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0. Introduction. In [1], Bargmann studied an integral transform of
L\Rn) onto a Hubert space consisting of entire holomorphic functions on
Cn. His transform may be regarded as a half-form pairing between real
and complex polarizations of R2n = Cn (see [8, § 2]). In [7], Rawnsley

o

showed that T^S71'1 (the cotangent bundle of the (n — l)-sphere minus
its zero section) has a Kaehler structure with the Kaehler form equal to
the natural symplectic form. Furthermore, he studied in [8] the half-
form pairing between real and complex polarizations of T*Sn~\ but it is
not unitary. Also, we know that there does not exist a distinguished
kernel, the definition of which is given in [2, IV. 5], for these polariza-
tions. More precisely, there does exist a "distinguished kernel" defined
in a neighborhood of the diagonal of f^S71"1 x f*Sn~\ but it does not
extend globally. This "kernel", however, suggests us to consider an
integral transform:

fc ί e-f(x)dS(x),

where zeCn, z2 = 0 (for the notations, see Section 1). Incidentally,
transformations of the same form as ^~ have been studied by several
authors (see, for example, [3, §4], [6, §7], [4, Theorem 2.10], [8, p. 175]
and [5, § 4]). In the present note, motivated by these works, we consider
the integral transform ^ of L^S71"1) into a space consisting of holomorphic
functions on the Kaehler manifold Γ*^" 1 = {z eCn\z2 = 0, z Φ 0}. jr is
injective. In Section 2, we construct, in the case of even-dimensional

o

spheres, a "Plancherel measure" on T^S71'1 to describe the image of L^S71"1)
under this transform. The "inversion formula" is also obtained. As an
application, we give in Section 3 an integral representation of a one-
parameter group of unitary transformations on L^S71"1) generated by a
pseudo-differential operator -i{Δ + (n - 2)2/4}1/2, where Δ is the Laplace-
Beltrami operator on S71'1 (cf. [8, p. 177]).
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For the sake of simplicity, we shall assume n ^ 3 throughout this
paper. In Sections 2 and 3, we furthermore assume that n is odd. The
reason why we exclude the case of even n is that, in this case, we cannot
identify the function pn which satisfies the equation in Lemma 2.1. The
Lie differentiation with respect to a vector field X is denoted by £fx.
Volume forms and measures are used interchangeably.

I would like to thank Professor F. Uchida for his encouragement,
and Dr. E. Sato for his kind help and useful discussions. I would also
like to thank the referees for the care with which they read the paper
and for a number of important suggestions.

Added September 6, 1985. R. Wada has informed us that she is able
to identify the function pn also for even n, and to remove the assump-
tion in Section 2 that n is odd.

1. Preliminaries. Let Rn = {x = (xlf •••, xn)} be the w-space with
the inner product x y = Σ%iVi and the norm \x\ = (x-x)m, and S71"1 =
{x 6 R n I \x\ = 1} be the unit sphere. The volume element on S71"1 is denoted
by dS. The volume of S71'1 is given by volCS71"1) = 2πn/2/Γ(n/2). Let
LXS71'1) be the Hubert space of square-integrable functions on S71"1 with
the following inner product and norm:

<f,9>s=\ JgdS,

The subspace of L^S71"1) consisting of spherical harmonics of degree m is
denoted by Hm(Sn~ι), m = 0, 1, 2, •••. The following is well-known (see,
for example, [4, § 3]):

LEMMA 1.1. ( i ) dimHm{Sn~ι) = (2m + n-2)Γ(m + n-2)jΓ{n- 1)x
Γ(m + 1).

(ii) The subspαces H^S71'1), m = 0,1, 2, , are mutually orthogonal
with respect to the inner product < , ) s .

