ROTATIONAL SURFACES IN A PSEUDO-RIEMANNIAN 3-SPHERE

Hiroshi Mori

(Received December 27, 1984)

1. Introduction. K. Akutagawa has recently shown the following interesting result.

Theorem A. Let $S_{1}^{n+1}(c)$ be a pseudo-Riemannian $(n+1)$-sphere of signature $(1, n)$ and of constant positive sectional curvature c. Let M be a complete, space-like hypersurface with constant mean curvature h in $S_{1}^{n+1}(c)$. If
(i) $|h| \leqq c^{1 / 2}$ when $n=2$,
(ii) $|h|<(2 / n)[(n-1) c]^{1 / 2}$ when $n \geqq 3$, then M is totally umbilical.

In this paper, we shall show in case $n=2$ that the estimate in Theorem A is sharp. In fact, for each constant $h>1$ we shall construct some families of complete, space-like, rotational surfaces in $S_{1}^{3}\left(:=S_{1}^{3}(1)\right)$ with constant mean curvature h, none of which are umbilical.
(Added on March 6, 1985). K. Akutagawa has kindly sent us his preprint [1] in which he proves the above Theorem A and also independently shows that the estimate in (i) is sharp.

Acknowledgment. The present author would like to express his gratitude to the referee for his useful comments on the original version of this note.
2. Statement of results. All the surfaces in the following Theorems 1, 2 and 3 except those in Theorem 3 (iii) turn out not to be umbilical by Proposition 1 in Section 3 and (4.7) in Section 4. We refer the readers to Section 3 for the terminology.

Theorem 1. (Spherical rotational, space-like surfaces). Let h be a constant, $h>1$.
(i) For each constant $a>\left(h^{2}-1\right)^{1 / 2} / 2$, we define the function $u(s)$ by

$$
u(s)=\left[a h+\left\{a^{2}-\left(h^{2}-1\right) / 4\right\}^{1 / 2} \cosh 2\left(h^{2}-1\right)^{1 / 2} s\right] / 2\left(h^{2}-1\right),
$$

$s \in R$, and the functions $\phi(s), x_{1}(s), x_{3}(s)$ and $x_{4}(s)$ by

$$
\begin{aligned}
\phi(s) & =\int_{0}^{s}\left[4 u(\sigma)^{2}+u^{\prime}(\sigma)^{2}-1 / 4\right]^{1 / 2}(2 u(\sigma)-1 / 2)^{-1}(2 u(\sigma)+1 / 2)^{-1 / 2} d \sigma, \\
x_{1}(s) & =(2 u(s)+1 / 2)^{1 / 2} \\
x_{3}(s) & =(2 u(s)-1 / 2)^{1 / 2} \sinh \phi(s), \\
x_{4}(s) & =(2 u(s)-1 / 2)^{1 / 2} \cosh \phi(s), \quad s \in R
\end{aligned}
$$

Then the one-to-one analytic mapping $f: R \times S^{1} \rightarrow S_{1}^{3}$,

$$
\begin{equation*}
f(s, t)=x_{1}(s)\left(\cos t e_{1}+\sin t e_{2}\right)+x_{3}(s) e_{3}+x_{4}(s) e_{4} \tag{2.1}
\end{equation*}
$$

defines a complete, space-like surface with constant mean curvature h in S_{1}^{3}, where S^{1} is the unit circle in R^{2} and $\left\{e_{k}\right\}$ is a basis of L^{4} satisfying $\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{3} y_{3}-x_{4} y_{4}$ for $x=\sum_{k} x_{k} e_{k}$ and $y=\sum_{k} y_{k} e_{k}$.
(ii) We define the function $u(s)$ by

$$
u(s)=\exp \left[2\left(h^{2}-1\right)^{1 / 2} s\right]+h / 4\left(h^{2}-1\right)^{1 / 2}, \quad s \in R
$$

and the functions $\phi(s), x_{1}(s), x_{3}(s)$ and $x_{4}(s)$ as in (i). Then the one-to-one analytic mapping $f: R \times S^{1} \rightarrow S_{1}^{3}$ given in (2.1), defines a complete, spacelike surface with constant mean curvature h in S_{1}^{3}.

