Tôhoku Math. Journ. 38 (1986), 297-311.

SUBMANIFOLDS WITH PROPER *d*-PLANAR GEODESICS IMMERSED IN COMPLEX PROJECTIVE SPACES

JIN SUK PAK* AND KUNIO SAKAMOTO

(Received May 30, 1985)

Recently, several authors studied submaifolds with Introduction. "simple" geodesics immersed in space forms. For example, planar geodesic immersions were studied in [6], [8], [13], [14], geodesic normal sections in [3] and helical immersions in [15]. In [9], Nakagawa also introduced a notion of cubic geodesic immersions. Let M and \dot{M} be connected complete Riemannian manifolds of dimensions n and n + p, respectively. An isometric immersion ι of M into M is called a d-planar geodesic immersion if each geodesic in M is mapped locally under ι into a d-dimensional totally geodesic submanifold of \hat{M} . In particular, if a 3-planar geodesic immersion is isotropic, then it is called a *cubic geodesic immersion*. In this paper, we study a proper d-planar geodesic Kählerian immersion $\iota: M \to CP^{m}(c)$ of a Kähler manifold M into a complex projective space $CP^{m}(c)$ of constant holomorphic sectional curvature c and proper cubic geodesic totally real immersion $\iota: M \to CP^{m}(c)$ of a Riemannian manifold M, where "proper" means that the image of each geodesic in M is not (d-1)-planar. Here and elsewhere, m in N^m denotes the complex dimension, if N is a complex manifold.

In a complex projective space $CP^{m}(c)$ of complex dimension m, an odd-dimensional totally geodesic submanifold is a totally real submanifold $RP^{l}(c/4)$ of constant sectional curvature c/4. In §2 we show that if $c: M^{n} \to CP^{m}(c)$ is a proper *d*-planar geodesic Kählerian immersion of a Kähler manifold M^{n} and d is odd, then $M^{n} = CP^{n}(c/d)$ and ι is equivalent to the *d*-th Veronese map. Here we recall the definition of *k*-th Veronese map $(k = 1, 2, \cdots)$. This is a Kähler imbedding $CP^{n}(c/k) \to CP^{m'}(c)$ given by

$$[z_i]_{0\leq i\leq n}\mapsto \left[\left(\frac{k!}{k_0!\cdots k_n!}\right)^{1/2}z_0^{k_0}\cdots z_n^{k_n}\right]_{k_0+\cdots+k_n=k},$$

where [*] means the point of the projective space with the homogeneous coordinates * and $m' = \binom{n+k}{k} - 1$. More generally, we prove that if

^{*} Work done under partial support by Association of International Education, Japan.

the image of each geodesic in M^n is locally properly contained in a *d*-dimensional totally real totally geodesic submanifold, then $M^n = CP^n(c/d)$ and *t* is equivalent to the *d*-th Veronese map. This result is a geometric characterization of the Veronese map.

In §3, we consider a proper cubic geodesic totally real immersion $\iota: M^n \to CP^m(c)$ of a Riemannian manifold M^n of dimension n. We shall prove that $\iota(M^n)$ is contained in a totally real submanifold $RP^{n+q}(c/4)$ and apply Nakagawa's theorem:

THEOREM N. For $n \geq 3$, let M be an n-dimensional compact simply connected Riemannian manifold and ι a proper cubic geodesic immersion of M into an (n + p)-dimensional sphere $S^{n+p}(c)$, where $p \geq 2$. If ι is minimal, then $M = S^n(nc/3(n + 2))$ and ι is equivalent to the immersion $\iota_0 \circ \iota_3$ of S^n into S^{n+p} , where ι_0 is a totally geodesic immersion of $S^{N(3)}(c)$ into S^{n+p} , N(3) + 1 is the multiplicity of the third eigenvalue of the Laplace operator of S^n and ι_3 is the third standard minimal immersion of S^n into $S^{N(3)}(c)$.

Here we recall the definition of the k-th standard minimal immersion of S^n into S^{n+p} (cf. [4]). Let $H^{k,n}$ be the eigenspace of the k-th eigenvalue of the Laplace operator on S^n , where dim $H^{k,n} = (n + 2k - 1)(n + k - 2)!/k!(n - 1)! =: N(k) + 1$. For an orthonormal basis $\{f_1, \dots, f_{N(k)+1}\}$ of $H^{k,n}$, an immersion c_k of S^n into an (N(k) + 1)-dimensional Euclidean space $E^{N(k)+1}$ defined by $c_k(x) = (f_1(x), \dots, f_{N(k)+1}(x))/(N(k) + 1)^{1/2}$ is a minimal isometric immersion into the unit hypersphere $S^{N(k)}(1)$ in $E^{N(k)+1}$ and $c_k(S^n)$ is not contained in any great sphere of $S^{N(k)}$ (i.e., full). If $k \leq 3$, then c_k is rigid (cf. [23]). The immersion c_k is called a k-th standard minimal immersion.

The authors wish to express their gratitude to Professor S. Ishihara for his constant encouragement.

1. Preliminaries. Let M and \tilde{M} be connected Riemannian manifolds and $\iota: M \to \tilde{M}$ an isometric immersion. We denote by $\tilde{\nabla}$ the covariant differentiation with respect to the Riemannian metric of \tilde{M} . Then we may write

(1.1)
$$\widetilde{\nabla}_{X} Y = \nabla_{X} Y + H(X, Y)$$

for arbitrary tangent vector fields X and Y on M, where $\nabla_X Y$ and H(X, Y)denote the components of $\widetilde{\nabla}_X Y$ tangent and normal to M, respectively. Then ∇ becomes the covariant differentiation of the Riemannian manifold M. The symmetric bilinear form H valued in the normal bundle is called the second fundamental form of the immersion ι . For a normal vector

field C on a neighborhood of $P \in M$, we write

(1.2)
$$\widetilde{
abla}_x C = -A_c X +
abla_x^{\perp} C$$
 ,

 $-A_c X$ and $\nabla_{\overline{x}}^{\perp} C$ being the components of $\widetilde{\nabla}_x C$ tangent and normal to M, respectively, where ∇^{\perp} is the covariant differentiation with respect to the induced connection in the normal bundle $T^{\perp}M$ which will be called the *normal connection*. Denoting by \langle , \rangle the inner product with respect to the Riemannian metric of \widetilde{M} , we find that A_c and H are related by $\langle A_c X, Y \rangle = \langle H(X, Y), C \rangle$ for any vectors X, Y tangent to M. Thus A_c is a symmetric linear transformation of $T_p M$.