(iii) Let fm e ίfJS7 1-1), m = 0,1, 2, . Then / = Σ / » belongs to
UiS71-1) if and only if Σ II/JII < °°, and in that case, | | / | | | = Σll/Jli

(iv) For any zeCn with z2 = 0, the function on Sπ~\ x\-* (# 2)m,
belongs to iί^S 7 1" 1), where z2 — ^z\ and a? 2 = Σ # A Furthermore,
Hm(Sn~γ) is spanned by these functions.

For any 1 ^ i19 , im 5̂  n, let us define an element of H^S71"1) by

V % = ( g (2 - n - 2k)y\dm\xΓn/dxil aajJIS-1 ,

where we assume n ^ 3. Note that H^S71'1) is spanned by these functions.
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LEMMA 1.2. (i) hh...tm(x) = xh xin-l/(2(2rn+n-4)) Σ.*6Koxh *
xia - - xih xim + h\x), where h' e φ?r0

4 H^S"-1).

(ii) a Λr *. = V w + V(2m + » - 2) ΣΓ-i V v ..ί#.. i. - l/((2m + n -
2)(2m + n — 4)) Σ *ι ̂ . A - ' α - V - w where xs denotes the function xt-»x3-
on Sn~\

For the proof of (ii), recall that the multiplication of xs is a symmet-
ric operator on L^S""1). Then, from (i) and the orthogonality of the sub-
spaces H^S"'1), m = 0,1, 2, , we have xjhH...{meHM+1(S"-1)®Hm_1(Sn-1).

LEMMA 1.3. For any m = 1, 2, , we have

( 2 m + n - 2)(2m + n - 4) ^ r w v ^ " l * " ^ " w ~>Ϊ~W

PROOF. Let ςs denote the restriction to S71"1 of the vector field
Σ?=i (δ, i - XjX^d/dXi on Rn. Then ζj is tangent to Sn~\ Since £fξjdS =
— (n — l)XjdS, we have from

«=Ŝ  -(/yds) = 0

that fy — (τ& — l)a?y/2 is a skew-symmetric operator on (C^ίS""1), < , >5).
Then, by Lemma 1.2, we have

2 X

. 2m + n - 3
r " t m J 2(2m + w - 2 )

2m + n — 3 ^ «. ,
2(2m + n- 2)(2m + w - 4) ίΛ lβ

Using this formula on both sides of the equation:

we obtain our lemma.

Now, we shall consider an integral transform (cf. [3, § 4] and [6, § 7]):
For any / e L^S""1) and z e Cn, let us define
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/(*) = ( e*-*f(x)dS(x) .

Then we have:

LEMMA 1.4. ( i ) f is an entire function on Cn.

(ii) \f(z)\^(jol(Sn-W2\\f\\sel1iez].
Jin) If feUiS71"1), / = Σ / « with / w eiJJS"-1), then Σ A converges

to f uniformly on any bounded set in Cn.

PROPOSITION 1.5. // z2 = 0, then

K ( . v o r ) Γ ( n / 2 ) .
h'"iJZ) ~ 2-Am + n/2) ** **» *

PROOF. We shall prove this by induction on m. If ra = 0, then both
sides of the equation are equal to vo^S71"1). Now, let m > 0 and assume
that the proposition holds for m — 1. Since, by (i) of Lemma 1.2,

we have

Then, since z2 = 0, by Lemma 1.3 and the induction assumption, we see
that the proposition holds also for m.

Let TΓ: f^S71"1 -> S71"1 be the bundle consisting of non-zero cotangent

vectors to Sn~\ The canonical one-form θ on T^S71'1 is defined by 0α(X) =

a(π*X) for any α e foS71-1 and I e T^faS71-1). The symplectic form and

the Liouville volume form on faS71'1 are given by Ω = — d# and dM =

( — l)(n-1)ίn-2)/2((w - l ) ! ) "^"" 1 , respectively. For any real-valued function

h 6 C-ifrS71-1), the unique vector field Xh on f*^"1 for which Xh\Ω = dh

is called the Hamiltonian vector field of h. By means of the metric, we

may identify f^S71'1 with the space TS71"1 consisting of non-zero tangent

vectors to Sn~\ which is identified with

M= {(x,y)eRnxRn\\x\ = 1, x-y = 0, y Φ 0} .

