ON A BARGMANN-TYPE TRANSFORM AND A HILBERT SPACE OF HOLOMORPHIC FUNCTIONS

Kiyotaka Ii

(Received January 7, 1985)
0. Introduction. In [1], Bargmann studied an integral transform of $L^{2}\left(\boldsymbol{R}^{n}\right)$ onto a Hilbert space consisting of entire holomorphic functions on \boldsymbol{C}^{n}. His transform may be regarded as a half-form pairing between real and complex polarizations of $\boldsymbol{R}^{2 n} \cong \boldsymbol{C}^{n}$ (see [8, §2]). In [7], Rawnsley showed that $\stackrel{\circ}{T}^{*} S^{n-1}$ (the cotangent bundle of the ($n-1$)-sphere minus its zero section) has a Kaehler structure with the Kaehler form equal to the natural symplectic form. Furthermore, he studied in [8] the halfform pairing between real and complex polarizations of $\stackrel{\circ}{T}^{*} S^{n-1}$, but it is not unitary. Also, we know that there does not exist a distinguished kernel, the definition of which is given in [2, IV. 5], for these polarizations. More precisely, there does exist a "distinguished kernel" defined in a neighborhood of the diagonal of $\stackrel{\circ}{T}^{*} S^{n-1} \times \stackrel{\circ}{T}^{*} S^{n-1}$, but it does not extend globally. This "kernel", however, suggests us to consider an integral transform:

$$
\mathscr{F}: f \mapsto \hat{f}(z)=\int_{S^{n-1}} e^{x \cdot z} f(x) d S(x)
$$

where $z \in \boldsymbol{C}^{n}, z^{2}=0$ (for the notations, see Section 1). Incidentally, transformations of the same form as \mathscr{F} have been studied by several authors (see, for example, [3, §4], [6, §7], [4, Theorem 2.10], [8, p. 175] and $[5, \S 4])$. In the present note, motivated by these works, we consider the integral transform \mathscr{F} of $L^{2}\left(S^{n-1}\right)$ into a space consisting of holomorphic functions on the Kaehler manifold $\stackrel{\circ}{T}^{*} S^{n-1}=\left\{z \in C^{n} \mid z^{2}=0, z \neq 0\right\}$. \mathscr{F} is injective. In Section 2, we construct, in the case of even-dimensional spheres, a "Plancherel measure" on $\stackrel{\circ}{T}^{*} S^{n-1}$ to describe the image of $L^{2}\left(S^{n-1}\right)$ under this transform. The "inversion formula" is also obtained. As an application, we give in Section 3 an integral representation of a oneparameter group of unitary transformations on $L^{2}\left(S^{n-1}\right)$ generated by a pseudo-differential operator $-i\left\{\Delta+(n-2)^{2} / 4\right\}^{1 / 2}$, where Δ is the LaplaceBeltrami operator on S^{n-1} (cf. [8, p. 177]).

[^0]For the sake of simplicity, we shall assume $n \geqq 3$ throughout this paper. In Sections 2 and 3, we furthermore assume that n is odd. The reason why we exclude the case of even n is that, in this case, we cannot identify the function ρ_{n} which satisfies the equation in Lemma 2.1. The Lie differentiation with respect to a vector field X is denoted by \mathscr{L}_{x}. Volume forms and measures are used interchangeably.

I would like to thank Professor F. Uchida for his encouragement, and Dr. E. Sato for his kind help and useful discussions. I would also like to thank the referees for the care with which they read the paper and for a number of important suggestions.

Added September 6, 1985. R. Wada has informed us that she is able to identify the function ρ_{n} also for even n, and to remove the assumption in Section 2 that n is odd.

1. Preliminaries. Let $\boldsymbol{R}^{n}=\left\{x=\left(x_{1}, \cdots, x_{n}\right)\right\}$ be the n-space with the inner product $x \cdot y=\sum x_{i} y_{i}$ and the norm $|x|=(x \cdot x)^{1 / 2}$, and $S^{n-1}=$ $\left\{x \in \boldsymbol{R}^{n}| | x \mid=1\right\}$ be the unit sphere. The volume element on S^{n-1} is denoted by $d S$. The volume of S^{n-1} is given by $\operatorname{vol}\left(S^{n-1}\right)=2 \pi^{n / 2} / \Gamma(n / 2)$. Let $L^{2}\left(S^{n-1}\right)$ be the Hilbert space of square-integrable functions on S^{n-1} with the following inner product and norm:

$$
\langle f, g\rangle_{S}=\int_{S^{n-1}} \bar{f} g d S, \quad\|f\|_{S}=\langle f, f\rangle_{S}^{1 / 2}
$$

The subspace of $L^{2}\left(S^{n-1}\right)$ consisting of spherical harmonics of degree m is denoted by $H_{m}\left(S^{n-1}\right), m=0,1,2, \cdots$. The following is well-known (see, for example, $[4, \S 3]):$

Lemma 1.1. (i) $\operatorname{dim} H_{m}\left(S^{n-1}\right)=(2 m+n-2) \Gamma(m+n-2) / \Gamma(n-1) \times$ $\Gamma(m+1)$.
(ii) The subspaces $H_{m}\left(S^{n-1}\right), m=0,1,2, \cdots$, are mutually orthogonal with respect to the inner product \langle,\rangle_{s}.
(iii) Let $f_{m} \in H_{m}\left(S^{n-1}\right), m=0,1,2, \cdots$. Then $f=\sum f_{m}$ belongs to $L^{2}\left(S^{n-1}\right)$ if and only if $\sum\left\|f_{m}\right\|_{s}^{2}<\infty$, and in that case, $\|f\|_{s}^{2}=\sum\left\|f_{m}\right\|_{s}^{2}$.
(iv) For any $z \in \boldsymbol{C}^{n}$ with $z^{2}=0$, the function on $S^{n-1}, x \mapsto(x \cdot z)^{m}$, belongs to $H_{m}\left(S^{n-1}\right)$, where $z^{2}=\sum z_{i}^{2}$ and $x \cdot z=\sum x_{i} z_{i}$. Furthermore, $H_{m}\left(S^{n-1}\right)$ is spanned by these functions.