Theorem 2. (Hyperbolic rotational, space-like surfaces). Let h be a constant, $h>1$.
(i) For each constant $a>\left(h^{2}-1\right)^{1 / 2} / 2$, we define $u(s)$ as in Theorem 1 (i), and $\phi(s), x_{1}(s), x_{3}(s)$ and $x_{4}(s)$ by

$$
\begin{aligned}
\phi(s) & =\int_{0}^{s}\left[4 u(\sigma)^{2}+u^{\prime}(\sigma)^{2}-1 / 4\right]^{1 / 2}(2 u(\sigma)+1 / 2)^{-1}(2 u(\sigma)-1 / 2)^{-1 / 2} d \sigma \\
x_{1}(s) & =(2 u(s)-1 / 2)^{1 / 2} \\
x_{3}(s) & =(2 u(s)+1 / 2)^{1 / 2} \cos \phi(s), \\
x_{4}(s) & =(2 u(s)+1 / 2)^{1 / 2} \sin \phi(s), \quad s \in R
\end{aligned}
$$

Then the analytic mapping $f: R \times R \rightarrow S_{1}^{3}$

$$
\begin{equation*}
f(s, t)=x_{1}(s)\left(\cosh t e_{1}+\sinh t e_{2}\right)+x_{3}(s) e_{3}+x_{4}(s) e_{4}, \tag{2.2}
\end{equation*}
$$

defines a complete, space-like (immersed) surface with constant mean curvature h in S_{1}^{3}, where $\left\{e_{k}\right\}$ is a basis of L^{4} satisfying $\langle x, y\rangle=$ $-x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{4} y_{4}$ for $x=\sum_{k} x_{k} e_{k}$ and $y=\sum_{k} y_{k} e_{k}$.
(ii) We define $u(s)$ as in Theorem 1 (ii), and $\phi(s), x_{1}(s), x_{3}(s)$ and $x_{4}(s)$ as in (i). Then the one-to-one analytic mapping $f: R \times R \rightarrow S_{1}^{3}$ given in (2.2), defines a complete, space-like surface with constant mean curvature h in S_{1}^{3}.

Theorem 3. (Parabolic rotational, space-like surfaces).
(i) Let h be a constant, $h>1$. For each positive constant a, we
define $u(s)$ by

$$
u(s)=\left[a h+a \cosh 2\left(h^{2}-1\right)^{1 / 2} s\right] / 2\left(h^{2}-1\right), \quad s \in R,
$$

and $x_{1}(s), x_{4}(s)$ and $x_{8}(s)$ by

$$
\begin{aligned}
& x_{1}(s)=(2 u(s))^{1 / 2}, \\
& x_{4}(s)=x_{1}(s) \int_{0}^{s}\left[x_{1}(\sigma)^{2}+x_{1}^{\prime}(\sigma)^{2}\right]^{1 / 2} / x_{1}(\sigma)^{2} d \sigma, \\
& x_{3}(s)=\left(-x_{4}(s)^{2}+1\right) / 2 x_{1}(s), \quad s \in R .
\end{aligned}
$$

Then the one-to-one analytic mapping $f: R \times R \rightarrow S_{1}^{3}$

$$
\begin{equation*}
f(s, t)=x_{1}(s)\left(e_{1}+t e_{2}\right)-\left[\frac{1}{2} t^{2} x_{1}(s)-x_{3}(s)\right] e_{3}+x_{4}(s) e_{4}, \tag{2.3}
\end{equation*}
$$

defines a complete, space-like surface with constant mean curvature h in S_{1}^{3}, where $\left\{e_{k}\right\}$ is a basis of L^{4} satisfying $\langle x, y\rangle=x_{1} y_{3}+x_{2} y_{2}+x_{3} y_{1}+x_{4} y_{4}$ for $x=\sum_{k} x_{k} e_{k}$ and $y=\sum_{k} y_{k} e_{k}$.
(ii) Let h be a constant, $h>1$. We define $u(s)$ by