Furthermore, by an injection (x,y)\-+z= \y\x + V^Λy of Λf into Cn, M
is identified with a complex cone {z eCn\z2 = 0, 2 ^ 0}. This identification
gives M a complex structure J. It is known (see [7] and [8, p. 173]) that
J i s compatible with the symplectic structure, i.e., (X, Y) M> —Ω{J{X), Y)
is a Kaehler metric on M.
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Let Holo(ikf) and PJM) denote, respectively, the restrictions to M
of entire holomorphic functions and homogeneous polynomials of degree
m on Cn. For any φ e Holo(M"), there exists a unique φm e PJM) such
that φ = Σim=Qφm'y uniformly convergent on any bounded set in M. If
we define ψh...imePJM) by ψh...im(z) = zh zim, then PJM) is spanned
by these functions. Since z\ + + z\ — 0, we have dim PJM) =
dim HJS"-1). (Cf. [5, §3].)

The unit cotangent bundle TfS71'1 to S71'1 is identified with N =
{(x, y)eM\\y\ = 1}. The canonical volume element on N is denoted by
dN. If we define a function reC°°(Λf) and a projection p:M-+N by
r(#, 2/) = 12/1 and p(x, y) = (x, [̂ /Γ1 )̂, respectively, then we have dM =
p*dNΛrn~2dr. An inner product in C°°(N) is defined by

<<P9 Ψ)N = \ φfdN .
JN

The restriction of ψtl...im onto N will also be denoted by the same letter.

LEMMA 1.6. (i) If I Φ m, then {ψh...iv Ψvr ; m ) ^ = °
(ii) For any m — 1, 2, , we have

(m + n - 3)(2m + n - 2)7 . . x

= (2m + n - 4)
o = l

by

PROOF, (i) The Hamiltonian vector field of the function r is given

Xr is tangent to N. Denoting the restriction of Xr to N also by Xr,
we have £fXrdN = 0. It follows that <Xr<p, ψ>^ = —(φ9JC!.ψ)N for any
φ,<feC°°(N). On the other hand, from 1 ^ = - / ^ we have
Xτψh...im = - / ^ ϊ m ^ . . . ^ . Then (i) follows immediately.

(ii) The Hamiltonian vector field Xs of the function (x, y) ι-> yύ on
M is given by

+

Since [Xj9 Σϊ=i Vk(d/dyk)] = 0, X3 induces a tangent vector field %• to iV.
^ is given by
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Since ^ d i V = - 2 " ^ - ΐ)(zs + ẑ dΛΓ, we have from

( £fVj(φfdN) = 0 ,
J N

for any φ, ψ e C°°(iV), where ^ denotes the function (a?, 2/) ι-> 2y = xs +
V^ΛVi on iV. If we put i = jm, ψ = fh...im and ^ = Ψh~ im-i> t h e n

using (i) we have

Now, since ηs(zk) = δjk — (X/2)z3 zk — (l/2)zjZkf we have

m -̂  m

tt=l £ tt=l

and

It follows that

m + % — 2 / .

from which we obtain (ii).

LEMMA 1.7. For any m = 0, 1, 2, , we

<V"<»' hh...imy8 = cm(hh...ίm, hh...Jm)N ,

where

c Γ(m + n/2)Γ(m + l)dim H^S^1)

PROOF. By Proposition 1.5,

^•• ΐ w " 2-Γ(m + n/2)
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Hence it suffices to show that

, _ Γ(n/2)Γ(m + l)dim H^S71"1)
Cm — ~r TT7Z

where

We shall show this by induction on m. If m = 0, then both sides of
the equation are equal to voKS71"1). Now, let m > 0 and assume that the
equality holds for ra — 1. Then by Lemma 1.3 and (ii) of Lemma 1.6,
we have

S > " + » " 4)

PROPOSITION 1.8 (cf. [5, § 4]). For any x e Sn~\ we have

This proposition is proved by induction on m, where we use (ii) of
Lemma 1.2 and (ii) of Lemma 1.6.

