
J-oo

It is easy to see that the unique solution H(t) of (13) is

H(t) = U + e~ι ,

and then we have

ί Γ ( t ) - 4 = -e-'eL^O, oo) .

Thus, all the conditions of Theorem 4 with H'*(t) = 4 hold. Then (14)
has a periodic solution

g*(t) = cos t + 4 sin ί + I { -e~u~f)) cos scίs = (cos ί + 7 sin ί)/2 .
J_oo

Note that ff(ί) - jff*(ί)ί L^O, oo) for all 2π-periodic H*(t) and that
Theorem 3 is not applicable. This fact makes a difference between Theorem
3 and Theorem 4.

Our next result concerns the fundamental properties of solutions of
(1) and (2).

THEOREM 5. There exists a unique matrix solution Z(t) of (1) on
(—oo, oo) and for each yoeRn there is a unique solution y(t) = y(t, 0, y0)
of (2) on (—oo, oo) with

y(t) = Z(t)y0 +\Z(t- a)f (aids .
Jo

PROOF. Note that (1) and (2) are equivalent to the integral equations

Z(t) = I +[Έ(t - s)Z{s)ds ,
Jo

and

y(t) = F(t) + [EH - s)y(s)ds

respectively, where F(t) = y0 + [f(s)ds and E(t) = A + D(t) +
Jo

Now, our assertions follow from Theorem 1 directly.
THEOREM 6. Let C, Del/fO, oo) and f{t + T) = f(t) for some T > 0.

If y(t) = y(t, 0,2/0) is a bounded solution of (2) on [0, °°), έ&βw ίΛere is a
sequence of positive integers {n3), nd —> oo as j -> oo, ŝ c/& *Λat {2/(ί + ^ϊ 1)}
converges uniformly on compact subsets of (— oo, oo) £o a function x*(t)
which is a solution of (3).
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Note that C, De !/[(), oo) does not imply E(t) = A + D(t) + Γc(s)dse
Jo

^[0, oo), and so this theorem can be considered as a counterpart to
Theorem 2 above.

PROOF OF THEOREM 6. Let C, DeZ/fO, oo), and let y(t) be a bounded
solution of (2) on [0, oo). We want to show that {y(t + nT): n = 1, 2, •}
is equicontinuous and uniformly bounded on any fixed interval [—k, k].

For t2 ^ tt ^ — nT, we integrate (2) from tx + nT to t2 + nT and get

y(t2 + nT) - y(t, + nT)

= [h+nTD(t2 + nT - s)y(s)ds - ['^Dfa + nT - s)y(s)ds
Jo Jo

S ί2+«Γ/ fί \

I Ay(t) + \ C(t — s)y(s)ds + f(t) )dt .
ti+nTX Jo /

y(t) and /(£) are bounded, hence there exists an M with |/(ί) | ^ M, |̂ /(ί)| ^

S oo

\C(s)\ds = N< oo.
0

Thus
dt 5j Mi 112 — ίx I ,4̂.2/ (ί) + C(ί - s)y(s)ds -

Jo

where Λfi = Af(| A| + 1 + N). Moreover, since DeL^O, oo), for any ε > 0,
there is a k > 0 such that

Γ | D(s) I ds < e/8M for ί ^ A: ,

and so

- ti + v) — D(v) I dv < ε/4ikf.

By the continuity to D, there exists a ^ > 0 such that v e [0, k] and 0 5j
ί2 — ίi ^ #i imply

and

Thus

I Γ2+nΓί?(ί2 + nT - s)y(s)ds - [^^Dit, + nT - s)y(s)ds

D(t, + Λ Γ - 8 ) - Dfe + t ι Γ - s)\\y(s)\ds

S ίo+π

ίi+n

0

+
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^ M\k\D(t2 -ti + v)- D(v)\dv + M[°°\D(t2 - t, + v) - D{v)\dv
JO Jfc

Jo

^ e/4 + 6/4 + e/4 - 3ε/4

if 0 ^ ί2 - ίx ^ δ lβ Let δ = m i n ^ , 6/4MΊ). Then we have

\y(t2 + nT) - y(tλ + nT)\ ^ 3ε/4 + ε/4 = ε

if 0 ^ ί2 - tx ^ δ. Obviously

|»(ί + nΓ) |^AΓ for n = 1, 2, .