$$
u(s)=\exp \left[2\left(h^{2}-1\right)^{1 / 2} s\right], \quad s \in R,
$$

and $x_{1}(s), x_{4}(s)$ and $x_{3}(s)$ as in (i). Then the one-to-one analytic mapping $f: R \times R \rightarrow S_{1}^{3}$ given in (2.3), defines a complete, space-like surface with constant mean curvature h in S_{1}^{3}.
(iii) For each positive constant a, the one-to-one analytic mapping $f: R \times R \rightarrow S_{1}^{3}$,

$$
f(s, t)=a\left[e_{1}+t e_{2}\right]-\left[a t^{2} / 2+\left(s^{2}-1\right) / 2 a\right] e_{3}+s e_{4},
$$

defines a complete, space-like surface with constant mean curvature one in S_{1}^{3}, where $\left\{e_{k}\right\}$ is a basis of L^{4} as in (i).
3. Preliminaries. In this section, we shall recall umbilical surfaces and rotational, space-like surfaces in the pseudo-Riemannian 3 -sphere S_{1}^{3} of signature (1,2) and of constant sectional curvature one (see [4], [5]). We denote by L^{4} the space of 4 -tuples $x=\left(x_{1}, \cdots, x_{4}\right)$ with Lorentzian metric $\langle\rangle=,-\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}+\cdots+\left(d x_{4}\right)^{2}$, and consider the pseudo-Riemannian 3 -sphere $S_{1}^{3}(c)$ of signature (1,2) and of constant positive sectional curvature c as a hypersurface of L^{4}, namely,

$$
S_{1}^{3}(c)=\left\{x \in L^{4} ;\langle x, x\rangle=1 / c\right\} .
$$

First, we note (cf. [2]) that umbilical, space-like surfaces in S_{1}^{3} are given by the intersection of S_{1}^{3} with affine 3 -spaces of L^{4}. Up to isometries of S_{1}^{3}, they are represented explicitly as follows: for each constant $a, \quad 0 \leqq a<1$, the isometric embedding $f: S^{2}\left(1-a^{2}\right) \rightarrow S_{1}^{3}, f(x, y, z)=$
$\left(a /\left(1-a^{2}\right)^{1 / 2}, x, y, z\right)$, of the Euclidean 2 -sphere $S^{2}\left(1-a^{2}\right)$ of constant Gaussian curvature $1-a^{2}$ into S_{1}^{3}, defines an umbilical, space-like surface $M(a)$ with constant mean curvature a; for each constant $a>1$, the isometric embedding $f: H^{2}\left(1-a^{2}\right) \rightarrow S_{1}^{3}, f(x, y, z)=\left(x, y, z, a /\left(a^{2}-1\right)^{1 / 2}\right)$, of the hyperbolic 2-plane $H^{2}\left(1-a^{2}\right)$ of constant Gaussian curvature $1-a^{2}$ into S_{1}^{3}, defines an umbilical, space-like surface $M(a)$ in S_{1}^{3} with constant mean curvature a; and finally, for each positive constant b, the isometric embedding $f: R^{2} \rightarrow S_{1}^{3}, f(x, y)=b e_{1}+x e_{2}-\left(\left(x^{2}+y^{2}-1\right) / 2 b\right) e_{3}+y e_{4}$, of the Euclidean 2-plane R^{2} into S_{1}^{3}, defines an umbilical space-like surface $N(b)$ in S_{1}^{3} with constant mean curvature 1 , where $\left\{e_{k}\right\}$ is a basis of L^{4} defined by $e_{1}=$ $(1 / \sqrt{2}, 0,1 / \sqrt{2}, 0), \quad e_{2}=(0,1,0,0), e_{3}=(-1 / \sqrt{2}, 0,1 / \sqrt{2}, 0)$ and $e_{4}=$ ($0,0,0,1$).

Next, we recall some properties of rotational, space-like surfaces in S_{1}^{3} (cf. [5]). We denote by $P^{k}, 1 \leqq k \leqq 3$, a k-subspace of L^{4} passing through the origin, and by $O\left(P^{2}\right)$ the largest subgroup of the identity component of the Lorentzian group $O(1,3)$ which leaves P^{2} pointwise fixed. We note that $O(1,3)$ is the group of all isometries of S_{1}^{3} (see [6]).