For any $1 \leqq i_{1}, \cdots, i_{m} \leqq n$, let us define an element of $H_{m}\left(S^{n-1}\right)$ by

$$
h_{i_{i} \cdots i_{m}}=\left(\prod_{k=0}^{m-1}(2-n-2 k)\right)^{-1}\left[\partial^{m}|x|^{2-n} / \partial x_{i_{1}} \cdots \partial x_{i_{m}}\right] \mid S^{n-1},
$$

where we assume $n \geqq 3$. Note that $H_{m}\left(S^{n-1}\right)$ is spanned by these functions.

LEMMA 1.2. (i) $h_{i_{1} \cdots i_{m}}(x)=x_{i_{1}} \cdots x_{i_{m}}-1 /(2(2 m+n-4)) \sum_{a \neq b} \delta_{i_{a} i_{b}} x_{i_{1}} \cdots$ $\hat{x}_{i_{a}} \cdots \hat{x}_{i_{b}} \cdots x_{i_{m}}+h^{\prime}(x)$, where $h^{\prime} \in \bigoplus_{k=0}^{m-4} H_{k}\left(S^{n-1}\right)$.
(ii) $x_{j} h_{i_{1} \cdots i_{m}}=h_{i_{1} \cdots i_{m} j}+1 /(2 m+n-2) \sum_{a=1}^{m} \delta_{i_{a} j} h_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}-1 /((2 m+n-$ 2)($2 m+n-4$)) $\sum_{a \neq b} \delta_{i_{a} i_{b}} h_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} j}$, where x_{j} denotes the function $x \mapsto x_{j}$ on S^{n-1}.

For the proof of (ii), recall that the multiplication of x_{j} is a symmetric operator on $L^{2}\left(S^{n-1}\right)$. Then, from (i) and the orthogonality of the subspaces $H_{m}\left(S^{n-1}\right), m=0,1,2, \cdots$, we have $x_{j} h_{i_{1} \cdots i_{m}} \in H_{m+1}\left(S^{n-1}\right) \oplus H_{m-1}\left(S^{n-1}\right)$.

Lemma 1.3. For any $m=1,2, \cdots$, we have

$$
\begin{aligned}
\left\langle h_{i_{1} \cdots i_{m}},\right. & \left.h_{j_{1} \cdots j_{m}}\right\rangle_{S} \\
= & \frac{1}{2 m+n-2} \sum_{a=1}^{m} \delta_{i_{a} j_{m}}\left\langle h_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}, h_{j_{1} \cdots j_{m-1}}\right\rangle_{S} \\
& -\frac{1}{(2 m+n-2)(2 m+n-4)} \sum_{a \neq b} \delta_{i_{a} i_{b}}\left\langle h_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} i_{m}}, h_{j_{1} \cdots j_{m-1}}\right\rangle_{S}
\end{aligned}
$$

Proof. Let ξ_{j} denote the restriction to S^{n-1} of the vector field $\sum_{i=1}^{n}\left(\delta_{j i}-x_{j} x_{i}\right) \partial / \partial x_{i}$ on \boldsymbol{R}^{n}. Then ξ_{j} is tangent to S^{n-1}. Since $\mathscr{L}_{\xi j} d S=$ $-(n-1) x_{j} d S$, we have from

$$
\int_{S^{n-1}} \mathscr{L}_{\xi_{j}}(\bar{f} g d S)=0
$$

that $\xi_{j}-(n-1) x_{j} / 2$ is a skew-symmetric operator on $\left(C^{\infty}\left(S^{n-1}\right),\langle,\rangle_{s}\right)$. Then, by Lemma 1.2, we have

$$
\begin{aligned}
\left(\xi_{j}-\right. & \left.\frac{n-1}{2} x_{j}\right) h_{i_{1} \cdots i_{m}} \\
& =-\left(m+\frac{n-1}{2}\right) h_{i_{1} \cdots i_{m} j}+\frac{2 m+n-3}{2(2 m+n-2)} \sum_{a=1}^{m} \delta_{i_{a} j} h_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}} \\
& \quad-\frac{2 m+n-3}{2(2 m+n-2)(2 m+n-4)} \sum_{a \neq b} \delta_{i_{a} i_{b}} h_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} j}
\end{aligned}
$$

Using this formula on both sides of the equation:

$$
\begin{aligned}
\left\langle\left(\xi_{j_{m}}-\frac{n-1}{2} x_{j_{m}}\right)\right. & \left.h_{i_{1} \cdots i_{m}}, h_{j_{1} \cdots j_{m-1}}\right\rangle_{s} \\
& =-\left\langle h_{i_{1} \cdots i_{m}},\left(\xi_{j_{m}}-\frac{n-1}{2} x_{j_{m}}\right) h_{j_{1} \cdots j_{m-1}}\right\rangle_{s},
\end{aligned}
$$

we obtain our lemma.
Now, we shall consider an integral transform (cf. [3, §4] and [6, § 7]): For any $f \in L^{2}\left(S^{n-1}\right)$ and $z \in \boldsymbol{C}^{n}$, let us define

$$
\hat{f}(z)=\int_{s^{n}-1} e^{x^{x \cdot z} f(x) d S(x) .}
$$

Then we have:
Lemma 1.4. (i) \hat{f} is an entire function on \boldsymbol{C}^{n}.
(ii) $|\hat{f}(z)| \leqq\left(\operatorname{vol}\left(S^{n-1}\right)\right)^{1 / 2}\|f\|_{S} e^{|\mathrm{Re} z|}$.
(iii) If $f \in L^{2}\left(S^{n-1}\right), f=\sum f_{m}$ with $f_{m} \in H_{m}\left(S^{n-1}\right)$, then $\sum \hat{f}_{m}$ converges to \hat{f} uniformly on any bounded set in \boldsymbol{C}^{n}.

