PERIODIC SOLUTIONS OF LINEAR NEUTRAL INTEGRODIFFERENTIAL EQUATIONS

Wang Zhicheng

(Received January 9, 1985)

In this paper, we consider the neutral integrodifferential equations

$$
\begin{align*}
& \frac{d}{d t}\left(Z(t)-\int_{0}^{t} D(t-s) Z(s) d s\right)=A Z(t)+\int_{0}^{t} C(t-s) Z(s) d s, Z(0)=I \tag{1}\\
& \frac{d}{d t}\left(y(t)-\int_{0}^{t} D(t-s) y(s) d s\right)=A y(t)+\int_{0}^{t} C(t-s) y(s) d s+f(t) \tag{2}\\
& \frac{d}{d t}\left(x(t)-\int_{-\infty}^{t} D(t-s) x(s) d s\right)=A x(t)+\int_{-\infty}^{t} C(t-s) x(s) d s+f(t) \tag{3}
\end{align*}
$$

where $x, y \in R^{n}, Z, A, C, D$ and I are $n \times n$ matrices with A constant, C and D continuous on $(-\infty, \infty), I$ the identity matrix, and $f:(-\infty, \infty) \rightarrow$ R^{n} is continuous.

Our aim is to get nice formula for periodic solutions of these equations, and so this paper can be considered as an extension of [2], [3] and [4].

Let us first consider the Volterra integral equations

$$
\begin{gather*}
H(t)=I+\int_{0}^{t} E(t-s) H(s) d s, \quad H \text { is } \quad n \times n \tag{4}\\
g(t)=F(t)+\int_{0}^{t} E(t-s) g(s) d s, \quad g \in R^{n} \tag{5}\\
g(t)=F(t)+\int_{-\infty}^{t} E(t-s) g(s) d s, \quad g \in R^{n}, \tag{6}
\end{gather*}
$$

where E is an $n \times n$ matrix of functions continuous on $(-\infty, \infty)$, and $F:(-\infty, \infty) \rightarrow R^{n}$ is continuous.

Remark. It is easy to see that $g(t)$ is a solution of (5) on $(-\infty, 0]$ if and only if $g^{*}\left(t^{*}\right):=g\left(-t^{*}\right), t^{*} \geqq 0$, is a solution of

$$
g^{*}\left(t^{*}\right)=F^{*}\left(t^{*}\right)+\int_{0}^{t^{*}} E^{*}\left(t^{*}-s\right) g^{*}(s) d s
$$

on $[0, \infty)$, where $F^{*}\left(t^{*}\right):=F\left(-t^{*}\right), E^{*}(s):=E(-s)$. This fact shows that if we have some properties of solutions of (5) on $[0, \infty)$, then we have similar properties on $(-\infty, 0]$.

The following theorem generalizes an analogous theorem of Burton (see [1], [2]).

Theorem 1. If $F(t)$ and $E(t)$ are continuous on $(-\infty, \infty)$, then
(i) there is one and only one solution $H(t)$ of (4) on $(-\infty, \infty)$,
(ii) there is one and only one solution $g(t)$ of (5) on $(-\infty, \infty)$,
(iii) the unique solution $H(t)$ of (4) is given by

$$
\begin{equation*}
H(t)=I+\int_{0}^{t} G(s) d s \tag{7}
\end{equation*}
$$

where $G(t)$ is the $n \times n$ matrix solution of

$$
\begin{equation*}
G(t)=E(t)+\int_{0}^{t} E(t-s) G(s) d s \tag{8}
\end{equation*}
$$

Therefore, $H^{\prime}(t)$ is continuous and satisfies

$$
\begin{equation*}
H^{\prime}(t)=E(t)+\int_{0}^{t} E(t-s) H^{\prime}(s) d s \tag{8*}
\end{equation*}
$$

(iv) the unique solution $g(t)$ of (5) is

$$
\begin{equation*}
g(t)=F(t)+\int_{0}^{t} H^{\prime}(t-s) F(s) d s \tag{9}
\end{equation*}
$$

Moreover, if $F^{\prime}(t)$ is continuous, then $g(t)$ can be rewritten as

$$
\begin{equation*}
g(t)=H(t) F(0)+\int_{0}^{t} H(t-s) F^{\prime}(s) d s \tag{10}
\end{equation*}
$$

Proof. Combining the analogous theorem of Burton [2, Theorem 1.5] with the remark above, we can show that the solution $g(t)$ of (5) exists and is unique on $(-\infty, \infty)$ and so does $H(t)$.