Definition. Choose P^{2} and $P^{3} \supset P^{2}$, and let C be a regular spacelike C^{2}-curve in $S_{1}^{3} \cap\left(P^{3}-P^{2}\right)$. The orbit of C under the action of $O\left(P^{2}\right)$ is called a rotational, space-like surface M in S_{1}^{3} generated by C around P^{2}. The surface M is said to be spherical (resp. hyperbolic, resp. parabolic) if the restriction $\langle\rangle \mid, P^{2}$ is a Lorentzian metric (resp. a Riemannian metric, resp. a degenerate quadratic form).

We now write down the parametrization of the rotational surface explicitly (cf. [3]). It is easily seen that we can choose a basis $\left\{e_{k}\right\}$ of L^{4} satisfying the following conditions:
P^{2} is the plane generated by e_{3} and e_{4};

$$
\begin{equation*}
P^{3} \text { is the } 3 \text {-subspace generated by } e_{1} \text { and } P^{2} ; \tag{1}
\end{equation*}
$$

for two vectors $x=\sum_{k} x_{k} e_{k}$ and $y=\sum_{k} y_{k} e_{k}$, we have

$$
\langle x, y\rangle= \begin{cases}x_{1} y_{1}+\cdots+x_{3} y_{3}-x_{4} y_{4} & \text { (spherical case) } \tag{3}\\ -x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{4} y_{4} & \text { (hyperbolic case) } \\ x_{1} y_{3}+x_{2} y_{2}+x_{3} y_{1}+x_{4} y_{4} & \text { (parabolic case) }\end{cases}
$$

Let $x_{1}=x_{1}(s), x_{3}=x_{3}(s)$ and $x_{4}=x_{4}(s), s \in J$, be the equations of the curve C which is parametrized by are length and whose domain of definition J is an open interval of the set R of real numbers. Then we see that for each fixed $s \in J$, the intersection $U(s)$ of S_{1}^{3} with the affine plane passing through ($0,0, x_{3}(s), x_{4}(s)$) and parallel to the plane generated by e_{1} and e_{2} is a circle (resp. a hyperbola, resp. a parabola) in the spherical
case (resp. hyperbolic case, resp. parabolic case), and we may give the following parametrization of the surface M (see [4]):

$$
\begin{align*}
& f(s, t)=x_{1}(s) \cos t e_{1}+x_{1}(s) \sin t e_{2}+x_{3}(s) e_{3}+x_{4}(s) e_{4}, \tag{3.1}\\
& s \in J, \quad t \in S^{1}, \text { the unit circle in } R^{2}, \quad \text { (spherical case), } \\
& f(s, t)=x_{1}(s) \cosh t e_{1}+x_{1}(s) \sinh t e_{2}+x_{3}(s) e_{3}+x_{4}(s) e_{4}, \tag{3.2}\\
& s \in J, \quad t \in R, \quad \text { (hyperbolic case), } \\
& f(s, t)=x_{1}(s) e_{1}+t x_{1}(s) e_{2}+\left(\frac{-1}{2} t^{2} x_{1}(s)+x_{3}(s)\right) e_{3}+x_{4}(s) e_{4}, \tag{3.3}\\
& s \in J, \quad t \in R, \quad \text { (parabolic case). }
\end{align*}
$$

From the parametrization, we see that the first fundamental form I of the C^{2}-mapping f is

$$
\begin{equation*}
I=d s^{2}+x_{1}(s)^{2} d t^{2} \quad \text { in each case }, \tag{3.4}
\end{equation*}
$$

and the following relations hold on J :

$$
\begin{align*}
& x_{1}^{2}+x_{3}^{2}-x_{4}^{2}=1, \quad x_{1}^{\prime 2}+x_{3}^{\prime 2}-x_{4}^{\prime 2}=1 \quad \text { (spherical case) } \tag{3.5}\\
& -x_{1}^{2}+x_{3}^{2}+x_{4}^{2}=1, \quad-x_{1}^{\prime 2}+x_{3}^{\prime 2}+x_{4}^{\prime 2}=1 \quad \text { (hyperbolic case) }, \tag{3.6}\\
& 2 x_{1} x_{3}+x_{4}^{2}=1, \quad 2 x_{1}^{\prime} x_{3}^{\prime}+x_{4}^{\prime 2}=1 \quad \text { (parabolic case) } \tag{3.7}
\end{align*}
$$