Let the ambient manifold \widetilde{M} be a complete, simply connected complex space form with constant holomorphic sectional curvature c. Thus \widetilde{M} is a complex projective space $\mathbb{CP}^{m}(c)$. If we denote by \widetilde{J} the complex structure, the Riemannian curvature tensor \widetilde{R} of $\mathbb{CP}^{m}(c)$ is of the form

$$(1.3) \qquad \widetilde{R}(\widetilde{X}, \ \widetilde{Y})\widetilde{Z} = (c/4)\{\langle \widetilde{Y}, \widetilde{Z} \rangle \widetilde{X} - \langle \widetilde{X}, \widetilde{Z} \rangle \widetilde{Y} + \langle \widetilde{J}\widetilde{Y}, \widetilde{Z} \rangle \widetilde{J}\widetilde{X} \\ - \langle \widetilde{J}\widetilde{X}, \ \widetilde{Z} \rangle \widetilde{J}\widetilde{Y} - 2\langle \widetilde{J}\widetilde{X}, \ \widetilde{Y} \rangle \widetilde{J}\widetilde{Z}\}$$

for all vectors \widetilde{X} , \widetilde{Y} , \widetilde{Z} tangent to $CP^{m}(c)$.

We denote by Proj_{TM} and $\operatorname{Proj}_{T^{\perp}M}$ the projections of $T_{P}\widetilde{M}$ to the tangent space $T_{P}M$ and the normal space $T_{P}^{\perp}M$, respectively and put $J = \operatorname{Proj}_{TM} \circ \widetilde{J} \mid TM$, $J_{N} = \operatorname{Proj}_{T^{\perp}M} \circ \widetilde{J} \mid TM$, $J_{T} = \operatorname{Proj}_{TM} \circ \widetilde{J} \mid T^{\perp}M$ and $J^{\perp} = \operatorname{Proj}_{T^{\perp}M} \circ \widetilde{J} \mid T^{\perp}M$. Then we can write

(1.4)
$$\widetilde{J}X = JX + J_N X$$
, $\widetilde{J}C = J_T C + J^{\perp} C$

for every tangent vector X and normal vector C of M. Taking account of $\tilde{J}^2 = -I$, we find that these tensors satisfy

(1.5)
$$J^{2} + J_{T}J_{N} = -I, \qquad J_{N}J + J^{\perp}J_{N} = 0, J^{\perp 2} + J_{N}J_{T} = -I, \qquad JJ_{T} + J_{T}J^{\perp} = 0,$$

I being the identity transformation, and also we have

(1.6)
$$\langle J_N X, C \rangle = -\langle X, J_T C \rangle$$

with the help of $\langle \widetilde{J}\widetilde{X},\ \widetilde{Y}
angle = -\langle \widetilde{X},\,\widetilde{J}\,\widetilde{Y}
angle.$

Differentiating covariantly the left hand side of (1.4), and using $\widetilde{\nabla}\widetilde{J}=0$ and (1.4) itself, we can easily see that

(1.7)

$$(D_{X}J)Y = A_{J_{N}Y}X + J_{T}H(Y, X) ,$$

$$(D_{X}J_{N})Y = J^{\perp}H(Y, X) - H(JY, X),$$

$$(D_{X}J_{T})C = A_{J^{\perp}C}X - JA_{C}X ,$$

$$(D_{X}J^{\perp})C = -J_{N}A_{C}X - H(X, J_{T}C) ,$$

where D denotes the van der Waerden-Bortolotti covariant differentiation.

Let us denote the curvature tensors of the connections ∇ and ∇^{\perp} by R and R^{\perp} , respectively. Then, using (1.3), we find that the structure equations of Gauss, Codazzi and Ricci are respectively given by

(1.8)
$$R(X, Y)Z = (c/4)\{\langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle JY, Z \rangle JX - \langle JX, Z \rangle JY - 2\langle JX, Y \rangle JZ\} + A_{H(Y,Z)}X - A_{H(X,Z)}Y,$$

(1.9)
$$(D_XH)(Y,Z) - (D_YH)(X,Z)$$

= $(c/4)\{\langle JY, Z \rangle J_NX - \langle JX, Z \rangle J_NY - 2\langle JX, Y \rangle J_NZ\},$

(1.10)
$$\begin{aligned} R^{\perp}(X, Y)C &= (c/4)\{\langle J_NY, C\rangle J_NX - \langle J_NX, C\rangle J_NY - 2\langle JX, Y\rangle J^{\perp}C\} \\ &+ H(X, A_cY) - H(A_cX, Y) \end{aligned}$$

where $(D_xH)(Y, Z) = \nabla_x^{\perp}(H(Y, Z)) - H(\nabla_x Y, Z) - H(Y, \nabla_x Z)$. Therefore, if the submanifold M is complex or totally real, that is, $J_N = 0$ or J = 0, then

(1.11)
$$(D_{x}H)(Y, Z) - (D_{y}H)(X, Z) = 0$$

because of (1.9). Conversely, if (1.11) is verified at every point of M, then M is complex or totally real. Thus 3-dimensional complete totally geodesic submanifolds in $\mathbb{CP}^{m}(c)$ are $\mathbb{R}P^{\mathfrak{d}}(c/4)$.