To prove (iii), we can show as in the cases (i) and (ii) that the solution $G(t)$ of (8) exists and is unique on $(-\infty, \infty)$. Then we have by substitution,

$$
\begin{aligned}
H(t) & =I+\int_{0}^{t} G(s) d s \\
& =I+\int_{0}^{t}\left(E(v)+\int_{0}^{v} E(v-s) G(s) d s\right) d v \\
& =I+\int_{0}^{t}\left(E(v)+\int_{0}^{v} E(s) G(v-s) d s\right) d v \\
& =I+\int_{0}^{t} E(v) d v+\int_{0}^{t}\left(\int_{s}^{t} E(s) G(v-s) d v\right) d s \\
& =I+\int_{0}^{t} E(s)\left(I+\int_{0}^{t-s} G(v) d v\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& =I+\int_{0}^{t} E(t-s)\left(I+\int_{0}^{s} G(v) d v\right) d s \\
& =I+\int_{0}^{t} E(t-s) H(s) d s
\end{aligned}
$$

This shows that $H(t)=I+\int_{0}^{t} G(s) d s$ is a solution of (4).
To prove part (iv), we only need to show that

$$
g(t)=F(t)+\int_{0}^{t} H^{\prime}(t-s) F(s) d s
$$

is a solution of (5). Indeed, we have by substitution,

$$
\begin{aligned}
F(t) & +\int_{0}^{t} E(t-v) g(v) d v \\
& =F(t)+\int_{0}^{t} E(t-v)\left(F(v)+\int_{0}^{v} H^{\prime}(v-s) F(s) d s\right) d v \\
& =F(t)+\int_{0}^{t} E(t-s) F(s) d s+\int_{0}^{t}\left(\int_{s}^{t} E(t-v) H^{\prime}(v-s) d v\right) F(s) d s \\
& =F(t)+\int_{0}^{t} E(t-s) F(s) d s+\int_{0}^{t}\left(\int_{0}^{t-s} E(t-s-u) H^{\prime}(u) d u\right) F(s) d s \\
& =F(t)+\int_{0}^{t}\left(E(t-s)+\int_{0}^{t-s} E(t-s-u) H^{\prime}(u) d u\right) F(s) d s \\
& =F(t)+\int_{0}^{t} H^{\prime}(t-s) F(s) d s \quad\left(b y \quad\left(8^{*}\right)\right) \\
& =g(t) .
\end{aligned}
$$

This proves Theorem 1.
Following Burton [2] and Miller [5], we can also get the following theorem.

Theorem 2. If $F(t+T)=F(t)$ for some $T>0$, and if $g(t)$ is a bounded solution of (5) on $[0, \infty)$ with $E \in L^{1}[0, \infty)$, then there is a sequence of positive integers $\left\{n_{j}\right\}, n_{j} \rightarrow \infty$ as $j \rightarrow \infty$, such that $\left\{g\left(t+n_{j} T\right)\right\}$ converges uniformly on compact subsets of $(-\infty, \infty)$ to a function $g^{*}(t)$ which is a solution of (6).

Burton [2, p. 1.15] asserted that if H and $E \in L^{1}[0, \infty)$ and $H(t) \rightarrow 0$ as $t \rightarrow \infty$, then $g\left(t+n_{j} T\right)$ converges to $\int_{-\infty}^{t} H(t-s) F^{\prime}(s) d s=g^{*}(t)$ which is a periodic solution of (6). But this is not consistent with his assumptions. For, $E \in L^{1}[0, \infty)$ and $H(t) \rightarrow 0$ imply $\int_{0}^{t} E(t-s) H(s) d s \rightarrow 0$, which implies

$$
H(t)=I+\int_{0}^{t} E(t-s) H(s) d s \rightarrow I \neq 0 \quad \text { as } \quad t \rightarrow \infty
$$

a contradiction.
Our next results improve this situation and put the ideas in the correct context.