From (3.4)-(3.7) and the assumption that f is an immersion, we may assume that on the interval J,

$$
\begin{array}{ll}
x_{1}(s)>1 & \text { (spherical case) } \tag{3.8}\\
x_{1}(s)>0 & \text { (hyperbolic or parabolic case) } .
\end{array}
$$

It is convenient to use the notation $M_{\dot{\delta}}, \delta=1,0$ or -1 , to denote a rotational, space-like surface in S_{1}^{3}, where $\delta=1$ (resp. $\delta=0$, resp. $\delta=-1$) means M_{δ} is a spherical (resp. parabolic, resp. hyperbolic) surface. After a long calculation we can show the following result (cf. [3]).

Proposition 1. Let M_{δ} be a rotational, space-like surface in S_{1}^{3} defined by the mapping f. Then the directions of the parameters t and s are principal directions, the principal curvature along the coordinate t (resp.s) being given by $\left(x_{1}^{2}+x_{1}^{\prime 2}-\delta\right)^{1 / 2} / x_{1}\left(\right.$ resp. $\left.\left(x_{1}^{\prime \prime}+x_{1}\right) /\left(x_{1}^{2}+x_{1}^{\prime 2}-\delta\right)^{1 / 2}\right)$.
4. Rotational, space-like surfaces in S_{1}^{3} with constant mean curvature. From Proposition 1 and (3.8) it can be shown that the mapping f is an immersion with constant mean curvature h if and only if, on the interval J, the following relations hold.

$$
\begin{align*}
& x_{1} x_{1}^{\prime \prime}+x_{1}^{\prime 2}+2 x_{1}^{2}-\delta=2 h x_{1}\left(x_{1}^{2}+x_{1}^{\prime 2}-\delta\right)^{1 / 2}, \quad \text { in each case }, \tag{4.1}\\
& x_{1}^{2}+x_{1}^{\prime 2}-\delta>0, \quad \text { in each case }, \tag{4.2}
\end{align*}
$$

$$
\begin{gather*}
x_{3}=\left(x_{1}^{2}-1\right)^{1 / 2} \sinh \phi(s), \quad x_{4}=\left(x_{1}^{2}-1\right)^{1 / 2} \cosh \phi(s), \tag{4.3}\\
\\
\phi(s)=\int_{0}^{s}\left(x_{1}^{2}+x_{1}^{\prime 2}-1\right)^{1 / 2}\left(x_{1}^{2}-1\right)^{-1} d \sigma, \quad \text { and } \\
 \tag{4.4}\\
x_{1}>1, \quad(\text { spherical case }), \\
x_{3}= \\
\left(x_{1}^{2}+1\right)^{1 / 2} \cos \phi(s), \quad x_{4}=\left(x_{1}^{2}+1\right)^{1 / 2} \sin \phi(s), \\
\\
\phi(s)=\int_{0}^{s}\left(x_{1}^{2}+x_{1}^{\prime 2}+1\right)^{1 / 2}\left(x_{1}^{2}+1\right)^{-1} d \sigma, \text { and } \\
\\
x_{1}>0, \quad \text { (hyperbolic case) }
\end{gather*}
$$

$$
\begin{equation*}
x_{3}=\left(-x_{4}^{2}+1\right) / 2 x_{1}, \quad x_{4}=x_{1} \int_{0}^{s}\left(x_{1}^{2}+x_{1}^{\prime 2}\right)^{1 / 2} x_{1}^{-2} d \sigma, \quad \text { and } \tag{4.5}
\end{equation*}
$$

$$
x_{1}>0, \quad \text { (parabolic case) } .
$$

We now try to solve the equation (4.1) explicitly under the conditions (4.2) and

$$
\begin{array}{ll}
x_{1}>0 & \text { in cases } \delta=0,-1, \quad \text { and } \tag{4.6}\\
x_{1}>1 & \text { in case } \delta=1 .
\end{array}
$$