Proposition 1.5. If $z^{2}=0$, then

$$
\hat{h}_{i_{1} \cdots i_{m}}(z)=\frac{\operatorname{vol}\left(S^{n-1}\right) \Gamma(n / 2)}{2^{m} \Gamma(m+n / 2)} z_{i_{1}} \cdots z_{i_{m}}
$$

Proof. We shall prove this by induction on m. If $m=0$, then both sides of the equation are equal to $\operatorname{vol}\left(S^{n-1}\right)$. Now, let $m>0$ and assume that the proposition holds for $m-1$. Since, by (i) of Lemma 1.2,

$$
\int_{S^{n-1}} x_{j_{1}} \cdots x_{j_{m}} h_{i_{1} \cdots i_{m}}(x) d S(x)=\left\langle h_{i_{1} \cdots i_{m}}, h_{j_{1} \cdots j_{m}}\right\rangle_{S},
$$

we have

$$
\hat{h}_{i_{1} \cdots i_{m}}(z)=\frac{1}{m!} \sum_{j_{1}, \cdots, j_{m}}\left\langle h_{i_{1} \cdots i_{m}}, h_{j_{1} \cdots j_{m}}\right\rangle z_{j_{1}} \cdots z_{j_{m}} .
$$

Then, since $z^{2}=0$, by Lemma 1.3 and the induction assumption, we see that the proposition holds also for m.

Let $\pi: \stackrel{\circ}{T^{*}} S^{n-1} \rightarrow S^{n-1}$ be the bundle consisting of non-zero cotangent vectors to S^{n-1}. The canonical one-form θ on $T^{*} S^{n-1}$ is defined by $\theta_{\alpha}(X)=$ $\alpha\left(\pi_{*} X\right)$ for any $\alpha \in \stackrel{\circ}{T}^{*} S^{n-1}$ and $X \in T_{\alpha}\left(\stackrel{\circ}{T}^{*} S^{n-1}\right)$. The symplectic form and the Liouville volume form on $\stackrel{\circ}{T}^{*} S^{n-1}$ are given by $\Omega=-d \theta$ and $d M=$ $(-1)^{(n-1)(n-2) / 2}((n-1)!)^{-1} \Omega^{n-1}$, respectively. For any real-valued function $h \in C^{\infty}\left(\stackrel{\circ}{T}^{*} S^{n-1}\right)$, the unique vector field X_{h} on $\stackrel{\circ}{T}^{*} S^{n-1}$ for which $\left.X_{h}\right\lrcorner \Omega=d h$ is called the Hamiltonian vector field of h. By means of the metric, we may identify $\stackrel{\circ}{T}^{*} S^{n-1}$ with the space $\stackrel{\circ}{T} S^{n-1}$ consisting of non-zero tangent vectors to S^{n-1}, which is identified with

$$
M=\left\{(x, y) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}| | x \mid=1, x \cdot y=0, y \neq 0\right\}
$$

Furthermore, by an injection $(x, y) \mapsto z=|y| x+\sqrt{-1} y$ of M into \boldsymbol{C}^{n}, M is identified with a complex cone $\left\{z \in \boldsymbol{C}^{n} \mid z^{2}=0, z \neq 0\right\}$. This identification gives M a complex structure J. It is known (see [7] and [8, p. 173]) that J is compatible with the symplectic structure, i.e., $(X, Y) \mapsto-\Omega(J(X), Y)$ is a Kaehler metric on M.

Let $\operatorname{Holo}(M)$ and $P_{m}(M)$ denote, respectively, the restrictions to M of entire holomorphic functions and homogeneous polynomials of degree m on C^{n}. For any $\varphi \in \operatorname{Holo}(M)$, there exists a unique $\varphi_{m} \in P_{m}(M)$ such that $\varphi=\sum_{m=0}^{\infty} \varphi_{m}$; uniformly convergent on any bounded set in M. If we define $\psi_{i_{1} \cdots i_{m}} \in P_{m}(M)$ by $\psi_{i_{1} \cdots i_{m}}(z)=z_{i_{1}} \cdots z_{i_{m}}$, then $P_{m}(M)$ is spanned by these functions. Since $z_{1}^{2}+\cdots+z_{n}^{2}=0$, we have $\operatorname{dim} P_{m}(M)=$ $\operatorname{dim} H_{m}\left(S^{n-1}\right)$. (Cf. [5, § 3].)

The unit cotangent bundle $T_{1}^{*} S^{n-1}$ to S^{n-1} is identified with $N=$ $\{(x, y) \in M||y|=1\}$. The canonical volume element on N is denoted by $d N$. If we define a function $r \in C^{\infty}(M)$ and a projection $p: M \rightarrow N$ by $r(x, y)=|y|$ and $p(x, y)=\left(x,|y|^{-1} y\right)$, respectively, then we have $d M=$ $p^{*} d N \wedge r^{n-2} d r$. An inner product in $C^{\infty}(N)$ is defined by

$$
\langle\varphi, \psi\rangle_{N}=\int_{N} \bar{\varphi} \psi d N
$$

The restriction of $\psi_{i_{1} \cdots i_{m}}$ onto N will also be denoted by the same letter.
Lemma 1.6. (i) If $l \neq m$, then $\left\langle\psi_{i_{1} \cdots i_{l}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N}=0$.
(ii) For any $m=1,2, \cdots$, we have

$$
\begin{aligned}
& \frac{(m+n-3)(2 m+n-2)}{2}\left\langle\dot{\psi}_{i_{1} \cdots i_{m}}, \dot{\psi}_{j_{1} \cdots j_{m}}\right\rangle_{N} \\
&=(2 m+n-4) \sum_{a=1}^{m} \delta_{i_{a} j_{m}}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N} \\
&-\sum_{a \neq b} \delta_{i_{a} i_{b}}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} j_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}
\end{aligned}
$$

Proof. (i) The Hamiltonian vector field of the function r is given by

$$
\left.X_{r}\right|_{(x, y)}=\sum_{i=1}^{n}\left(\frac{1}{|y|} y_{i} \frac{\partial}{\partial x_{i}}-|y| x_{i} \frac{\partial}{\partial y_{i}}\right)
$$