TheOrem 3. Let $F(t)$ be T-periodic with $F^{\prime \prime}$ continuous, and let $E \in L^{1}$ $[0, \infty)$. If there is a T-periodic matrix $H^{*}(t)$ such that $H(t)-H^{*}(t) \in L^{1}$ $[0, \infty)$ with $H(t)-H^{*}(t) \rightarrow 0$ as $t \rightarrow \infty$, and that $\int_{0}^{t} H^{*}(t-s) F^{\prime}(s) d s$ is T periodic, then (6) has a T-periodic solution

$$
\begin{aligned}
g^{*}(t)= & H^{*}(t) F(0)+\int_{0}^{t} H^{*}(t-s) F^{\prime}(s) d s \\
& +\int_{-\infty}^{t}\left(H(t-s)-H^{*}(t-s)\right) F^{\prime}(s) d s
\end{aligned}
$$

Proof. For

$$
\begin{aligned}
g(t)= & H(t) F(0)+\int_{0}^{t} H(t-s) F^{\prime}(s) d s \\
= & \left(H(t)-H^{*}(t)\right) F(0)+H^{*}(t) F(0)+\int_{0}^{t} H^{*}(t-s) F^{\prime}(s) d s \\
& +\int_{0}^{t}\left(H(t-s)-H^{*}(t-s)\right) F^{\prime}(s) d s
\end{aligned}
$$

we have that $g(t)$ is bounded on $[0, \infty)$ under the assumptions of the theorem. Then by Theorem 2, we have

$$
\begin{aligned}
g\left(t+n_{j} T\right)= & \left(H\left(t+n_{j} T\right)-H^{*}\left(t+n_{j} T\right)\right) F(0)+H^{*}\left(t+n_{j} T\right) F(0) \\
& +\int_{0}^{t} H^{*}(t-s) F^{\prime}(s) d s+\int_{-n_{j} T}^{t}\left(H(t-s)-H^{*}(t-s)\right) F^{\prime}(s) d s \\
& \rightarrow H^{*}(t) F(0)+\int_{0}^{t} H^{*}(t-s) F^{\prime}(s) d s \\
& +\int_{-\infty}^{t}\left(H(t-s)-H^{*}(t-s)\right) F^{\prime}(s) d s=g^{*}(t)
\end{aligned}
$$

which is a T-periodic solution of (6).
Remark. In this case, $H^{*}(t)$ is a T-periodic solution of

$$
H^{*}(t)=I+\int_{-\infty}^{t} E(t-s) H^{*}(s) d s
$$

Theorem 4. Suppose that $F(t)$ is T-periodic with $E \in L^{1}[0, \infty)$ and that there is a T-periodic matrix $H^{\prime *}(t)$ such that $H^{\prime}(t)-H^{\prime *}(t) \in L^{1}[0, \infty)$ and that $\int_{0}^{t} H^{\prime *}(t-s) F(s) d s$ is T-periodic. Then (6) has a T-periodic
solution

$$
\begin{aligned}
g^{*}(t)= & F(t)+\int_{0}^{t} H^{\prime *}(t-s) F(s) d s \\
& +\int_{-\infty}^{t}\left(H^{\prime}(t-s)-H^{\prime *}(t-s)\right) F(s) d s
\end{aligned}
$$

Remark. In this case, if $E(t) \rightarrow 0$ as $t \rightarrow \infty$, then $H^{\prime *}(t)$ is a T periodic solution of

$$
H^{\prime *}(t)=\int_{-\infty}^{t} E(t-s) H^{\prime *}(s) d s
$$

Example 1. Consider the scalar integral equations

$$
\begin{gather*}
H(t)=1+\int_{0}^{t} e^{-(t-s)}(3 \cos (t-s)+\sin (t-s)-2) H(s) d s \tag{11}\\
g(t)=\sin 2 t+\int_{-\infty}^{t} e^{-(t-s)}(3 \cos (t-s)+\sin (t-s)-2) g(s) d s \tag{12}
\end{gather*}
$$

It is easy to see that the unique solution $H(t)$ of (11) is

$$
H(t)=\left(e^{-2 t}+7 \sin t-\cos t\right) / 5+1,
$$

and that all the conditions of Theorem 3 with $H^{*}(t)=(7 \sin t-\cos t) / 5+1$ hold. Then (12) has a periodic solution

$$
\begin{aligned}
g^{*}(t)= & \int_{0}^{t}((7 \sin (t-s)-\cos (t-s)) / 5+1)(2 \cos 2 s) d s \\
& +\int_{-\infty}^{t}(1 / 5) e^{-2(t-s)}(2 \cos 2 s) d s \\
= & (28 \cos t+4 \sin t-25 \cos 2 t+25 \sin 2 t) / 30
\end{aligned}
$$