2. Hubert space P(M) and integral transform ^~. From now on,
we shall assume that n = 3, 5, 7,

LEMMA 2.1. There exists a unique polynomial ρn which satisfies

for all m = 0, 1, 2,

PROOF. If there exists a polynomial pn{r) = Σ* ^n,^fc which satisfies
the condition in our lemma, then the coefficients must satisfy
Σfc antk2-{k+2m+n~ι)Γ{k + 2m + n - 1) = cm for all m. This condition is
rewritten as

Γ(k + 2m + n - 1)
n'fc 2*+T(2m + n -

π1/2(2m + n - 2)Γ(m + n - 2)
- ΐ)Γ(n/2)Γ(m + (n -
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for all m = 0, 1, 2, . Since n is odd, both sides of the equation above
are polynomials of m. Hence, antk are determined uniquely. The existence
of pn also follows from the above equation.

Note that the degree of the polynomial ρn is (n — l)/2, and the
coefficient of the highest degree is positive. For example, we have
A(r) = α3>1(r - 1/2), pδ(r) = αδ>2(r2 - r) and pΊ{r) = α7,3(r3 - r2 - r/2).
Unfortunately, since αn,0 = 0 and anΛ < 0 for n ^ 5, /0n|(O, °o) is not a
positive function. It is to be desired that there exists a positive function
on (0, oo) which satisfies the equation in Lemma 2.1. We also remark
that for even n, there does not exist any polynomial which satisfies the
condition in Lemma 2.1. This is the reason why we restrict our atten-
tion to the case of odd n.

Now, for any φ, ψ eHolo(M), let us define

<&, Ψ>M = 1 φ(z)ψ(z)dμn(z) ,

where dμn{z) ^ e~2^pn{\y\)dM{z), z = \y\x + v'^ΛyeM (cf. [8, p. 174]).

Although the measure dμn is not positive, we have:

THEOREM 2.2. For any φePt(M) and ψePm(M),

where φ and ψ on the right hand side stand for the restrictions of φ
and ψ onto N, respectively. In particular, < , >Jf is positive definite on
Pm(M), and /*-•/ is a unitary isomorphism of (Hm(Sn~γ), < , }s) onto
(Pm(M), < , >*).

PROOF. Since dM = p*dNΛrn~2dr, we have, by (i) of Lemma 1.6
and Lemma 2.1,

= \rι+m+n~2e-2r2e-2rpn{r)dr \ φψdN = cm(φ, ψ)N .
JN

Then, the unitarity of f\-*f follows from Lemma 1.7.

The following lemma is due to Bargmann [1, p. 190].

LEMMA 2.3. Let S = Σ?=i bk be a series with non-negative real terms,
let 7*(ί), ί > 0, be so chosen that (1) 0 ^ Ύk(t) ^ 1, (2) lim^*, 7*(ί) = 1,
and set S(t) = Σ 7fc(ί)6fc. S converges if and only if S(t) are uniformly
bounded, and in that case S = lim S(t).

PROPOSITION 2.4. Let φ e Holo(ilf), φ = Σ <Pm with φm e PJM). Then

<<p, <P)M = Σ <<pm, ΨJM 9
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i.e., either both sides are infinite, or both sides are finite and equal.