X_{r} is tangent to N. Denoting the restriction of X_{r} to N also by X_{r}, we have $\mathscr{L}_{X_{r}} d N=0$. It follows that $\left\langle X_{r} \varphi, \psi\right\rangle_{N}=-\left\langle\varphi, X_{r} \psi\right\rangle_{N}$ for any $\varphi, \psi \in C^{\infty}(N)$. On the other hand, from $X_{r} z_{i}=-\sqrt{-1} z_{i}$ we have $X_{r} \psi_{i_{1} \cdots i_{m}}=-\sqrt{-1} m \psi_{i_{1} \cdots i_{m}}$. Then (i) follows immediately.
(ii) The Hamiltonian vector field X_{j} of the function $(x, y) \mapsto y_{j}$ on M is given by

$$
\left.X_{j}\right|_{(x, y)}=\sum_{i=1}^{n}\left\{\left(\delta_{i i}-x_{j} x_{i}\right) \frac{\partial}{\partial x_{i}}+\left(x_{j} y_{i}-y_{j} x_{i}\right) \frac{\partial}{\partial y_{i}}\right\} .
$$

Since $\left[X_{j}, \sum_{k=1}^{n} y_{k}\left(\partial / \partial y_{k}\right)\right]=0, X_{j}$ induces a tangent vector field η_{j} to N. η_{j} is given by

$$
\left.\eta_{j}\right|_{(x, y)}=\sum_{i=1}^{n}\left\{\left(\delta_{j i}-x_{j} x_{i}\right) \frac{\partial}{\partial x_{i}}-y_{j} x_{i} \frac{\partial}{\partial y_{i}}\right\}
$$

Since $\mathscr{L}_{\eta_{j}} d N=-2^{-1}(n-1)\left(z_{j}+\bar{z}_{j}\right) d N$, we have from

$$
\begin{gathered}
\int_{N} \mathscr{L}_{\eta_{j}}(\bar{\varphi} \psi d N)=0 \\
\left\langle\eta_{j} \varphi, \psi\right\rangle_{N}+\left\langle\varphi, \eta_{j} \psi\right\rangle_{N}=\frac{n-1}{2}\left(\left\langle z_{j} \varphi, \psi\right\rangle_{N}+\left\langle\varphi, z_{j} \psi\right\rangle_{N}\right)
\end{gathered}
$$

for any $\varphi, \psi \in C^{\infty}(N)$, where z_{j} denotes the function $(x, y) \mapsto z_{j}=x_{j}+$ $\sqrt{-1} y_{j}$ on N. If we put $j=j_{m}, \varphi=\psi_{i_{1} \cdots i_{m}}$ and $\psi=\psi_{j_{1} \cdots j_{m-1}}$, then using (i) we have

$$
\left\langle\eta_{j_{m}} \psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}+\left\langle\psi_{i_{1} \cdots i_{m}}, \eta_{j_{m}} \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}=\frac{n-1}{2}\left\langle\psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N}
$$

Now, since $\eta_{j}\left(z_{k}\right)=\delta_{j k}-(1 / 2) z_{j} z_{k}-(1 / 2) z_{j} \bar{z}_{k}$, we have

$$
\begin{aligned}
& \left\langle\eta_{j_{m}} \psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N} \\
& \quad=\sum_{a=1}^{m} \delta_{i_{a} j_{m}}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}-\frac{1}{2} \sum_{a=1}^{m}\left\langle\psi_{i_{1} \cdots i_{a} \cdots i_{m} j_{m}}, \psi_{j_{1} \cdots j_{m-1} i_{a}}\right\rangle_{N}
\end{aligned}
$$

and

$$
\left\langle\psi_{i_{1} \cdots i_{m}}, \eta_{j_{m}} \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}=-\frac{m-1}{2}\left\langle\psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N} .
$$

It follows that

$$
\begin{aligned}
& \frac{m+n-2}{2}\left\langle\psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N} \\
& \quad=\sum_{a=1}^{m} \delta_{i_{a} j_{m}}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}-\frac{1}{2} \sum_{a=1}^{m}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots i_{m} j_{m}}, \psi_{j_{1} \cdots j_{m-1} i_{a}}\right\rangle_{N}
\end{aligned}
$$

from which we obtain (ii).
Lemma 1.7. For any $m=0,1,2, \cdots$, we have

$$
\left\langle h_{i_{1} \cdots i_{m}}, h_{j_{1} \cdots j_{m}}\right\rangle_{s}=c_{m}\left\langle\hat{h}_{i_{1} \cdots i_{m}}, \hat{h}_{j_{1} \cdots j_{m}}\right\rangle_{N},
$$

where

$$
c_{m}=\frac{\Gamma(m+n / 2) \Gamma(m+1) \operatorname{dim} H_{m}\left(S^{n-1}\right)}{\left(\operatorname{vol}\left(S^{n-1}\right)\right)^{2} \operatorname{vol}\left(S^{n-2}\right) \Gamma(n / 2)}
$$

Proof. By Proposition 1.5,

$$
\hat{h}_{i_{1} \cdots i_{m}}=\frac{\operatorname{vol}\left(S^{n-1}\right) \Gamma(n / 2)}{2^{m} \Gamma(m+n / 2)} \psi_{i_{1} \cdots i_{m}}
$$

Hence it suffices to show that

$$
\left\langle h_{i_{1} \cdots i_{m}}, h_{j_{1} \cdots j_{m}}\right\rangle_{S}=c_{m}^{\prime}\left\langle\psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N},
$$

where

$$
c_{m}^{\prime}=\frac{\Gamma(n / 2) \Gamma(m+1) \operatorname{dim} H_{m}\left(S^{n-1}\right)}{2^{2 m} \operatorname{vol}\left(S^{n-2}\right) \Gamma(m+n / 2)}
$$

We shall show this by induction on m. If $m=0$, then both sides of the equation are equal to $\operatorname{vol}\left(S^{n-1}\right)$. Now, let $m>0$ and assume that the equality holds for $m-1$. Then by Lemma 1.3 and (ii) of Lemma 1.6, we have

$$
\begin{aligned}
&\left\langle h_{i_{1} \cdots i_{m}}, h_{j_{1} \cdots j_{m}}\right\rangle_{S} \\
&= \frac{c_{m-1}^{\prime}}{(2 m+n-2)(2 m+n-4)}\left\{(2 m+n-4) \sum_{a=1}^{m} \delta_{i_{a} j_{m}}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}\right. \\
&\left.-\sum_{a \neq b} \delta_{i_{a} i_{b}}\left\langle\psi_{i_{1} \cdots \hat{i}_{a} \cdots \hat{i}_{b} \cdots i_{m} j_{m}}, \psi_{j_{1} \cdots j_{m-1}}\right\rangle_{N}\right\} \\
&= \frac{(m+n-3) c_{m-1}^{\prime}}{2(2 m+n-4)}\left\langle\psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N}=c_{m}^{\prime}\left\langle\psi_{i_{1} \cdots i_{m}}, \psi_{j_{1} \cdots j_{m}}\right\rangle_{N} .
\end{aligned}
$$