Moreover, it is easy to verify that for each $A, B \in R, g(t)=A \cos t+B \sin t$ is a periodic solution of

$$
g(t)=\int_{-\infty}^{t} e^{-(t-s)}(3 \cos (t-s)+\sin (t-s)-2) g(s) d s
$$

Then we have that the periodic solutions of (12) are

$$
g^{*}(t)=\mathrm{A} \cos t+B \sin t+(5 / 6)(\sin 2 t-\cos 2 t)
$$

where A and B are arbitrary constants.
For this example, Theorem 4 is also applicable to (12), where

$$
H^{\prime *}(t)=(7 \cos t+\sin t) / 5
$$

Example 2. Consider the scalar integral equations

$$
\begin{gather*}
H(t)=1+\int_{0}^{t}(3-2(t-s)) e^{-2(t-s)} H(s) d s \tag{13}\\
g(t)=\cos t+\int_{-\infty}^{t}(3-2(t-s)) e^{-2(t-s)} g(s) d s \tag{14}
\end{gather*}
$$

It is easy to see that the unique solution $H(t)$ of (13) is

$$
H(t)=4 t+e^{-t}
$$

and then we have

$$
H^{\prime}(t)-4=-e^{-t} \in L^{1}[0, \infty)
$$

Thus, all the conditions of Theorem 4 with $H^{\prime *}(t)=4$ hold. Then (14) has a periodic solution

$$
g^{*}(t)=\cos t+4 \sin t+\int_{-\infty}^{t}\left(-e^{-(t-s)}\right) \cos s d s=(\cos t+7 \sin t) / 2
$$

Note that $H(t)-H^{*}(t) \notin L^{1}[0, \infty)$ for all 2π-periodic $H^{*}(t)$ and that Theorem 3 is not applicable. This fact makes a difference between Theorem 3 and Theorem 4.

Our next result concerns the fundamental properties of solutions of (1) and (2).

THEOREM 5. There exists a unique matrix solution $Z(t)$ of (1) on $(-\infty, \infty)$ and for each $y_{0} \in R^{n}$ there is a unique solution $y(t)=y\left(t, 0, y_{0}\right)$ of (2) on $(-\infty, \infty)$ with

$$
y(t)=Z(t) y_{0}+\int_{0}^{t} Z(t-s) f(s) d s
$$

Proof. Note that (1) and (2) are equivalent to the integral equations

$$
Z(t)=I+\int_{0}^{t} E(t-s) Z(s) d s
$$

and

$$
y(t)=F(t)+\int_{0}^{t} E(t-s) y(s) d s
$$

respectively, where $F(t)=y_{0}+\int_{0}^{t} f(s) d s$ and $E(t)=A+D(t)+\int_{0}^{t} C(s) d s$.
Now, our assertions follow from Theorem 1 directly.
Theorem 6. Let $C, D \in L^{1}[0, \infty)$ and $f(t+T)=f(t)$ for some $T>0$. If $y(t)=y\left(t, 0, y_{0}\right)$ is a bounded solution of (2) on $[0, \infty)$, then there is a sequence of positive integers $\left\{n_{j}\right\}, n_{j} \rightarrow \infty$ as $j \rightarrow \infty$, such that $\left\{y\left(t+n_{j} T\right)\right\}$ converges uniformly on compact subsets of $(-\infty, \infty)$ to a function $x^{*}(t)$ which is a solution of (3).

Note that $C, D \in L^{1}[0, \infty)$ does not imply $E(t)=A+D(t)+\int_{0}^{t} C(s) d s \in$ $L^{1}[0, \infty)$, and so this theorem can be considered as a counterpart to Theorem 2 above.

Proof of Theorem 6. Let $C, D \in L^{1}[0, \infty)$, and let $y(t)$ be a bounded solution of (2) on $[0, \infty)$. We want to show that $\{y(t+n T): n=1,2, \cdots\}$ is equicontinuous and uniformly bounded on any fixed interval $[-k, k]$.