This implies that {̂ /(£ + nT)} is equicontinuous and uniformly bounded on
any fixed interval [—k, k], k = 1, 2, . Thus it contains a subsequence
{y(t + nάT)} converging uniformly on [ — 1, 1], which contains a subsequence
converging uniformly on [ — 2, 2]. In this way we obtain a subsequence,
say {y(t + nβT)} again, converging uniformly on any fixed interval [—k, k]
to a continuous function a?*(t)-

Now, we want to show that x*(t) is a solution of (3). Integrating
(2) from nsT to t + %T, we have

y(t + n,T) - y(n,T)

nsT - s)y(s)ds - [^DiujT - s)y(s)ds
Jo

\( (ι; - s)y(s)ds + f(v))dv
JnjT \ Jo /

= Γ D(t - v)y(v + ̂ Γ ) ^ - Γ D(-v)y(v + nόT)dv
J -njT J -njΓ

\*(Ay(u + UjT) + Γ C(% - v)y(v + n.T)dv + f(u))du .
Jθ\ J-njT J /Jθ\ J-njT

Since C, DeL^O, oo), by Lebesgue's dominated convergence theorem,
letting j -> oo, we have

s*(t) - a?*(0) = Γ D(ί - v)aj*(ι;)dι; - (° D(-v)x*(v)dv
J-oo J_oo

+ [ΊAX^U) + Γ C(w - v)x*(v)dv + /(uήdu .

Therefore by differentiation, we have

-4-(x*(t) - [' D(t - v)x*(v)dv) - Ax*(t) + Γ C(ί - v)x*(v)dv + f(t) ,
dt \ J-°° / J-°°

and so the limit function x*(t) is a solution of (3).
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Our next theorem can be considered as a counterpart of Theorem 3
above.

THEOREM 7. Suppose that C, D e !/[(), <*>) and f(t + Γ) = /(ί) . //

there is a T-periodic matrix Z*(t) such that Z(t) — Z*(t) e !/[(), oo), Z(t) —

Z*(f) -> 0 as £ —> oo, and £/&a£ \ Z*(ί — s)f(s)ds is T-periodic, then (3) /ιas
Jo

a T-periodic solution

x*(t) = Z*(t)yQ + [*Z*(t - s)f(s)ds + Γ (Z(t - s) - Z*(t - s))f(s)ds ,
JO J-oo

where yoeRn is an arbitrary constant.

The proof of this theorem is very similar to that of Theorem 3 and
therefore is omitted.

EXAMPLE 3. Consider the scalar equations

(15) —(Z{t) - \te-4{t-s)Z(s)ds) = -Z(t) + \e~'{t~8)Z{s)d
dt \ Jo / Jo

(16) —(x(t) - Γ e-4(ί-8)α(s)cte) = -x(t) + Γ e-4(ί-8)a;(s)ds + 2cos*
dt \ J-°° / J-°°

+ sin ί .

Here C(ί) = D(ί) = e"4ί e L^O, oo) with f(t) = 2 cos ί + sin t periodic.
It is not difficult to show that

Z(t) = (3/2)6-* -

is the unique solution of (15) and that all the conditions of Theorem 7
with Z*(t) = 0 hold. Then (16) has a periodic solution

x*(t) = Γ Z(ί -
J_oo

= Γ ((3/2)e-"-f> - (l/2)e-3(t-")(2 cos s + sin s)ds

= 2 sin ί + (1/2) cos t.

EXAMPLE 4. Consider the scalar equations

(17) Z\t) = Z{t) - Γβ-(|-β)(cos(ί - s) + 2sin(ί - s))Z(s)dsf Z(0) = 1 ,
Jo

(18) aj'(ί) = x(t) - Γ e-{ί"β)(cos(ί - β) + 2 sin(ί - s))x(s)ds + sin 2* .
J-oo

Here C(ί) = -β-«(cos t + 2 sin t) e L^O, o*) and D(t) Ξ 0.
It is easy to see that the unique solution Z(t) of (17) is
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Z(t) = (e"' + cos t + 3 sin ί)/2

and that all the conditions of Theorem 7 with Z*(t) = (cos t + 3 sin ί)/2
hold. Then (18) has a periodic solution

x*(t) = A; (cos t + 3 sin t) + Γ(l/2)(cos(ί - s) + 3 sin(ί - s)) sin 2sds
Jo

+ Γ (l/2)e-(ί-β)(sin2s)ds
J_oo

= (3ft + l)(cos t + 3 sin ί)/3 - 2(3 sin 2ί + 4 cos 2ί)/15 ,

where ft is an arbitrary constant.
Moreover, it is easy to see that for each α, 6 e R, x(t) — a cos t + b sin t

is a periodic solution of

x\t) = x(t) - Γ e-(ί"β)(cos(ί - s) + 2 sin(ί - s))x(s)ds .
J-oo

So, the periodic solutions of (18) are

x*(t) = α cos t + b sin ί - 2(3 sin 2ί + 4 cos 2ί)/15 ,

where α, 6 are arbitrary constants.