PROOF. For any σ > 0, let

Kσ)=\ \φ\2dμn,
Jif(σ)

where M(σ) = {z = |y \x + V^Λy eM\ \y | ^ σ). Then a ι-> I(σ) is, for
large σ, monotone increasing and (φ, φ)M = \imσ^oo I(σ). Since Σ<Pm
converges uniformly to φ on M(σ), we have by (i) of Lemma 1.6 and
Theorem 2.2,

= Σ S î(i)9> («)di"n(2) = Σ [ rι+m+n-*e-*pn(r)dr\ ψιφmdN
I,m=0 JM(σ) l,m=0J0 JN

m=0 Jo

where

cjjσ) = [r2m+n~2e-2rpn(r)dr .
Jo

Since there exists σn > 0 such that cm(σ) > 0 for all σ > σn and m =
0, 1, 2, •••, applying Lemma 2.3, we have the desired result.

Now, let us define

P(M) = {φe Holo(M) | (φ, φ)M < oo} .

Then it follows from Theorem 2.2 and Proposition 2.4 that < , }M is a
Hermitian inner product in P(M). The corresponding norm is denoted
b y II I I * .

THEOREM 2.5. _ ^ : / H - » / is a unitary isomorphism of {L\Sn~ι), { , )s)
onto (P(M), < , )M).

PROOF. Let / e L ^ 7 1 " 1 ) , / = Σ/» with ^ e ΰ J S - 1 ) . Then, by (iii)
of Lemma 1.4, Proposition 2.4, Theorem 2.2 and (iii) of Lemma 1.1, we
have

II/IIV = Σ IliLlI 2* = Σ 11/.IIS = II/IIS < - .
It follows that fe P(M) and that ^ is unitary. The surjectivity of &~
is also shown easily.

We have from Theorem 2.5 and (ii) of Lemma 1.4 the following:

COROLLARY 2.6. (i) (P(M), < , >Jf) is a Hilbert space, (ii) For any
φ 6P(M) and z — \y\x + V^Λy 6M,
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From (ii) of Corollary 2.6, it follows that, for a fixed weM, the
map φ ι-> φ(w) defines a bounded linear functional on P(M). It is neces-
sarily of the form

φ(w) = (ew, φ)M

with a uniquely defined eweP(M). If we define function on MxM by

K{w, z) = \ ex'wex''zdS(x) ,

then K(w, z) = K(z, w) and K(w, -)eP(M) immediately from the definition.

LEMMA 2.7 (cf. [1, §lc]) .

ew(z) = K(w, z) .

PROOF. It is sufficient to show that

Making use of Theorem 2.2, Lemma 1.6 and Propositions 1.8 and 1.5,
we have

ml
e.../f ( a . e I ) «^ (z)dN(z))dS(x)

- 1 \JN x /

= c m vol(g-)vol(S-)2- f A (χ

K is the reproducing kernel for P(M), i.e.,

φ(w) — \ K(w, z)φ(z)dμn(z) .
JM

Now, we shall consider the inverse operator x^~1. Let Piλ\M) = {φ e
Holo(ikf)|for a suitable c > 0, |<?(z)| ^ ce ; i y | for all 2 = \y\x + V/'=ΛyeM}
(0 < λ < 1). Then P{X\M) is a subspace of P(M). If, for each φeP(M),
we define <pα) by φa)(z) = φ(xz), then <pα) ePα )(ikf).

LEMMA 2.8 (cf. [1, p. 197]). (i) φeP(M) if and only if all <pω e
P(M), 0 < λ < 1, and their norms \\φ{λ)\\if are uniformly bounded.

(ii) If φe P(M), then \\ φ - φ{λ) \\M -> 0 as λ -* 1.
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PROOF. Let φ e Holo(M), φ = ̂ 9m with ψm e PJJM). Then we have
φ™(z) = φ(Xz) = Σ λm<?m(z). It follows from Proposition 2.4 that || φω \\2

M =
Σλ,2m||9>m||5f. Then by Lemma 2.3 we have (i). (ii) follows immediately
from II? - φ™ \\ = Σ (1 - ^YWΨΛM.