Proposition 1.8 (cf. [5, §4]). For any $x \in S^{n-1}$, we have

$$
\int_{N}(x \cdot \bar{z})^{m} \psi_{i_{1} \cdots i_{m}}(z) d N(z)=\frac{\operatorname{vol}\left(S^{n-1}\right) \operatorname{vol}\left(S^{n-2}\right) 2^{m}}{\operatorname{dim} H_{m}\left(S^{n-1}\right)} h_{i_{1} \cdots i_{m}}(x) .
$$

This proposition is proved by induction on m, where we use (ii) of Lemma 1.2 and (ii) of Lemma 1.6.
2. Hilbert space $P(M)$ and integral transform \mathscr{F}. From now on, we shall assume that $n=3,5,7, \cdots$.

Lemma 2.1. There exists a unique polynomial ρ_{n} which satisfies

$$
\int_{0}^{\infty} r^{2 m+n-2} e^{-2 r} \rho_{n}(r) d r=c_{m}
$$

for all $m=0,1,2, \cdots$.
Proof. If there exists a polynomial $\rho_{n}(r)=\sum_{k} a_{n, k} r^{k}$ which satisfies the condition in our lemma, then the coefficients must satisfy $\sum_{k} a_{n, k} 2^{-(k+2 m+n-1)} \Gamma(k+2 m+n-1)=c_{m}$ for all m. This condition is rewritten as

$$
\begin{aligned}
& \sum_{k} a_{n, k} \frac{\Gamma(k+2 m+n-1)}{2^{k+1} \Gamma(2 m+n-1)} \\
& \quad \quad=\frac{\pi^{1 / 2}(2 m+n-2) \Gamma(m+n-2)}{\left(\operatorname{vol}\left(S^{n-1}\right)\right)^{2} \operatorname{vol}\left(S^{n-2}\right) \Gamma(n-1) \Gamma(n / 2) \Gamma(m+(n-1) / 2)}
\end{aligned}
$$

for all $m=0,1,2, \cdots$. Since n is odd, both sides of the equation above are polynomials of m. Hence, $a_{n, k}$ are determined uniquely. The existence of ρ_{n} also follows from the above equation.

Note that the degree of the polynomial ρ_{n} is $(n-1) / 2$, and the coefficient of the highest degree is positive. For example, we have $\rho_{3}(r)=a_{3,1}(r-1 / 2), \quad \rho_{5}(r)=a_{5,2}\left(r^{2}-r\right) \quad$ and $\quad \rho_{7}(r)=a_{7,3}\left(r^{3}-r^{2}-r / 2\right)$. Unfortunately, since $a_{n, 0}=0$ and $a_{n, 1}<0$ for $n \geqq 5, \rho_{n} \mid(0, \infty)$ is not a positive function. It is to be desired that there exists a positive function on ($0, \infty$) which satisfies the equation in Lemma 2.1. We also remark that for even n, there does not exist any polynomial which satisfies the condition in Lemma 2.1. This is the reason why we restrict our attention to the case of odd n.

Now, for any $\varphi, \psi \in \operatorname{Holo}(M)$, let us define

$$
\langle\varphi, \psi\rangle_{M}=\int_{M} \overline{\varphi(z)} \psi(z) d \mu_{n}(z),
$$

where $d \mu_{n}(z)=e^{-2|y|} \rho_{n}(|y|) d M(z), z=|y| x+\sqrt{-1} y \in M$ (cf. [8, p. 174]). Although the measure $d \mu_{n}$ is not positive, we have:

Theorem 2.2. For any $\varphi \in P_{l}(M)$ and $\psi \in P_{m}(M)$,

$$
\langle\varphi, \psi\rangle_{M}=c_{m}\langle\varphi, \psi\rangle_{N},
$$

where φ and ψ on the right hand side stand for the restrictions of φ and ψ onto N, respectively. In particular, \langle,\rangle_{M} is positive definite on $P_{m}(M)$, and $f \mapsto \hat{f}$ is a unitary isomorphism of $\left(H_{m}\left(S^{n-1}\right),\langle,\rangle_{s}\right)$ onto $\left.P_{m}(M),\langle,\rangle_{M}\right)$.

Proof. Since $d M=p^{*} d N \wedge r^{n-2} d r$, we have, by (i) of Lemma 1.6 and Lemma 2.1,

$$
\langle\varphi, \psi\rangle_{M}=\int_{0}^{\infty} r^{l+m+n-2} e^{-2 r} \rho_{n}(r) d r \int_{N} \bar{\varphi} \psi d N=c_{m}\langle\varphi, \psi\rangle_{N} .
$$

Then, the unitarity of $f \mapsto \hat{f}$ follows from Lemma 1.7.
The following lemma is due to Bargmann [1, p. 190].
Lemma 2.3. Let $S=\sum_{k=1}^{\infty} b_{k}$ be a series with non-negative real terms, let $\gamma_{k}(t), t>0$, be so chosen that (1) $0 \leqq \gamma_{k}(t) \leqq 1$, (2) $\lim _{t \rightarrow \infty} \gamma_{k}(t)=1$, and set $S(t)=\sum \gamma_{k}(t) b_{k}$. S converges if and only if $S(t)$ are uniformly bounded, and in that case $S=\lim S(t)$.

Proposition 2.4. Let $\varphi \in \operatorname{Holo}(M), \varphi=\sum \varphi_{m}$ with $\varphi_{m} \in P_{m}(M)$. Then

$$
\langle\varphi, \varphi\rangle_{M}=\sum\left\langle\varphi_{m}, \varphi_{m}\right\rangle_{M},
$$

i.e., either both sides are infinite, or both sides are finite and equal.