Sometimes we denote $(D_xH)(Y, Z)$ by (DH)(X, Y, Z). It is clear that DH is a normal bundle-valued tensor field of type (0, 3). For $k \ge 1$, the k-th covariant derivative of H is defined by

(1.12)
$$(D^{k}H)(X_{1}, X_{2}, \cdots, X_{k+2}) = \nabla_{X_{1}}^{\perp}((D^{k-1}H)(X_{2}, \cdots, X_{k+2})) \\ - \sum_{i=2}^{k+2} (D^{k-1}H)(X_{2}, \cdots, \nabla_{X_{1}}X_{i}, \cdots, X_{k+2}) ,$$

where $D^{\circ}H = H$. It is clear that $D^{k}H$ is a normal bundle-valued tensor field of type (0, k + 2). By direct computation we have

$$(1.13) \qquad (D^{k}H)(X_{1}, X_{2}, X_{3}, \cdots, X_{k+2}) - (D^{k}H)(X_{2}, X_{1}, X_{3}, \cdots, X_{k+2}) \\ = R^{\perp}(X_{1}, X_{2})((D^{k-2}H)(X_{3}, \cdots, X_{k+2})) \\ - \sum_{i=3}^{k+2} (D^{k-2}H)(X_{3}, \cdots, R(X_{1}, X_{2})X_{i}, \cdots, X_{k+2})$$

for $k \geq 2$.

As for the second fundamental form H, if

(1.14)
$$|| H(X, X) ||^2 = \lambda^2$$

for every unit vector X tangent to M, then the immersion ϵ is said to be *isotropic* (or λ -*isotropic*). The immersion ϵ is isotropic if and only if (1.15) $\langle H(X, X), H(X, Y) \rangle = 0$

for any orthonormal vectors X and Y at every point. The condition is equivalent to

$$(1.16) \qquad \mathfrak{S}_{\mathfrak{z}}\langle H(X_{\mathfrak{l}}, X_{\mathfrak{z}}), H(X_{\mathfrak{z}}, Y)\rangle = \lambda^{2} \mathfrak{S}_{\mathfrak{z}}\langle X_{\mathfrak{l}}, X_{\mathfrak{z}}\rangle \langle X_{\mathfrak{z}}, Y\rangle,$$

where X_i (i = 1, 2, 3) and Y are unit vectors and \mathfrak{S}_3 denotes the cyclic sum with respect to vectors X_1, X_2, X_3 .

2. *d*-planar geodesic Kähler immersions. Let $\iota: M^n \to CP^m(c)$ be a Kähler immersion of a connected complete Kähler manifold M^n into $CP^m(c)$. We first prove:

PROPOSITION 2.1. Suppose that for each geodesic $\gamma \colon \mathbf{R} \to M^n$ and each $s \in \mathbf{R}$, there exist an open interval I_s ($\ni s$) and a totally real totally geodesic submanifold P_s of $\mathbb{CP}^m(c)$ such that $\iota(\gamma(I_s)) \subset P_s$. Then M^n is a compact simply connected Hermitian symmetric space.

PROOF. Let $x \in M^n$ be any point and X any unit tangent vector at x of M^n . Let γ be the unit speed geodesic satisfying $\gamma(0) = x$ and $\dot{\gamma}(0) = X$. Since P_0 is totally geodesic, we see that $\dot{\tau}$, $\tilde{\nabla}_t \dot{\tau}$ and $\tilde{\nabla}_t^2 \dot{\tau}$ is tangent to P_0 on I_0 , where $\tau = \iota \circ \gamma$. Since γ is geodesic, we have

$$\dot{ au}(0) = X$$
,
 $(\widetilde{
abla}_{ec{ au}}\dot{ au})(0) = H(X, X)$,
 $(\widetilde{
abla}_{ec{ au}}^2\dot{ au})(0) = -A_{H(X, X)}X + (DH)(X, X, X)$.

From the assumption that P_0 is totally real, we find

(2.1) $\langle \widetilde{J}H(X, X), (DH)(X, X, X) \rangle = 0$.

Now we have $J_N = 0$ and $J_T = 0$, since ι is a Kähler immersion. It follows from (1.7) that

$$(2.2) H(JY, X) = J^{\perp}H(Y, X), H(JY, JX) = -H(Y, X)$$

for every $X, Y \in T_x M$. Moreover, Codazzi's equation (1.11) and (2.2) imply that

(2.3)
$$(DH)(JZ, Y, X) = J^{\perp}(DH)(Z, Y, X)$$

for every Z, Y, $X \in T_x M$. Equation (2.1) holds for every $X \in T_x M$. Replacing X by JX in (2.1) and using (2.2) and (2.3), we thus have

(2.4)
$$\langle H(X, X), (DH)(X, X, X) \rangle = 0$$

for every $X \in T_x M$. Let X and Y be orthonormal tangent vectors. Let $X(\theta) = \cos \theta X + \sin \theta Y$. Differentiating $\langle H(X(\theta), X(\theta)), (DH)(X(\theta), X(\theta), X(\theta)) \rangle = 0$ at $\theta = 0$, we see that

 $2\langle H(X, Y), (DH)(X, X, X)\rangle + 3\langle H(X, X), (DH)(X, X, Y)\rangle = 0.$

This equation holds for all $X, Y \in T_xM$ in virtue of (2.4). Replacing X by JX in the above equation, we have

 $-2\langle H(X, Y), (DH)(X, X, X)\rangle + 3\langle H(X, X), (DH)(X, X, Y)\rangle = 0,$

and hence

(2.5)
$$\langle H(X, Y), (DH)(X, X, X) \rangle = 0$$

for every $X, Y \in T_x M$. Symmetrize (2.5) with respect to X. Then for every X, Y, Z,

 $\langle H(Z, Y), (DH)(X, X, X) \rangle + 3 \langle H(X, Y), (DH)(X, X, Z) \rangle = 0$.

Replacing Z and Y by JZ, JY respectively, we see from (2.2) that

 $\langle H(Z, Y), (DH)(X, X, X) \rangle = 0$

for every X, Y, $Z \in T_x M$. By virtue of (1.11), we obtain

 $\langle H(X, Y), (DH)(Z, U, V) \rangle = 0$

for every X, Y, Z, U, $V \in T_x M$, which shows that M^n is locally symmetric because of the Gauss equation (1.8). In [22, Theorem 2.1 and its Corollary], Takeuchi showed that if a complete locally homogeneous Kähler manifold admits a Kähler immersion into $CP^m(c)$, then it is a compact simply connected homogeneous Kähler manifold. Using this result, we have the assertion. q.e.d.

Let \widetilde{M} be a Riemannian manifold. A curve $\tau: I \to \widetilde{M}$ is said to be *d*-planar if there exist an open interval I_s ($s \in I_s \subset I$) and a *d*-dimensional totally geodesic submanifold P_s for each $s \in I$ such that $\tau(I_s) \subset P_s$. An isometric immersion $\iota: M \to \widetilde{M}$ is called a *d*-planar geodesic immersion if $\tau = \iota \circ \gamma$ is *d*-planar for each geodesics γ of M.