THEOREM 2.9 (cf. [1, p. 202]). If φePω(M) for some λ, 0 < λ < 1,
then

{Jf-ιφ){x) = \ e «φ(z)dμn(z) ,

for any xeSn~\

PROOF. Since φePa)(M), the integration converges absolutely. It
suffices to prove that

_ie^(^^φ{z)dμn{z))dS{x) = φ{w) ,

which we show easily by interchanging integrations and using the
reproducing property of K.

COROLLARY 2.10 (cf. [1, (2.14)]). For any φeP(M),

CJ^-V)(aO = Lim ( em*φMdμM ,

where Lim means the strong convergence in L^S71"1).

We also have another explicit expression for ŵ

r~~1.

THEOREM 2.11 (cf. [1, (2.15)]). For any φeP(M),

= Lim ( e* *φ{z)dμn{z) .

PROOF. Let 9 = Σ φ m with φmePm(M). Define, for xeSn~\

Jjf(ff)

and

[
JM(σ)

Then, by Propositions 1.5 and 1.8, we have for any weM,

= \ e*\\ e*'*φm(z)dμn(z))dS(x)

e* w([ (x z)mφm(z)dN(z))dS(x) =
*-1 \iif /

[ e ( [ ( ) φ m ( ) ( ) ) ( )
m\ is*-1 \iif / cm

By the uniform convergence of φ — Σ Ψm o n M(σ)9 we have
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= Σ t e*-e*-*φn{z)dμn(z)dS{x)
J-Sn-1xif(σ)

It follows from Proposition 2.4 that

|| φ - j r f <•> Hi = Σ ( l - ^ Y l l 9>. Ilir - 0

as σ —> oo. Here recall that there exists a constant σn > 0 such that
c»(ff) > 0 for any σ > σn and m = 0, 1, 2, . Since ^ is a unitary
isomorphism, we have ^ ιφ =

3. An application. The mapping ^ establishes a unitary isomor-
phism between the linear operators on P(M) and those on L^S71"1). In
this section, we shall consider a one-parameter group of unitary trans-
formations, which is easily analyzed on P(M), and translate the results
into the language of LXS"-1) (see [1, § 3] and [8, p. 177]).

The one-parameter group of canonical transformations on M generated
by the Hamiltonian vector field Xr is given by φt:z\-+ e**z. Since Xrr = 0
and SfxβM = 0 , φt preserves the measure dμn as well as the complex
structure J on M. Hence φt induces a unitary transformation φ H* φ © φ_t

on P(Jlf). Let us define a one-parameter group {Vt\teR} of unitary
transformations on P(M) by

(see [8, p. 177]). Then

for any φm e Pm(M), and {Vt} is strongly continuous in t. The infinitesimal
generator of {Vt} is given by Xr - i(n - 2)/2. Now, let Ut = ^"x°7{

be the operator corresponding to Vt under the unitary isomorphism
Then, for any feLXS71'1) and xfeSn'\ we have from Theorem 2.11

(Utf){xf) = Lim ( e^e-un-2)t/2 f ex'^-it)zf(x)dS(x)dμn(

= Lim ( U<σ\t, x', x)f(x)dS(x) ,
J 7 1 1

where

C7(<;)(i, x', x) = e - ί ( - 2

Miσ)
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(cf. [1, (3.10a)]). Since UJm = e-« +<-»/«'/m for any / . e H^S"-1), we
have Ut = exp[—i{Δ + (n — 2)2/4}1/2£], where Δ is the Laplace-Beltrami
operator on S71"1 (see [8, p. 177]). Thus, we have the following:

THEOREM 3.1. The one-parameter group of unitary transformations,
Ut = exp[-ϊ{Δ + (n - 2)2/4}1/2£], on LXS71'1) generated by the operator
—i{Δ + (n — 2)2/4}1/2 is represented by

(Utf){x') = Lim ( U{σ)(t, x', x)f(x)dS(x) .
J711
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