Proof. For any $\sigma>0$, let

$$
I(\sigma)=\int_{M(\sigma)}|\varphi|^{2} d \mu_{n},
$$

where $M(\sigma)=\{z=|y| x+\sqrt{-1} y \in M| | y \mid \leqq \sigma\}$. Then $\sigma \mapsto I(\sigma)$ is, for large σ, monotone increasing and $\langle\varphi, \varphi\rangle_{\mu}=\lim _{\sigma \rightarrow \infty} I(\sigma)$. Since $\sum \varphi_{m}$ converges uniformly to φ on $M(\sigma)$, we have by (i) of Lemma 1.6 and Theorem 2.2,

$$
\begin{aligned}
I(\sigma) & =\sum_{l, m=0}^{\infty} \int_{M(\sigma)} \overline{\varphi_{l}(z)} \varphi_{m}(z) d \mu_{n}(z)=\sum_{l, m=0}^{\infty} \int_{0}^{\sigma} r^{l+m+n-2} e^{-2 r} \rho_{n}(r) d r \int_{N} \overline{\varphi_{l}} \varphi_{m} d N \\
& =\sum_{m=0}^{\infty} \int_{0}^{\sigma} r^{2 m+n-2} e^{-2 r} \rho_{n}(r) d r\left\langle\varphi_{m}, \varphi_{m}\right\rangle_{N}=\sum_{m=0}^{\infty} \frac{c_{m}(\sigma)}{c_{m}}\left\langle\varphi_{m}, \varphi_{m}\right\rangle_{M},
\end{aligned}
$$

where

$$
c_{m}(\sigma)=\int_{0}^{\sigma} r^{2 m+n-2} e^{-2 r} \rho_{n}(r) d r
$$

Since there exists $\sigma_{n}>0$ such that $c_{m}(\sigma)>0$ for all $\sigma>\sigma_{n}$ and $m=$ $0,1,2, \cdots$, applying Lemma 2.3, we have the desired result.

Now, let us define

$$
P(M)=\left\{\varphi \in \operatorname{Holo}(M) \mid\langle\varphi, \varphi\rangle_{M}<\infty\right\} .
$$

Then it follows from Theorem 2.2 and Proposition 2.4 that \langle,\rangle_{M} is a Hermitian inner product in $P(M)$. The corresponding norm is denoted by $\left\|\|_{M}\right.$.

THEOREM 2.5. $\mathscr{F}: f \mapsto \hat{f}$ is a unitary isomorphism of $\left(L^{2}\left(S^{n-1}\right),\langle,\rangle_{s}\right)$ onto $\left(P(M),\langle,\rangle_{M}\right)$.

Proof. Let $f \in L^{2}\left(S^{n-1}\right), f=\sum f_{m}$ with $f_{m} \in H_{m}\left(S^{n-1}\right)$. Then, by (iii) of Lemma 1.4, Proposition 2.4, Theorem 2.2 and (iii) of Lemma 1.1, we have

$$
\|\widehat{f}\|_{M}^{2}=\sum\left\|\widehat{f}_{m}\right\|_{M}^{2}=\sum\left\|f_{m}\right\|_{S}^{2}=\|f\|_{S}^{2}<\infty
$$

It follows that $\hat{f} \in P(M)$ and that \mathscr{F} is unitary. The surjectivity of \mathscr{F} is also shown easily.

We have from Theorem 2.5 and (ii) of Lemma 1.4 the following:
Corollary 2.6. (i) $\left(P(M),\langle,\rangle_{s}\right)$ is a Hilbert space. (ii) For any $\varphi \in P(M)$ and $z=|y| x+\sqrt{-1} y \in M$,

$$
|\varphi(z)| \leqq\left(\operatorname{vol}\left(S^{n-1}\right)\right)^{1 / 2}\|\varphi\|_{M} e^{|y|} .
$$

From (ii) of Corollary 2.6, it follows that, for a fixed $w \in M$, the map $\varphi \mapsto \varphi(w)$ defines a bounded linear functional on $P(M)$. It is necessarily of the form

$$
\varphi(w)=\left\langle e_{w}, \varphi\right\rangle_{M}
$$

with a uniquely defined $e_{w} \in P(M)$. If we define function on $M \times M$ by

$$
K(w, z)=\int_{S^{n-1}} e^{x \cdot w} e^{x \cdot \bar{z}} d S(x)
$$

then $\overline{K(w, z)}=K(z, w)$ and $\overline{K(w, \cdot)} \in P(M)$ immediately from the definition.
Lemma 2.7 (cf. [1, § 1 c$]$).

$$
e_{w}(z)=\overline{K(w, z)} .
$$

Proof. It is sufficient to show that

$$
\left\langle\overline{K(w, \cdot)}, \psi_{i_{1} \cdots i_{m}}\right\rangle_{M}=\psi_{i_{1} \cdots i_{m}}(w) .
$$

Making use of Theorem 2.2, Lemma 1.6 and Propositions 1.8 and 1.5, we have

$$
\begin{aligned}
\left\langle\overline{K(w, \cdot)}, \dot{\psi}_{i_{1} \cdots i_{m}}\right\rangle_{M} & =\int_{M}\left(\int_{S^{n-1}} e^{x \cdot w} e^{x \cdot \bar{z}} d S(x)\right) \psi_{i_{1} \cdots i_{m}}(z) d \mu_{n}(z) \\
& =\int_{S^{n-1}} e^{x \cdot w}\left(\int_{M} e^{x \cdot \bar{z}} \psi_{i_{1} \cdots i_{m}}(z) d \mu_{n}(z)\right) d S(x) \\
& =\frac{1}{m!} \int_{S^{n-1}} e^{x \cdot w}\left(\int_{M}(x \cdot \bar{z})^{m} \psi_{i_{1} \cdots i_{m}}(z) d \mu_{n}(z)\right) d S(x) \\
& =\frac{c_{m}}{m!} \int_{S^{n-1}} e^{x \cdot w}\left(\int_{N}(x \cdot \bar{z})^{m} \psi_{i_{1} \cdots i_{m}}(z) d N(z)\right) d S(x) \\
& =\frac{c_{m} \operatorname{vol}\left(S^{n-1}\right) \operatorname{vol}\left(S^{n-2}\right) 2^{m}}{m!\operatorname{dim} H_{m}\left(S^{n-1}\right)} \int_{S^{n-1}} e^{x \cdot w} h_{i_{1} \cdots i_{m}}(x) d S(x) \\
& =\psi_{i_{1} \cdots i_{m}}(w) .
\end{aligned}
$$