COROLLARY. Let $c: M^n \to CP^m(c)$ be a d-planar geodesic Kähler immersion of a Kähler manifold M^n into $CP^m(c)$. If d is odd, then M^n is a compact simply connected Hermitian symmetric space.

PROOF. The assertion follows from the fact that an odd-dimensional totally geodesic submanifold in $CP^{m}(c)$ is totally real. q.e.d.

Secondly, we shall characterize the *d*-th Veronese map by the shape of geodesics in the ambient space. Let M be an irreducible symmetric Kähler manifold of compact type and d a positive integer. In [10], Nakagawa and Takagi constructed a full equivariant Kähler imbedding $f_d: M \to CP^m(c)$ which is called the *d*-th full Kähler imbedding of M.

SUBMANIFOLDS WITH PROPER d-planar geodesics

Moreover Takagi and Takeuchi [20] constructed a full Kähler imbedding of a (not necessarily irreducible) symmetric Kähler manifold of compact type into a complex projective space as follows. Segre imbedding $S_2: CP^{m_1}(c) \times CP^{m_2}(c) \to CP^m(c)$ $(m = (m_1 + 1)(m_2 + 1) - 1)$ is defined by the tensor product of the homogeneous coordinates:

$$[z_i]_{0 \leq i \leq m_1} \times [w_j]_{0 \leq j \leq m_2} \mapsto [z_i w_j]_{0 \leq i \leq m_1, 0 \leq j \leq m_2} .$$

Similarly, we can define a full Kähler imbedding $S_q: CP^{m_1}(c) \times \cdots \times CP^{m_q}(c) \to CP^m(c)$ $(m = (m_1 + 1) \times \cdots \times (m_q + 1) - 1)$ by the multifold tensor product of the homogeneous coordinates. Let M be a compact symmetric Kähler manifold and M_k $(k = 1, \dots, q)$ its irreducible components, i.e., $M = M_1 \times \cdots \times M_q$. Let $f_{d_k}: M_k \to CP^{m_k}(c)$ be the d_k -th full Kähler imbedding of M_k . Then the tensor product $f_{d_1} \boxtimes \cdots \boxtimes f_{d_q}: M \to CP^m(c)$ $(m = \prod_{k=1}^q (m_k + 1) - 1)$ of f_{d_k} $(k = 1, \dots, q)$ is defined as $S_q \circ (f_{d_1} \times \cdots \times f_{d_q})$. This is a full equivariant Kähler imbedding. In [10] and [22], it was shown that any full Kähler immersion into $CP^m(c)$ of a symmetric Kähler manifold of compact type is obtained in this way (cf. [22, Corollary 2, p. 177]). In particular, we note that if $M = CP^n(c/d)$, then the d-th full Kähler imbedding is the d-th Veronese map whose defining equation is given in the introduction.

A d-planar curve τ in \widetilde{M} is said to be proper d-planar if τ is not (d-1)-planar. A d-planar geodesic immersion $\iota: M \to \widetilde{M}$ is said to be proper if $\tau = \iota \circ \gamma$ is proper d-planar for each geodesic γ of M.

LEMMA 2.2. The d-th Veronese map $V_d^n: \mathbb{CP}^n(c/d) \to \mathbb{CP}^{m'}(c)$ is proper d-planar geodesic.

PROOF. Since the map V_d^n is equivariant and there exists an isometry of $CP^n(c/d)$ which maps γ_1 to γ_2 for any two geodesics γ_1 and γ_2 of $CP^n(c/d)$, we have only to consider the geodesic γ :

$$\gamma(t) = [\cos t, \sin t, 0, \cdots, 0]$$

in homogeneous coordinates of $CP^n(c/d)$, where t is a parameter proportional to the arc-length parameter. By the d-th Veronese map V_d^n , γ is mapped to the curve

in homogeneous coordinates of $CP^{m'}(c)$. Thus τ is contained in the totally real totally geodesic submanifold $\mathbb{R}P^d(c/4) = \{[z_i] \in CP^{m'}(c); z_i \in \mathbb{R} \text{ for } 0 \leq i \leq d, z_i = 0 \text{ for } d+1 \leq i \leq m'\}$. The intersection of two totally geodesic

submanifolds in $CP^{m'}(c)$ is totally geodesic. Thus τ is proper *d*-planar, since $\sum a_k \alpha_k(t) \equiv 0$. $a_k \in \mathbf{R}$ easily implies $a_k = 0$ $(k = 0, 1, \dots, d)$. q.e.d.

THEOREM 2.3. Let $\varepsilon: M^n \to CP^m(c)$ be a proper d-planar geodesic Kähler immersion of a complete Kähler manifold M^n into $CP^m(c)$. Suppose that for each γ and s, we can take P_s in the definition of d-planar geodesic immersions to be a totally real totally geodesic submanifold. Then $M^n = CP^n(c/d)$ and ε is equivalent to $i \circ V_d^n$ where $i: CP^{m'}(c) \to CP^m(c)$ is a totally geodesic imbedding.

PROOF. By Proposition 2.1, we see that M^n is a symmetric Kähler manifold of compact type. We shall prove that M^n is of rank one and apply [22, Corollary, p. 203] (cf. [2], [11]). Assume that the rank r of M^n is greater than 2. Let M_k $(k = 1, \dots, q)$ be the irreducible components of M^n and r_k the rank of M_k , where $r = r_1 + \dots + r_q \ge 2$. It is known that there is a totally geodesic Kähler immersion

$$\phi \colon (CP^{\scriptscriptstyle 1}(c/d_{\scriptscriptstyle 1}))^{r_1} imes \cdots imes (CP^{\scriptscriptstyle 1}(c/d_{\scriptscriptstyle g}))^{r_q} o M^{\,n}$$
 ,

where d_1, \dots, d_q are certain positive integers (see [20, the proof of Theorem 2, p. 515]). Since $r \ge 2$, we thus have a totally geodesic Kähler immersion

$$\psi \colon CP^{_1}(c/a) imes CP^{_1}(c/b) o M^{_n}$$
 , $a, b \in Z_+$.