For $t_{2} \geqq t_{1} \geqq-n T$, we integrate (2) from $t_{1}+n T$ to $t_{2}+n T$ and get

$$
\begin{aligned}
y\left(t_{2}+\right. & n T)-y\left(t_{1}+n T\right) \\
= & \int_{0}^{t_{2}+n T} D\left(t_{2}+n T-s\right) y(s) d s-\int_{0}^{t_{1}+n T} D\left(t_{1}+n T-s\right) y(s) d s \\
& +\int_{t_{1}+n T}^{t_{2}+n T}\left(A y(t)+\int_{0}^{t} C(t-s) y(s) d s+f(t)\right) d t
\end{aligned}
$$

$y(t)$ and $f(t)$ are bounded, hence there exists an M with $|f(t)| \leqq M,|y(t)| \leqq$ M for $t \geqq 0$. Moreover, since $C \in L^{1}[0, \infty)$, we have $\int_{0}^{\infty}|C(s)| d s=N<\infty$. Thus

$$
\int_{t_{1}+n T}^{t_{2}+n T}\left|A y(t)+\int_{0}^{t} C(t-s) y(s) d s+f(t)\right| d t \leqq M_{1}\left|t_{2}-t_{1}\right|
$$

where $M_{1}=M(|A|+1+N)$. Moreover, since $D \in L^{1}[0, \infty)$, for any $\varepsilon>0$, there is a $k>0$ such that

$$
\int_{t}^{\infty}|D(s)| d s<\varepsilon / 8 M \text { for } t \geqq k
$$

and so

$$
\int_{k}^{\infty}\left|D\left(t_{2}-t_{1}+v\right)-D(v)\right| d v<\varepsilon / 4 M
$$

By the continuity to D, there exists a $\delta_{1}>0$ such that $v \in[0, k]$ and $0 \leqq$ $t_{2}-t_{1} \leqq \delta_{1}$ imply

$$
\left|D\left(t_{2}-t_{1}+v\right)-D(v)\right|<\varepsilon / 4 k M
$$

and

$$
\int_{0}^{t_{2}-t_{1}}|D(v)| d v<\varepsilon / 4 M
$$

Thus

$$
\begin{aligned}
& \left|\int_{0}^{t_{2}+n T} D\left(t_{2}+n T-s\right) y(s) d s-\int_{0}^{t_{1}+n T} D\left(t_{1}+n T-s\right) y(s) d s\right| \\
& \quad \leqq \int_{0}^{t_{1}+n T}\left|D\left(t_{2}+n T-s\right)-D\left(t_{1}+n T-s\right)\right||y(s)| d s \\
& \quad \quad+\int_{t_{1}+n T}^{t_{2}+n T}\left|D\left(t_{2}+n T-s\right)\right||y(s)| d s
\end{aligned}
$$

$$
\begin{aligned}
\leqq & M \int_{0}^{k}\left|D\left(t_{2}-t_{1}+v\right)-D(v)\right| d v+M \int_{k}^{\infty}\left|D\left(t_{2}-t_{1}+v\right)-D(v)\right| d v \\
& +M \int_{0}^{t_{2}-t_{1}}|D(v)| d v \\
\leqq & \varepsilon / 4+\varepsilon / 4+\varepsilon / 4=3 \varepsilon / 4
\end{aligned}
$$

if $0 \leqq t_{2}-t_{1} \leqq \delta_{1}$. Let $\delta=\min \left(\delta_{1}, \varepsilon / 4 M_{1}\right)$. Then we have

$$
\left|y\left(t_{2}+n T\right)-y\left(t_{1}+n T\right)\right| \leqq 3 \varepsilon / 4+\varepsilon / 4=\varepsilon
$$

if $0 \leqq t_{2}-t_{1} \leqq \delta$. Obviously

$$
|y(t+n T)| \leqq M \quad \text { for } \quad n=1,2, \cdots
$$

This implies that $\{y(t+n T)\}$ is equicontinuous and uniformly bounded on any fixed interval $[-k, k], k=1,2, \cdots$. Thus it contains a subsequence $\left\{y\left(t+n_{j} T\right)\right\}$ converging uniformly on $[-1,1]$, which contains a subsequence converging uniformly on [-2,2]. In this way we obtain a subsequence, say $\left\{y\left(t+n_{j} T\right)\right\}$ again, converging uniformly on any fixed interval $[-k, k]$ to a continuous function $x^{*}(t)$.