The following theorem can be considered as a counterpart of Theorem
4 above.

THEOREM 8. Let C, DeL\0, oo), and ieί -F(ί) = »0 + [f(s)ds be T-
Jo

periodic. If there is a T-periodic nxn matrix Z'*(t) such that Z\t) —

Z'*(ί) e Z/p), oo) and £Λa£ Γz'*(ί - s)F(s)ds is T-periodic, then
J

[ Γ (Z'(ί - β) - Z'*(t - s))F(s)ds
JO J-oo

is α T-periodic solution of (3).

The proof of this theorem is quite similar to that before and is
omitted.

For Example 4, Theorem 8 is also applicable to (18) with Z'*(ί) =
(3 cosί - sint)/2.

EXAMPLE 5. Consider the scalar equations

(19) 4-(z(t) - \^e-2{t-8)Z(s)ds) = -Z(t) + [U(t - s)e-2lt-9)Z(s)ds ,
dt \ Jo / Jo

Z(0) = 1 ,
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(20) -4-(x(t) - Γ 4e-2U-8)x(s)ds) = — a?(ί) + Γ 4(ί - s)e~2(t-8)x(s)ds
at \ J-°° ' J-°°

+ sin t .

Here C(ί) = fe^eL^O, oo), />($) = 4e"2f el/fO, oo), and F(ί) = yQ +

S sin scϊs = (y0 + 1) — cos t is 2τr-periodic.
0

It is easy to see that the unique solution Z(t) of (19) is
Z(t) = 4ί + β-' .

Then we have

Z\t) - 4 = -β-'eL^O, oo) .

Let Z'*(ί) - 4, and let y0 = -1. Then

(V*(ί - s)F(s)ds = ί*4(-cos s)ds = - 4 s i n ί ,
Jo Jo

which is 27r-periodic. Thus, all the conditions of Theorem 8 hold, and
(20) has a periodic solution

x*(t) = —cosί — 4sinί + \ ( — e~(ί~β))( — coss)ds
J_oo

= -(7sinί + cosί)/2 .

We now consider the question of the existence of Γ-periodic solutions
of (2).

THEOREM 9. Suppose that C, D, ZeZ/JΌ, oo) and Z(t)->0 as t-> <χ>,
and that f(t) is T-periodic. Then

(i) all solutions of (2) approach a periodic solution of (3) as t —> °o,
(ii) if (2) has a T-periodic solution y*(t), then y*(t) is unique and

is also a T-periodic solution of (3).

PROOF, (i) By Theorem 7 with Z* = 0, (3) has a Γ-periodic solution

x*(t) = Γ Z(t - s)f(s)ds .
J_oo

For any solution y(t) of (2), we have by Theorem 5

y(t) - Z(t)y(0) + [Z(t - s)f(s)ds .
Jo

Then

y(t) - x*(t) = Z(t)y(0) - Γ Z(t - s)f(s)ds
J-oo

= Z(t)y(0) - [~Z(u)f(t - %)d% -> 0 as t-+<*>,
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S oo

I Z{u) I du -> 0 as ί -> «>, and / is bounded .
t

(ii) From (i) above, we have

y*(t) - x*(f) -»0 as t -> oo ,

which implies y*(t) = x*(t), since y*{t) and #*(£) are both T-periodic.

THEOREM 10. Suppose that all the conditions of Theorem 9 hold.
Then

(i) (2) has a T-periodic solution if and only if

(21) Γ (Z(ί - s) - Z(ί)Z(-s))/(s)ώs s 0 ,
J_oo

(ii) (2) has a T-periodic solution for any continuous and T-periodic
function f{t) if and only if

Z(t-8) = Z(t)Z(-s) .

PROOF. For the proof we refer to [3].

In addition to Example 3, we consider the following scalar equation

(22) -τ-(y(Jb) - \te-'{t-a)y(s)ds) = -y(t) + [e^^y^ds + 2cos t + sin t.
dt \ Jo / Jo

It is easy to verify that (21) holds, that is,

= {fΓ% + e"3ί) Γ (e38 - e°)(2 cos s + sin s)ds = 0 .
J-OO

Hence there is a periodic solution of (22) by Theorem 10 which must be
equal to the periodic solution x*(t) = 2 sin t + (1/2) cos t of (16) by Theorem 9.

Finally, we want to point out that (22) is reduced to

y(t) = (3/4)ί V 4 ( ί" 8 ) - l)y(s)ds + y(0) + 2 sin t - cos t + 1 ,
Jo

but Theorem 3 is not applicable, since E(t) = e~4t — lgL^O, <*>).

The author wishes to thank the referee for many helpful suggestions.
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