The composite $\iota \circ \psi$ is equivalent to $\tilde{i} \circ (V_a^1 \boxtimes V_b^1)$: $CP^1(c/a) \times CP^1(c/b) \rightarrow CP^m(c)$, where \tilde{i} : $CP^{ab+a+b}(c) \rightarrow CP^m(c)$ is a totally geodesic imbedding. Let γ_1 (resp. γ_2) be a geodesic of $CP^1(c/a)$ (resp. $CP^1(c/b)$). Then $\psi \circ \gamma_j$ (j = 1, 2) is a geodesic in M^n . By Lemma 2.2, $\iota \circ \psi \circ \gamma_1$ (resp. $\iota \circ \psi \circ \gamma_2$) is proper *a*-planar (resp. *b*-planar). Thus the assumption implies that a = b = d. Hence we have only to prove that

$$V_d^1 \boxtimes V_d^1: CP^1(c/d) \times CP^1(c/d) \to CP^{d(d+2)}(c)$$

is not proper d-planar. Consider the geodesic γ in $CP^{1}(c/d) \times CP^{1}(c/d)$ defined by

$$\gamma(t) = [\cos t, \sin t] \times [\cos t, \sin t]$$

in homogeneous coordinates, where t is a parameter proportional to the arc-length parameter. The curve $\tau = (V_d^1 \boxtimes V_d^1) \circ \gamma$ in $CP^{d(d+2)}(c)$ is given by

$$au(t) = [lpha_{{\scriptscriptstyle k}}(t) lpha_{{\scriptscriptstyle l}}(t)]_{{\scriptscriptstyle 0} \leq {\scriptscriptstyle k} \leq {\scriptscriptstyle d}, {\scriptscriptstyle 0} \leq {\scriptscriptstyle l} \leq {\scriptscriptstyle d}}$$
 ,

where $\alpha_k(t)$ is as defined in the proof of Lemma 2.2. This curve is contained in $\mathbb{R}P^{d(d+2)}(c/4) = \{[v_{kl}] \in \mathbb{C}P^{d(d+2)}(c); v_{kl} \in \mathbb{R} \text{ for } 0 \leq k, l \leq d\}$. We easily see that functions $\alpha_0(t)\alpha_0(t), \alpha_0(t)\alpha_1(t), \cdots, \alpha_0(t)\alpha_d(t), \alpha_1(t)\alpha_d(t), \cdots, \alpha_d(t)\alpha_d(t)$ are linearly independent over \mathbb{R} . Suppose that there exists a

(d-1)-dimensional totally geodesic submanifold P such that $\tau(I) \subset P$, for some open interval. Then $\tau(I)$ is contained in $\mathbb{R}P^{d(d+2)}(c/4) \cap P$ which is a totally real totally geodesic submanifold of dimension not greater than d-1. Thus the dimension of the vector space spanned by functions $\alpha_k \alpha_l$ $(0 \leq k, l \leq d)$ is not greater than d. We thus have a contradiction $2d+1 \leq d$.

COROLLARY. Let $\iota: M^n \to CP^m(c)$ be a proper d-planar geodesic Kähler immersion of a complete Kähler manifold M^n into $CP^m(c)$. If d is odd, then $M^n = CP^n(c/d)$ and ι is equivalent to $i \circ V_d^n$.

3. Cubic geodesic totally real immersions. Let $\iota: M \to CP^{m}(c)$ be a cubic geodesic immersion of a Riemannian manifold M into $CP^{m}(c)$, where dim $M \geq 3$. Let $x \in M$, X be a unit vector tangent to M at x and γ the unit speed geodesic such that $\gamma(0) = x$, $\dot{\gamma}(0) = X$. There exists a totally real, totally geodesic submanifold P_0 of dimension 3 such that $\tau(I_0) \subset P_0$ for some open interval I_0 containing 0, where $\tau = \iota \circ \gamma$. We now assume that the isotropy $\lambda(x)$ at x is positive and hence $\lambda > 0$ on a neighborhood of x. We take I_0 small enough if necessary and put $\tau_1 = \dot{\tau}$ and $\tau_2 = H(\tau_1, \tau_1)/\lambda$. Noting that $\widetilde{\nabla}_{\tau_1}\tau_1 = H(\tau_1, \tau_1)$, we see that τ_2 is tangent to P_0 . Then $C := \widetilde{\nabla}_{\tau_1}\tau_2$ is orthogonal to τ_1 , τ_2 and tangent to P_0 . Using (1.2), we have

$$\lambda C = -\lambda' au_2 - A_{H(au_1, au_1)} au_1 + (DH)(au_1, au_1, au_1) + \lambda^2 au_1$$
 ,

where $\lambda' = d\lambda(\gamma(s))/ds$, from which

(3.1) $(DH)(\tau_1, \tau_1, \tau_1) = \lambda' \tau_2 + \lambda C$

because of (1.15). The above equation shows that C is normal to M. Covariantly differentiating (3.1) in the direction τ_1 , we have

$$(3.2) \quad (D^2H)(\tau_1, \tau_1, \tau_1, \tau_1) = A_{(DH)(\tau_1, \tau_1, \tau_1)}\tau_1 - \lambda\lambda'\tau_1 + \lambda''\tau_2 + 2\lambda'C + \lambda\nabla_{\tau_1}C.$$

Since τ_1 , τ_2 and C are mutually orthogonal, $\widetilde{\nabla}_{\tau_1}C$ is orthogonal to τ_1 . Suppose that $C(0) \neq 0$. If necessary, we choose I_0 so that $C(s) \neq 0$ for every $s \in I_0$. Put $\mu = ||C||$ and $\tau_3 = C/\mu$. Vector fields τ_1 , τ_2 and τ_3 are orthonormal and tangent to P_0 , Therefore, $\widetilde{\nabla}_{\tau_1}C$ is spanned by τ_2 and τ_3 which are normal to M. It follows from (3.2) that

(3.3)
$$\langle (DH)(X, X, X), H(X, Y) \rangle = 0$$

for every $Y \in T_x M$ orthogonal to X. If C(0) = 0, then (3.1) and (1.15) also imply (3.3).

LEMMA 3.1. The immersion ϵ is constant isotropic.