Now, we want to show that $x^{*}(t)$ is a solution of (3). Integrating (2) from $n_{j} T$ to $t+n_{j} T$, we have

$$
\begin{aligned}
y(t+ & \left.n_{j} T\right)-y\left(n_{j} T\right) \\
= & \int_{0}^{t+n_{j} T} D\left(t+n_{j} T-s\right) y(s) d s-\int_{0}^{n_{j} T} D\left(n_{j} T-s\right) y(s) d s \\
& +\int_{n_{j} T}^{t+n_{j} T}\left(A y(v)+\int_{0}^{v} C(v-s) y(s) d s+f(v)\right) d v \\
= & \int_{-n_{j} T}^{t} D(t-v) y\left(v+n_{j} T\right) d v-\int_{-n_{j} T}^{0} D(-v) y\left(v+n_{j} T\right) d v \\
& +\int_{0}^{t}\left(A y\left(u+n_{j} T\right)+\int_{-n_{j} T}^{u} C(u-v) y\left(v+n_{j} T\right) d v+f(u)\right) d u
\end{aligned}
$$

Since $C, D \in L^{1}[0, \infty)$, by Lebesgue's dominated convergence theorem, letting $j \rightarrow \infty$, we have

$$
\begin{aligned}
x^{*}(t)-x^{*}(0)= & \int_{-\infty}^{t} D(t-v) x^{*}(v) d v-\int_{-\infty}^{0} D(-v) x^{*}(v) d v \\
& +\int_{0}^{t}\left(A x^{*}(u)+\int_{-\infty}^{u} C(u-v) x^{*}(v) d v+f(u)\right) d u
\end{aligned}
$$

Therefore by differentiation, we have

$$
\frac{d}{d t}\left(x^{*}(t)-\int_{-\infty}^{t} D(t-v) x^{*}(v) d v\right)=A x^{*}(t)+\int_{-\infty}^{t} C(t-v) x^{*}(v) d v+f(t)
$$

and so the limit function $x^{*}(t)$ is a solution of (3).

Our next theorem can be considered as a counterpart of Theorem 3 above.

Theorem 7. Suppose that $C, D \in L^{1}[0, \infty)$ and $f(t+T)=f(t) . \quad$ If there is a T-periodic matrix $Z^{*}(t)$ such that $Z(t)-Z^{*}(t) \in L^{1}[0, \infty), Z(t)-$ $Z^{*}(t) \rightarrow 0$ as $t \rightarrow \infty$, and that $\int_{0}^{t} Z^{*}(t-s) f(s) d s$ is T-periodic, then (3) has a T-periodic solution

$$
x^{*}(t)=Z^{*}(t) y_{0}+\int_{0}^{t} Z^{*}(t-s) f(s) d s+\int_{-\infty}^{t}\left(Z(t-s)-Z^{*}(t-s)\right) f(s) d s
$$

where $y_{0} \in R^{n}$ is an arbitrary constant.
The proof of this theorem is very similar to that of Theorem 3 and therefore is omitted.

Example 3. Consider the scalar equations

$$
\begin{align*}
\frac{d}{d t}\left(Z(t)-\int_{0}^{t} e^{-4(t-s)} Z(s) d s\right)= & -Z(t)+\int_{0}^{t} e^{-4(t-s)} Z(s) d s, Z(0)=1 \tag{15}\\
\frac{d}{d t}\left(x(t)-\int_{-\infty}^{t} e^{-4(t-s)} x(s) d s\right)= & -x(t)+\int_{-\infty}^{t} e^{-4(t-s)} x(s) d s+2 \cos t \\
& +\sin t
\end{align*}
$$

Here $C(t)=D(t)=e^{-4 t} \in L^{1}[0, \infty)$ with $f(t)=2 \cos t+\sin t$ periodic.
It is not difficult to show that

$$
Z(t)=(3 / 2) e^{-t}-(1 / 2) e^{-3 t}
$$

is the unique solution of (15) and that all the conditions of Theorem 7 with $Z^{*}(t)=0$ hold. Then (16) has a periodic solution

$$
\begin{aligned}
x^{*}(t) & =\int_{-\infty}^{t} Z(t-s) f(s) d s \\
& =\int_{-\infty}^{t}\left((3 / 2) e^{-(t-s)}-(1 / 2) e^{-s(t-s)}\right)(2 \cos s+\sin s) d s \\
& =2 \sin t+(1 / 2) \cos t
\end{aligned}
$$

Example 4. Consider the scalar equations

$$
\begin{align*}
Z^{\prime}(t) & =Z(t)-\int_{0}^{t} e^{-(t-s)}(\cos (t-s)+2 \sin (t-s)) Z(s) d s, Z(0)=1 \tag{17}\\
x^{\prime}(t) & =x(t)-\int_{-\infty}^{t} e^{-(t-s)}(\cos (t-s)+2 \sin (t-s)) x(s) d s+\sin 2 t \tag{18}
\end{align*}
$$