Defining $u(s)$ by

$$
\begin{equation*}
u(s)=x_{1}(s)^{2} / 2-\delta / 4 \tag{4.7}
\end{equation*}
$$

we can easily show (cf. [5]) that (4.1) with the conditions (4.2) and (4.6) is equivalent to

$$
\begin{equation*}
u^{\prime 2}=4\left(h^{2}-1\right) u^{2}-4 a h u+a^{2}+\delta^{2} / 4 \tag{4.8}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
-a+2 h u>0, \quad a: \text { constant } \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
u>\delta^{2} / 4 \quad \text { for each } \delta \tag{4.10}
\end{equation*}
$$

provided the subset of J, consisting of zero points of the first derivative of the solution $u(s)$ of (4.8), is discrete. This restriction, however, will turn out to be satisfied as we solve (4.8) explicitly. From that point on, our argument is almost the same as that in [5], and we only give an outline.

We first consider (4.8) in the case where $|h|>1$. There are three subcases: the constant $A:=a^{2}-\delta^{2}\left(h^{2}-1\right) / 4$ is positive, zero and negative. When A is positive after replacing the parameter s by the new one $s+c$ for a suitable constant c, we have an explicit form of the solution $u=$ $u(s)$ of (4.8):

$$
\begin{equation*}
u(s)=\left[a h+\left\{a^{2}-\delta^{2}\left(h^{2}-1\right) / 4\right\}^{1 / 2} \cosh 2\left(h^{2}-1\right)^{1 / 2} s\right] / 2\left(h^{2}-1\right) . \tag{4.11}
\end{equation*}
$$

From (4.11) it follows that J, the domain of definition of $u(s)$, can be extended to R, and we denote the extended function by the same symbol $u(s)$. Then we see that for the extended function $u(s)$, the conditions (4.9) and (4.10) are equivalent to

$$
\begin{equation*}
a>|\delta|\left(h^{2}-1\right)^{1 / 2} / 2 \quad \text { for } \quad h>1 \tag{4.12}
\end{equation*}
$$

and that there are no solutions with domain $J=R$ of (4.8) with (4.9) for $h<-1$.

Putting (4.11) with (4.12) into (4.7) with $x_{1}>0$ and (4.3), (4.4), (4.5) the functions $u(s), x_{1}(s), x_{3}(s), x_{4}(s)$ and $\phi(s)$ are determined in the following form.
(i) (Spherical case). For $h>1$ and $a>\left(h^{2}-1\right)^{1 / 2} / 2$ we have

$$
\begin{gather*}
u(s)=\left[a h+\left\{a^{2}-\left(h^{2}-1\right) / 4\right\}^{1 / 2} \cosh 2\left(h^{2}-1\right)^{1 / 2} s\right] / 2\left(h^{2}-1\right), \tag{4.13}\\
\phi(s)=\int_{0}^{s}\left[4 u(\sigma)^{2}+u^{\prime}(\sigma)^{2}-1 / 4\right]^{1 / 2}(2 u(\sigma)-1 / 2)^{-1}(2 u(\sigma)+1 / 2)^{-1 / 2} d \sigma, \tag{4.14}\\
x_{1}(s)=(2 u(s)+1 / 2)^{1 / 2}, \tag{4.15}\\
x_{3}(s)=(2 u(s)-1 / 2)^{1 / 2} \sinh \phi(s), \tag{4.16}\\
x_{4}(s)=(2 u(s)-1 / 2)^{1 / 2} \cosh \phi(s) . \tag{4.17}
\end{gather*}
$$

(ii) (Hyperbolic case). For $h>1$ and $a>\left(h^{2}-1\right)^{1 / 2} / 2$ we have $u(s)$ as in (i) and

$$
\begin{align*}
& \phi(s)=\int_{0}^{s}\left[4 u(\sigma)^{2}+u^{\prime}(\sigma)^{2}-1 / 4\right]^{1 / 2}(2 u(\sigma)+1 / 2)^{-1}(2 u(\sigma)-1 / 2)^{1 / 2} d \sigma, \tag{4.18}\\
& x_{1}(s)=(2 u(s)-1 / 2)^{1 / 2} \tag{4.19}\\
& x_{3}(s)=(2 u(s)+1 / 2)^{1 / 2} \cos \phi(s) \tag{4.20}\\
& x_{4}(s)=(2 u(s)+1 / 2)^{1 / 2} \sin \phi(s) . \tag{4.21}
\end{align*}
$$