PROOF. Let $x \in M$, $Y \in T_xM$ with ||Y|| = 1 be arbitrarily fixed. Let

X be a unit tangent vector orthogonal to Y. We shall prove $Y \cdot \lambda^2 = 0$. If $\lambda(x) = 0$, then λ^2 attains the minimum at x and hence $Y \cdot \lambda^2 = 0$. Thus we may assume $\lambda(x) > 0$. Extend X and Y to orthonormal vector fields X^* and Y^* , respectively, on a neighborhood of x so that $\nabla X^* = \nabla Y^* = 0$ at x. We have

$$Y \cdot \lambda^2 = Y \cdot \langle H(X^*, X^*), H(X^*, X^*) \rangle = 2 \langle (DH)(Y, X, X), H(X, X) \rangle$$
.

Using (1.9), we obtain

$$Y \cdot \lambda^2 = 2 \langle (DH)(X, X, Y), H(X, X) \rangle - \frac{3}{2} c \langle JY, X \rangle \langle J_N X, H(X, X) \rangle$$

Since P_0 is totally real, we have $\langle JX, H(X, X) \rangle = 0$. Therefore,

$$Y \cdot \lambda^{2} = 2\langle (DH)(X, X, Y), H(X, X) \rangle$$

= 2{X \cdot \lambda H(X*, Y*), H(X*, X*)\rangle - \lambda H(X, Y), (DH)(X, X, X)\rangle}
= 0

by virtue of (1.15) and (3.3).

In the sequel, we assume that the cubic geodesic immersion $c: M \to CP^{m}(c)$ is proper and totally real. By means of Lemma 3.1, we may assume that $\lambda > 0$. We next prove that μ is a nonzero constant and independent of the choice of the geodesic γ . From (3.1), we have

(3.4)
$$||(DH)(X, X, X)||^2 = \lambda^2 \mu^2(X)$$
,

where μ is regarded as a non-negative function on the unit sphere bundle UM of M.

LEMMA 3.2. The function μ is constant on the unit tangent sphere U_xM for every $x \in M$.

PROOF. Let x be an arbitrary point. Suppose that there exists a vector $X_0 \in U_x M$ such that $\mu(X_0) > 0$. Put $S = \{X \in U_x M: \mu(X) > 0\}$, which is an open set in $U_x M$ because of the continuity of μ . For each $X \in S$, we consider the unit speed geodesic γ such that $\gamma(0) = x$ and $\dot{\gamma}(0) = X$. Taking Lemma 3.1 into account, we see that (3.3) holds for every X, $Y \in TM$ and hence $A_{(DH)(X,X,X)}X = 0$ for any $X \in TM$. From (3.2), we have $(D^2H)(\tau_1, \tau_1, \tau_1, \tau_1) = \lambda \widetilde{\nabla}_{\tau_1}C$. The right hand side is spanned by τ_2 and τ_3 . It follows that $(D^2H)(X, X, X)$ is spanned by H(X, X) and (DH)(X, X, X) for $X \in S$. Let Y be orthogonal to X. Differentiate

$$\langle (DH)(X^*, X^*, X^*), H(X^*, Y^*) \rangle = 0$$

in the direction X where X^* and Y^* are local vector fields used in the proof of Lemma 3.1. Then we have

306

q.e.d.

 $\langle (D^2H)(X, X, X, X), H(X, Y) \rangle + \langle (DH)(X, X, X), (DH)(X, X, Y) \rangle = 0 ,$

from which

(3.5)
$$\langle (DH)(X, X, X), (DH)(X, X, Y) \rangle = 0$$

in virtue of (1.15) and (3.3). This means that $||(DH)(X, X, X)||^2$ is constant on each connected component of S. Therefore, the component $(\ni X_0)$ of S is open and closed. We have proved μ is constant on $S = U_x M$. q.e.d.

By Lemma 3.2, we see that μ is a function defined on M. If $\mu(x) > 0$, then for each $X \in U_x M$

(3.6) $\mu(D^2H)(X, X, X, X) = (X \cdot \mu)(DH)(X, X, X) - \mu^3H(X, X)$

because of $(DH)(X, X, X) \perp H(X, X)$, $\langle (D^2H)(X, X, X, X), H(X, X) \rangle = -\lambda^2 \mu^2$ and $2\langle (D^2H)(X, X, X, X), (DH)(X, X, X) \rangle = \lambda^2 (X \cdot \mu^2)$.

LEMMA 3.3. μ is a nonzero constant.

PROOF. If μ vanishes identically on M, then the image τ of each geodesic γ is a circle in $P = \mathbb{R}P^{\mathfrak{s}}(c/4)$. Thus τ is contained in a totally geodesic submanifold $\mathbb{R}P^{\mathfrak{s}}(c/4)$ of $\mathbb{R}P^{\mathfrak{s}}(c/4)$. This contradicts the assumption that ι is proper cubic geodesic. Put $\widetilde{S} = \{x \in M: \mu(x) > 0\}$. Let $x \in \widetilde{S}$ and $Y \in U_x M$ be fixed. Let $X \in U_x M$ be orthogonal to Y. Then from (3.4), we have

 $\lambda^2(Y \cdot \mu^2) = 2\langle (D^2H)(Y, X, X, X), (DH)(X, X, X) \rangle$.

Making use of (1.10) and (1.13), we find

$$\begin{split} (D^2H)(Y, X, X, X) &- (D^2H)(X, X, X, Y) \\ &= R^{\perp}(Y, X)H(X, X) - 2H(R(Y, X)X, X) \\ &= \frac{c}{4} \{ \langle J_N X, H(X, X) \rangle J_N Y - \langle J_N Y, H(X, X) \rangle J_N X \\ &- 2 \langle J Y, X \rangle J^{\perp}H(X, X) \} + H(Y, A_{H(X,X)}X) - H(A_{H(X,X)}Y, X) \\ &- 2H(R(Y, X)X, X) . \end{split}$$

Using the fact that $\langle J_N X, H(X, X) \rangle = \langle J_N X, (DH)(X, X, X) \rangle = 0$, J = 0, $A_{H(X,X)}X = \lambda^2 X$ and (3.3) holds for every X, $Y \in U_x M$, we have

$$\lambda^2(Y \cdot \mu^2) = 2\langle (D^2H)(X, X, X, Y), (DH)(X, X, X) \rangle$$
.