Here $C(t)=-e^{-t}(\cos t+2 \sin t) \in L^{1}[0, \infty)$ and $D(t) \equiv 0$.
It is easy to see that the unique solution $Z(t)$ of (17) is

$$
Z(t)=\left(e^{-t}+\cos t+3 \sin t\right) / 2
$$

and that all the conditions of Theorem 7 with $Z^{*}(t)=(\cos t+3 \sin t) / 2$ hold. Then (18) has a periodic solution

$$
\begin{aligned}
x^{*}(t)= & k(\cos t+3 \sin t)+\int_{0}^{t}(1 / 2)(\cos (t-s)+3 \sin (t-s)) \sin 2 s d s \\
& +\int_{-\infty}^{t}(1 / 2) e^{-(t-s)}(\sin 2 s) d s \\
= & (3 k+1)(\cos t+3 \sin t) / 3-2(3 \sin 2 t+4 \cos 2 t) / 15,
\end{aligned}
$$

where k is an arbitrary constant.
Moreover, it is easy to see that for each $a, b \in R, x(t)=a \cos t+b \sin t$ is a periodic solution of

$$
x^{\prime}(t)=x(t)-\int_{-\infty}^{t} e^{-(t-s)}(\cos (t-s)+2 \sin (t-s)) x(s) d s
$$

So, the periodic solutions of (18) are

$$
x^{*}(t)=a \cos t+b \sin t-2(3 \sin 2 t+4 \cos 2 t) / 15
$$

where a, b are arbitrary constants.
The following theorem can be considered as a counterpart of Theorem 4 above.

Theorem 8. Let $C, D \in L^{1}[0, \infty)$, and let $F(t)=y_{0}+\int_{0}^{t} f(s) d s$ be T periodic. If there is a T-periodic $n \times n$ matrix $Z^{\prime *}(t)$ such that $Z^{\prime}(t)-$ $Z^{\prime *}(t) \in L^{1}[0, \infty)$ and that $\int_{0}^{t} Z^{\prime *}(t-s) F(s) d s$ is T-periodic, then

$$
x^{*}(t)=F(t)+\int_{0}^{t} Z^{\prime *}(t-s) F(s) d s+\int_{-\infty}^{t}\left(Z^{\prime}(t-s)-Z^{\prime *}(t-s)\right) F(s) d s
$$

is a T-periodic solution of (3).
The proof of this theorem is quite similar to that before and is omitted.

For Example 4, Theorem 8 is also applicable to (18) with $Z^{*}(t)=$ $(3 \cos t-\sin t) / 2$.

Đxample 5. Consider the scalar equations

$$
\begin{align*}
\frac{d}{d t}\left(Z(t)-\int_{0}^{t} 4 e^{-2(t-s)} Z(s) d s\right) & =-Z(t)+\int_{0}^{t} 4(t-s) e^{-2(t-s)} Z(s) d s \tag{19}\\
Z(0) & =1
\end{align*}
$$

$$
\begin{align*}
\frac{d}{d t}\left(x(t)-\int_{-\infty}^{t} 4 e^{-2(t-s)} x(s) d s\right)= & -x(t)+\int_{-\infty}^{t} 4(t-s) e^{-2(t-s)} x(s) d s \tag{20}\\
& +\sin t
\end{align*}
$$

Here $C(t)=4 t e^{-2 t} \in L^{1}[0, \infty), D(t)=4 e^{-2 t} \in L^{1}[0, \infty)$, and $\quad F(t)=y_{0}+$ $\int_{0}^{t} \sin s d s=\left(y_{0}+1\right)-\cos t$ is 2π-periodic.

It is easy to see that the unique solution $Z(t)$ of (19) is

$$
Z(t)=4 t+e^{-t}
$$

Then we have

$$
Z^{\prime}(t)-4=-e^{-t} \in L^{1}[0, \infty)
$$

Let $Z^{\prime *}(t)=4$, and let $y_{0}=-1$. Then

$$
\int_{0}^{t} Z^{\prime *}(t-s) F(s) d s=\int_{0}^{t} 4(-\cos s) d s=-4 \sin t
$$

which is 2π-periodic. Thus, all the conditions of Theorem 8 hold, and (20) has a periodic solution

$$
\begin{aligned}
x^{*}(t) & =-\cos t-4 \sin t+\int_{-\infty}^{t}\left(-e^{-(t-s)}\right)(-\cos s) d s \\
& =-(7 \sin t+\cos t) / 2
\end{aligned}
$$

We now consider the question of the existence of T-periodic solutions of (2).