(iii) (Parabolic case). For $h>1$ and $a>0$ we have

$$
\begin{align*}
& u(s)=\left[a h+a \cosh 2\left(h^{2}-1\right)^{1 / 2} s\right] / 2\left(h^{2}-1\right) \tag{4.22}\\
& x_{1}(s)=(2 u(s))^{1 / 2} \tag{4.23}\\
& x_{4}(s)=x_{1}(s) \int_{0}^{s}\left[x_{1}(\sigma)^{2}+x_{1}^{\prime}(\sigma)^{2}\right]^{1 / 2} / x_{1}(\sigma)^{2} d \sigma \tag{4.24}\\
& x_{3}(s)=\left(-x_{4}(s)^{2}+1\right) / 2 x_{1}(s) \tag{4.25}
\end{align*}
$$

When $A=0$, after replacing the parameter s by the new one $s+c$, for a suitable constant c, we have an explicit solution $u=u(s)$ of (4.8) with the maximal domain of definition (i.e., $J=R$ in this case):

$$
\begin{equation*}
u(s)=\exp \left(2\left(h^{2}-1\right)^{1 / 2} s\right)+h \delta^{2} / 4\left(h^{2}-1\right)^{1 / 2} \quad \text { for } \quad h>1 \tag{4.26}
\end{equation*}
$$

which satisfies the conditions (4.9) and (4.10) automatically, and there are no solutions with maximal domain satisfying (4.9) and (4.10) for $h<-1$. Just as in the case where A is positive, we can also define the functions $x_{1}(s), x_{3}(s)$ and $x_{4}(s)$ explicitly corresponding to the cases $\delta=1,0$ and -1 .

When A is negative, it can be shown that there are no solutions of (4.8) with maximal domain satisfying (4.9) and (4.10).

Next, we consider (4.8) in the case where $|h|=1$. There are two subcases: $a \neq 0$ and $a=0$. When $a=0$, after replacing the parameter s by the new one $s+c$ for a suitable constant c, we have an explicit form of the solution $u=u(s)$ of (4.8):

$$
\begin{equation*}
u(s)= \pm \delta s / 2+b, \quad b: \text { constant } \tag{4.27}
\end{equation*}
$$

From (4.27) it follows that J, the domain of definition of $u(s)$, can be extended to R, and we denote the extended function by the same symbol $u(s)$. Then we see that for the extended function $u(s)$, the conditions (4.9) and (4.10) are equivalent to

$$
\begin{equation*}
u(s)=b, \quad b: \text { a positive constant, for } \delta=0, h=1, \tag{4.28}
\end{equation*}
$$

and that there are no solutions with maximal domain satisfying (4.9) and (4.10) for $h=-1$, or $\delta= \pm 1$. When $a \neq 0$ it can be easily shown that there are no solutions with maximal domain of (4.8) satisfying (4.9) and (4.10).

Finally, we consider (4.8) in the case where $|h|<1$. In this case we see that there are no solutions with maximal domain of (4.8) satisfying (4.9) and (4.10).

Reversing the above argument and taking the completeness into consideration we see that our main results in Section 2 are true.

References

[1] K. Akutagawa, On space-like hypersurfaces with constant mean curvature in the de Sitter space, preprint.
[2] B. Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.
[3] M. do Carmo and M. Dajczer, Rotational hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc., 277 (1983), 685-709.
[4] H. Mori, Minimal surfaces of revolution in H^{3} and their global stability, Indiana Univ. Math. J., 30 (1981), 787-794.
[5] H. Mori, Stable complete constant mean curvature surfaces in R^{3} and H^{3}, Trans. Amer. Math. Soc., 278 (1983), 671-687.
[7] J.A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
Department of Mathematics
Faculty of Education
Toyama University
Toyama-SHI, 930
Japan