Differentiate $\langle (DH)(X^*, X^*, X^*), (DH)(X^*, X^*, Y^*) \rangle = 0$ (cf. (3.5)) in the direction X. Then

$$\langle (D^{2}H)(X, X, X, X), (DH)(X, X, Y) \rangle$$

+ $\langle (DH)(X, X, X), (D^{2}H)(X, X, X, Y) \rangle = 0$.

Substitute (3.6) into the above equation and use Lemma 3.1 and (3.5). We obtain $Y \cdot \mu^2 = 0$. It follows that μ is a nonzero constant on each connected component of \tilde{S} . q.e.d.

Next we shall prove that there is a totally real, totally geodesic submanifold Q of $CP^{m}(c)$ such that $\iota(M) \subset Q$ and $\iota: M \to Q$ is full. In contrast with Erbacher [5], our proof is based on the situation that $\iota: M \to CP^{m}(c)$ is proper cubic geodesic, totally real immersion.

Since each geodesic is mapped locally into a 3-dimensional totally real, totally geodesic submanifold, the discussion up to this point yields

(3.7)
$$\langle \widetilde{J}X, H(X, X) \rangle = 0, \qquad \langle \widetilde{J}X, (DH)(X, X, X) \rangle = 0 \\ \langle \widetilde{J}H(X, X), (DH)(X, X, X) \rangle = 0.$$

for every $X \in TM$. Moreover we have, from (3.6) and Lemma 3.3,

$$(3.8) \qquad (D^2H)(X, X, X, X) = -\mu^2 H(X, X) \langle X, X \rangle$$

for every $X \in TM$. Let O_3 denote the third osculating space $Sp\{X, H(X, X), (DH)(X, X, X): X \in T_xM\}$ at a distinguished point x.

LEMMA 3.4. The third osculating space O_3 is totally real, i.e., $\widetilde{J}O_3 \perp O_3$.

PROOF. We must show (1) $\langle \tilde{J}X, Y \rangle = 0$, (2) $\langle \tilde{J}X, H(Y, Z) \rangle = 0$, (3) $\langle \tilde{J}X, (DH)(Y, Z, W) \rangle = 0$, (4) $\langle \tilde{J}H(X, Y), H(Z, W) \rangle = 0$, (5) $\langle \tilde{J}H(X, Y), (DH)(Z, W, U) \rangle = 0$ and (6) $\langle \tilde{J}(DH)(X, Y, Z), (DH)(W, U, V) \rangle = 0$ for any X, Y, Z, U, V, $W \in T_x M$.

(1) is the definition of totally real immersions.

The first equation (1.7) with J = 0 gives $A_{J_NY}X + J_TH(Y, X) = 0$ and, consequently, $\langle J_NX, H(Y, Z) \rangle = \langle J_NY, H(Z, X) \rangle$. On the other hand, the first equation of (3.7) implies $\mathfrak{S}_{\mathfrak{s}}\langle \widetilde{J}X, H(Y, Z) \rangle = 0$. Thus we obtain (2).

(3) is shown as follows. From the second equation of (3.7) it follows that $\mathfrak{S}_4\langle \tilde{J}X, (DH)(Y, Z, W)\rangle = 0$. Differentiating $\langle \tilde{J}X^*, H(Y^*, Z^*)\rangle = 0$ in the direction W, we have

(3.9)
$$\langle \widetilde{J}H(W, X), H(Y, Z) \rangle + \langle \widetilde{J}X, (DH)(Y, Z, W) \rangle = 0$$
.

The first term on the left hand side is symmetric with respect to W and X. Thus we see that $\langle \tilde{J}X, (DH)(Y, Z, W) \rangle = \langle \tilde{J}W, H(Y, Z, X) \rangle$. Therefore, we have (3).

Combining (3) with (3.9), we have (4).

Differentiating $\langle \widetilde{J}H(X^*, Y^*), H(Z^*, W^*) \rangle = 0$ in the direction U, we find

 $\langle \widetilde{J}(DH)(U, X, Y), H(Z, W) \rangle + \langle \widetilde{J}H(X, Y), (DH)(U, Z, W) \rangle = 0$.

By virtue of Codazzi's equation (1.11), we see that $\langle \tilde{J}H(\cdot, \cdot), (DH)(\cdot, \cdot, \cdot) \rangle$ is a symmetric 5-form on T_xM . Thus the third equation of (3.7) shows (5).

Finally, we prove (6). Differentiating $\langle \tilde{J}H(X^*, Y^*), (DH)(Z^*, W^*, U^*) \rangle = 0$ in the direction V, we find

$$\begin{split} \langle \widetilde{J}(DH)(V, X, Y), \, (DH)(Z, W, U) \rangle \\ &+ \langle \widetilde{J}H(X, Y), \, (D^2H)(V, Z, W, U) \rangle = 0 \; . \end{split}$$

Thus it suffices to show that $\langle \tilde{J}H(X, Y), (D^2H)(V, Z, Z, Z) \rangle = 0$ for any $X, Y, Z, V \in T_x M$. Equation (3.8) gives

$$egin{aligned} &(D^2H)(V,\,Z,\,Z,\,Z)\,+\,3(D^2H)(Z,\,Z,\,Z,\,V)\ &=\,-2\mu^2H(V,\,Z)\langle Z,\,Z
angle\,-\,2\mu^2H(Z,\,Z)\langle Z,\,V
angle\,. \end{aligned}$$

Since $(D^2H)(V, Z, Z, Z) - (D^2H)(Z, Z, Z, V)$ is a linear combination of $H(V, A_{H(Z,Z)}Z)$, $H(A_{H(Z,Z)}V, Z)$ and H(R(V, Z)Z, Z) (see the proof of Lemma 3.3), $(D^2H)(V, Z, Z, Z)$ is a linear combination of vectors $H(\cdot, \cdot)$. Thus (4) implies (6). q.e.d.

LEMMA 3.5. There exists a totally real, totally geodesic submanifold $Q \approx \mathbb{R}P^{n+q}(c/4)$ in $\mathbb{C}P^m(c)$ such that $\iota(M) \subset Q$ and the immersion $\iota: M \to Q$ is full, where $n = \dim M$ and $q = \dim O_3 - n$.