Theorem 9. Suppose that $C, D, Z \in L^{1}[0, \infty)$ and $Z(t) \rightarrow 0$ as $t \rightarrow \infty$, and that $f(t)$ is T-periodic. Then
(i) all solutions of (2) approach a periodic solution of (3) as $t \rightarrow \infty$,
(ii) if (2) has a T-periodic solution $y^{*}(t)$, then $y^{*}(t)$ is unique and is also a T-periodic solution of (3).

Proof. (i) By Theorem 7 with $Z^{*}=0$, (3) has a T-periodic solution

$$
x^{*}(t)=\int_{-\infty}^{t} Z(t-s) f(s) d s
$$

For any solution $y(t)$ of (2), we have by Theorem 5

$$
y(t)=Z(t) y(0)+\int_{0}^{t} Z(t-s) f(s) d s
$$

Then

$$
\begin{aligned}
y(t)-x^{*}(t) & =Z(t) y(0)-\int_{-\infty}^{0} Z(t-s) f(s) d s \\
& =Z(t) y(0)-\int_{t}^{\infty} Z(u) f(t-u) d u \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
\end{aligned}
$$

since $Z(t) \rightarrow 0$ as $t \rightarrow \infty, \int_{t}^{\infty}|Z(u)| d u \rightarrow 0$ as $t \rightarrow \infty$, and f is bounded.
(ii) From (i) above, we have

$$
y^{*}(t)-x^{*}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty,
$$

which implies $y^{*}(t)=x^{*}(t)$, since $y^{*}(t)$ and $x^{*}(t)$ are both T-periodic.
Theorem 10. Suppose that all the conditions of Theorem 9 hold. Then
(i) (2) has a T-periodic solution if and only if

$$
\begin{equation*}
\int_{-\infty}^{0}(Z(t-s)-Z(t) Z(-s)) f(s) d s \equiv 0 \tag{21}
\end{equation*}
$$

(ii) (2) has a T-periodic solution for any continuous and T-periodic function $f(t)$ if and only if

$$
Z(t-s) \equiv Z(t) Z(-s)
$$

Proof. For the proof we refer to [3].
In addition to Example 3, we consider the following scalar equation

$$
\begin{equation*}
\frac{d}{d t}\left(y(t)-\int_{0}^{t} e^{-4(t-s)} y(s) d s\right)=-y(t)+\int_{0}^{t} e^{-4(t-s)} y(s) d s+2 \cos t+\sin t \tag{22}
\end{equation*}
$$

It is easy to verify that (21) holds, that is,

$$
\begin{aligned}
& \int_{-\infty}^{0}(Z(t-s)-Z(t) Z(-s)) f(s) d s \\
& \quad=\left(e^{-t}+e^{-3 t}\right) \int_{-\infty}^{0}\left(e^{38}-e^{s}\right)(2 \cos s+\sin s) d s \equiv 0
\end{aligned}
$$

Hence there is a periodic solution of (22) by Theorem 10 which must be equal to the periodic solution $x^{*}(t)=2 \sin t+(1 / 2) \cos t$ of (16) by Theorem 9.

Finally, we want to point out that (22) is reduced to

$$
y(t)=(3 / 4) \int_{0}^{t}\left(e^{-4(t-s)}-1\right) y(s) d s+y(0)+2 \sin t-\cos t+1
$$

but Theorem 3 is not applicable, since $E(t)=e^{-4 t}-1 \notin L^{1}[0, \infty)$.
The author wishes to thank the referee for many helpful suggestions.

References

[1] T. A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.
[2] T. A. Burton, Lecture Notes on Periodic Solutions of Volterra Equations, to appear.
[3] T.A. Burton, Periodic solutions of linear Volterra equations, Funkcial. Ekvac., 27 (1984), 229-253.
[4] Z.-C. Wang, J.-H. Wu and Z.-X. Li, The variation of constants formula and periodicity for linear neutral integrodifferential equations, Funkcial. Ekvac., forthcoming.
[5] R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, New York, 1971.
Institute of Applied Mathematics
Hunan University
Changsha, Hunan 1801
People's Republic of China