K is the reproducing kernel for $P(M)$, i.e.,

$$
\varphi(w)=\int_{M} K(w, z) \varphi(z) d \mu_{n}(z)
$$

Now, we shall consider the inverse operator \mathscr{F}^{-1}. Let $P^{(\alpha)}(M)=\{\rho \in$ $\operatorname{Holo}(M) \mid$ for a suitable $c>0,|\varphi(z)| \leqq c e^{\lambda|y|}$ for all $\left.z=|y| x+\sqrt{-1} y \in M\right\}$ $(0<\lambda<1)$. Then $P^{(\lambda)}(M)$ is a subspace of $P(M)$. If, for each $\varphi \in P(M)$, we define $\varphi^{(\lambda)}$ by $\varphi^{(\lambda)}(z)=\varphi(\lambda z)$, then $\varphi^{(\lambda)} \in P^{(\lambda)}(M)$.

Lemma 2.8 (cf. [1, p. 197]). (i) $\varphi \in P(M)$ if and only if all $\varphi^{(\lambda)} \in$ $P(M), 0<\lambda<1$, and their norms $\left\|\varphi^{(\lambda)}\right\|_{M}$ are uniformly bounded.
(ii) If $\varphi \in P(M)$, then $\left\|\varphi-\varphi^{(\lambda)}\right\|_{M} \rightarrow 0$ as $\lambda \rightarrow 1$.

Proof. Let $\varphi \in \operatorname{Holo}(M), \varphi=\sum \varphi_{m}$ with $\varphi_{m} \in P_{m}(M)$. Then we have $\varphi^{(\lambda)}(z)=\varphi(\lambda z)=\sum \lambda^{m} \varphi_{m}(z)$. It follows from Proposition 2.4 that $\left\|\varphi^{(\lambda)}\right\|_{\mathbb{M}}^{2}=$ $\sum \lambda^{2 m}\left\|\varphi_{m}\right\|_{M}^{2}$. Then by Lemma 2.3 we have (i). (ii) follows immediately from $\left\|\varphi-\varphi^{(\lambda)}\right\|_{M}^{2}=\sum\left(1-\lambda^{m}\right)^{2}\left\|\varphi_{m}\right\|_{M}^{2}$.

Theorem 2.9 (cf. [1, p. 202]). If $\varphi \in P^{(\lambda)}(M)$ for some $\lambda, 0<\lambda<1$, then

$$
\left(\mathscr{F}^{-1} \varphi\right)(x)=\int_{M} e^{x \cdot \bar{z}} \varphi(\boldsymbol{z}) d \mu_{n}(\boldsymbol{z}),
$$

for any $x \in S^{n-1}$.
Proof. Since $\varphi \in P^{(\lambda)}(M)$, the integration converges absolutely. It suffices to prove that

$$
\int_{S^{n-1}} e^{x \cdot w}\left(\int_{M} e^{x \cdot \bar{z}} \mathcal{P}(z) d \mu_{n}(z)\right) d S(x)=\varphi(w),
$$

which we show easily by interchanging integrations and using the reproducing property of K.

Corollary 2.10 (cf. [1, (2.14)]). For any $\varphi \in P(M)$,

$$
\left(\mathscr{F}^{-1} \varphi\right)(x)=\operatorname{Lim}_{\lambda \rightarrow 1} \int_{M} e^{x \cdot \bar{z}} \varphi(\lambda z) d \mu_{n}(z),
$$

where Lim means the strong convergence in $L^{2}\left(S^{n-1}\right)$.
We also have another explicit expression for \mathscr{F}^{-1}.
Theorem 2.11 (cf. [1, (2.15)]). For any $\varphi \in P(M)$,

$$
\left(\mathscr{F}^{-1} \varphi\right)(x)=\operatorname{Lim}_{\sigma \rightarrow \infty} \int_{M(\sigma)} e^{x \cdot \bar{z}} \varphi(z) d \mu_{n}(z)
$$

Proof. Let $\varphi=\sum \varphi_{m}$ with $\varphi_{m} \in P_{m}(M)$. Define, for $x \in S^{n-1}$,

$$
f^{(\sigma)}(x)=\int_{M(o)} e^{x \cdot \bar{z}} \varphi(z) d \mu_{n}(z)
$$

and

$$
f_{m}^{(o)}(x)=\int_{\boldsymbol{M}(\sigma)} e^{x \cdot \bar{z}} \varphi_{m}(z) d \mu_{n}(z) .
$$

Then, by Propositions 1.5 and 1.8 , we have for any $w \in M$,

$$
\begin{aligned}
\left(\mathscr{F} f_{m}^{(\sigma)}\right)(w) & =\int_{S^{n-1}} e^{x \cdot w}\left(\int_{M(\sigma)} e^{x \cdot \bar{z}} \varphi_{m}(z) d \mu_{n}(z)\right) d S(x) \\
& =\frac{c_{m}(\sigma)}{m!} \int_{S^{n-1}} e^{x \cdot w}\left(\int_{N}(x \cdot \bar{z})^{m} \varphi_{m}(z) d N(z)\right) d S(x)=\frac{c_{m}(\sigma)}{c_{m}} \varphi_{m}(w)
\end{aligned}
$$

By the uniform convergence of $\varphi=\sum \varphi_{m}$ on $M(\sigma)$, we have

$$
\begin{aligned}
\left(\mathscr{F} f^{(\sigma)}\right)(w) & =\int_{S^{n-1 \times M(\sigma)}} e^{x \cdot w} e^{x \cdot \bar{z}} \varphi(z) d \mu_{n}(z) d S(x) \\
& =\sum \int_{S^{n-1 \times M(\sigma)}} e^{x \cdot w} e^{x \cdot \bar{z}} \varphi_{m}(z) d \mu_{n}(z) d S(x) \\
& =\sum\left(\mathscr{F} f_{m}^{(\sigma)}\right)(w)=\sum \frac{c_{m}(\sigma)}{c_{m}} \varphi_{m}(w)
\end{aligned}
$$