PROOF. Let $x \in M$ be fixed. Since O_s is totally real, there exists a unique totally real, totally geodesic submanifold Q such that $x \in Q$ and $T_xQ = O_s$. Let $y \in M$ and γ be a unit speed geodesic from x to y. The curve $\tau = \iota \circ \gamma$ satisfies the Frenet equation:

$$\dot{ au}= au_1$$
 , $\widetilde{
abla}_{ au_1} au_1=\lambda au_2$, $\widetilde{
abla}_{ au_1} au_2=-\lambda au_1+\mu au_3$, $\widetilde{
abla}_{ au_1} au_3=-\mu au_2$,

where λ and μ are constants. Let $\gamma(0) = x$ and $\dot{\gamma}(0) = X$. The initial conditions of the above differential equation are $\tau(0) = x$, $\tau_1(0) = X$, $\tau_2(0) = H(X, X)/\lambda$ and $\tau_3(0) = (DH)(X, X, X)/\lambda\mu$ which are elements of O_3 . Consider a helix ω in Q whose curvature and torsion are λ and μ , respectively, and which satisfies $\omega(0) = x$, $\omega_1(0) = X$, $\omega_2(0) = H(X, X)/\lambda$ and $\omega_3(0) = (DH)(X, X, X)/\lambda\mu$, where ω_1 , ω_2 and ω_3 are unit tangent, principal normal and binormal vectors, respectively. Since Q is totally geodesic, the fundamental theorem of ordinary differential equation implies $\tau = \omega$. Therefore, we have $y \in Q$. It is clear that $\iota: M \to Q$ is full. q.e.d.

THEOREM 3.6. Let M be an $n(\geq 3)$ -dimensional compact simply connected Riemannian manifold and $\iota: M \to CP^m(c)$ be a proper cubic geodesic, totally real immersion. If ι is minimal, then M is isometric to a sphere $S^n(nc/12(n+2))$ with curvature nc/12(n+2) and ι is equivalent to $i \circ \pi \circ \iota_3$, where $i: Q \to CP^{m}(c)$ is the inclusion, $\pi: S^{n+q}(c/4) \to Q$ the covering and $c_{s}: S^{n}(nc/12(n+2)) \to S^{n+q}(c/4)$ the third standard minimal immersion.

PROOF. By Lemma 3.5, we have only to consider the immersion $\iota: M \to Q \approx \mathbb{R}P^{n+q}(c/4)$. We can apply Theorem N stated in the introduction to a lifting $\hat{\iota}: M \to S^{n+q}(c/4)$ of ι , since $\hat{\iota}$ is also proper cubic geodesic ($\hat{\ell}$ is a helical immersion of order 3 in the sense of [15]). Noting that the immersion $\hat{\iota}$ is full, we see that $M = S^n(nc/12(n+2))$ and $\hat{\iota}$ is equivalent to ι_3 . Thus clearly ι is equivalent to $\pi \circ \iota_3$.

References

- M. BERGER, P. GAUDUCHON AND E. MEZET, Le spectre d'une variété riemannienne, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1971.
- [2] E. CALABI, Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
- [3] B. Y. CHEN AND P. VERHEYEN, Submanifolds with geodesic normal sections, Math. Ann. 269 (1984), 417-429.
- [4] M. P. DO CARMO AND N. R. WALLACH, Minimal immersions of spheres into spheres, Ann. of Math. 93 (1971), 43-62.
- [5] J. ERBACHER, Reduction of the codimension of an isometric immersion, J. Diff. Geometry 5 (1971), 333-340.
- [6] S. L. HONG, Isometric immersions of manifolds with plane geodesics into Euclidean space, J. Diff. Geometry 8 (1973), 259-278.
- [7] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Interscience, New York, London, Sydney, 1969.
- [8] J.A. LITTLE, Manifolds with planar geodesics, J. Diff. Geometry 11 (1976), 265-285.
- [9] H. NAKAGAWA, On a certain minimal immersion of a Riemannian manifold into a sphere, Kodai Math. J. 3 (1980), 321-340.
- [10] H. NAKAGAWA AND R. TAKAGI, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
- [11] K. OGIUE, Differential geometry of Kaehler submanifolds, Advances in Math. 13 (1974), 73-114.
- [12] B. O'NEILL, Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 907-915.
- [13] J. S. PAK, Planar geodesic submanifolds in complex space forms, Kodai Math. J. 1 (1978), 187-196.
- [14] K. SAKAMOTO, Planar geodesic immersions, Tôhoku Math. J. 29 (1977), 25-56.
- [15] K. SAKAMOTO, Helical immersions into a unit sphere, Math. Ann. 261 (1982), 63-80.
- [16] K. SAKAMOTO, On a minimal helical immersion into a unit sphere, in Geometry of Geodesics and Related Topics (K. Shiohama, ed.), Advanced Studies in Pure Math. 3, 1984, 193-211, Kinokuniya, Tokyo and North-Holland.
- [17] K. SAKAMOTO, Helical minimal immersions of compact Riemannian manifolds into a unit sphere, Trans. Amer. Math. Soc. 288 (1985), 765-790.
- [18] K. SAKAMOTO, Helical minimal imbeddings of order 4 into spheres, J. Math. Soc. Japan 37 (1985), 315-336.
- [19] K. SAKAMOTO, The order of helical minimal imbeddings of strongly harmonic manifolds, to appear in Math. Z.
- [20] R. TAKAGI AND M. TAKEUCHI, Degree of symmetric Kählerian submanifolds of a complex projective space, Osaka J. Math. 14 (1977), 501-518.

- [21] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
- [22] M. TAKEUCHI, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. 4 (1978), 171-219.
- [23] N. R. WALLACH, Minimal immersions of symmetric spaces into spheres, Symmetric spaces, Dekker, New York, 1972, 1-40.

DEPARTMENT OF MATHEMATICS	AND	DEPARTMENT OF MATHEMATICS
KYUNGPOOK NATIONAL UNIVERSITY		TOKYO INSTITUTE OF TECHNOLOGY
TAEGU, 635		Токчо, 152
Korea		Japan