It follows from Proposition 2.4 that

$$
\left\|\varphi-\mathscr{F} f^{(\sigma)}\right\|_{M}^{2}=\sum\left(1-\frac{c_{m}(\sigma)}{c_{m}}\right)^{2}\left\|\varphi_{m}\right\|_{M}^{2} \rightarrow 0
$$

as $\sigma \rightarrow \infty$. Here recall that there exists a constant $\sigma_{n}>0$ such that $c_{m}(\sigma)>0$ for any $\sigma>\sigma_{n}$ and $m=0,1,2, \cdots$. Since \mathscr{F} is a unitary isomorphism, we have $\mathscr{F}^{-1} \varphi=\operatorname{Lim}_{\sigma \rightarrow \infty} f^{(o)}$.
3. An application. The mapping \mathscr{F} establishes a unitary isomorphism between the linear operators on $P(M)$ and those on $L^{2}\left(S^{n-1}\right)$. In this section, we shall consider a one-parameter group of unitary transformations, which is easily analyzed on $P(M)$, and translate the results into the language of $L^{2}\left(S^{n-1}\right)$ (see [1, §3] and [8, p. 177]).

The one-parameter group of canonical transformations on M generated by the Hamiltonian vector field X_{r} is given by $\phi_{t}: z \mapsto e^{i t} z$. Since $X_{r} r=0$ and $\mathscr{L}_{x_{r}} d M=0, \phi_{t}$ preserves the measure $d \mu_{n}$ as well as the complex structure J on M. Hence ϕ_{t} induces a unitary transformation $\varphi \mapsto \varphi \circ \phi_{-t}$ on $P(M)$. Let us define a one-parameter group $\left\{V_{t} \mid t \in \boldsymbol{R}\right\}$ of unitary transformations on $P(M)$ by

$$
\left(V_{t} \varphi\right)(z)=e^{-i(n-2) t / 2} \varphi\left(e^{-i t} z\right)
$$

(see [8, p. 177]). Then

$$
V_{t} \varphi_{m}=e^{-i \mid m+(n-2) / 2 t t} \varphi_{m}
$$

for any $\varphi_{m} \in P_{m}(M)$, and $\left\{V_{t}\right\}$ is strongly continuous in t. The infinitesimal generator of $\left\{V_{t}\right\}$ is given by $X_{r}-i(n-2) / 2$. Now, let $U_{t}=\mathscr{F}^{-1} \circ V_{t} \circ \mathscr{F}$ be the operator corresponding to V_{t} under the unitary isomorphism \mathscr{F}. Then, for any $f \in L^{2}\left(S^{n-1}\right)$ and $x^{\prime} \in S^{n-1}$, we have from Theorem 2.11

$$
\begin{aligned}
\left(U_{t} f\right)\left(x^{\prime}\right) & =\operatorname{Lim}_{\sigma \rightarrow \infty} \int_{M(\sigma)} e^{x^{\prime} \cdot \bar{z}} e^{-i(n-2) t / 2} \int_{S^{n-1}} e^{x \cdot \exp (-i t) z} f(x) d S(x) d \mu_{n}(z) \\
& =\operatorname{Lim}_{\sigma \rightarrow \infty} \int_{S^{n-1}} U^{(\sigma)}\left(t, x^{\prime}, x\right) f(x) d S(x),
\end{aligned}
$$

where

$$
U^{(o)}\left(t, x^{\prime}, x\right)=e^{-i(n-2) t / 2} \int_{M(\sigma)} e^{x^{\prime} \cdot \bar{z}+\exp (-i t) x \cdot z} d \mu_{n}(z)
$$

(cf. [1, (3.10a)]). Since $U_{t} f_{m}=e^{-i(m+\langle n-2) / 2\rangle t} f_{m}$ for any $f_{m} \in H_{m}\left(S^{n-1}\right)$, we have $U_{t}=\exp \left[-i\left\{\Delta+(n-2)^{2} / 4\right\}^{1 / 2} t\right]$, where Δ is the Laplace-Beltrami operator on S^{n-1} (see [8, p. 177]). Thus, we have the following:

Theorem 3.1. The one-parameter group of unitary transformations, $U_{t}=\exp \left[-i\left\{\Delta+(n-2)^{2} / 4\right\}^{1 / 2} t\right]$, on $L^{2}\left(S^{n-1}\right)$ generated by the operator $-i\left\{\Delta+(n-2)^{2} / 4\right\}^{1 / 2}$ is represented by

$$
\left(U_{t} f\right)\left(x^{\prime}\right)=\operatorname{Lim}_{\sigma \rightarrow \infty} \int_{S^{n-1}} U^{(\sigma)}\left(t, x^{\prime}, x\right) f(x) d S(x)
$$

References

[1] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Part I, Comm. Pure Appl. Math. 14 (1961), 187-214.
[2] K. Gawedzki, Fourier-like kernels in geometric quantization, Dissertation Math. 128, Warszawa, 1976.
[3] M. Hashizume, A. Kowata, K. Minemura and K. Okamoto, An integral representation of an eigenfunction of the Laplacian on the Euclidean space, Hiroshima Math. J. 2 (1972), 535-545.
[4] S. Helgason, Topics in harmonic analysis on homogeneous spaces. Progress in Math. 13, Birkhäuser, Boston-Basel-Stuttgart, 1981.
[5] A. Kowata and K. Okamoto, Harmonic functions and the Borel-Weil theorem, Hiroshima Math. J. 4 (1974), 89-97.
[6] M. Morimoto, Analytic functions on the sphere and their Fourier-Borel transformations, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 1983, 223-250.
[7] J. H. Rawnsley, Coherent states and Kaehler manifolds, Quart. J. Math. Oxford Ser. 28 (1977), 403-415.
[8] J. H. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc. 250 (1979), 167-180.
Department of Mathematics
Yamagata University
Yamagata, 990
Japan

[^0]: Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry of Education, Science and Culture, Japan.

