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Introduction. Recently, several authors studied submaifolds with
"simple" geodesies immersed in space forms. For example, planar geodesic
immersions were studied in [6], [8], [13], [14], geodesic normal sections
in [3] and helical immersions in [15]. In [9], Nakagawa also introduced
a notion of cubic geodesic immersions. Let M and M be connected com-
plete Riemannian manifolds of dimensions n and n + p, respectively. An
isometric immersion t of M into M is called a d-planar geodesic immersion
if each geodesic in M is mapped locally under c into a d-dimesional totally
geodesic submanifold of M. In particular, if a 3-planar geodesic immersion
is isotropic, then it is called a cubic geodesic immersion. In this paper,
we study a proper d-planar geodesic Kahlerian immersion c:M—>CPm(c)
of a Kahler manifold M into a complex projective space CPm(c) of constant
holomorphic sectional curvature c and proper cubic geodesic totally real
immersion c: ikf —> CPm(c) of a Riemannian manifold M, where "proper"
means that the image of each geodesic in M is not {d — l)-planar. Here
and elsewhere, m in Nm denotes the complex dimension, if N is a com-
plex manifold.

In a complex projective space CPm(c) of complex dimension m, an
odd-dimensional totally geodesic submanifold is a totally real submanifold
RP\c/4) of constant sectional curvature c/4. In § 2 we show that if
t: Mn —> CPm{c) is a proper d-planar geodesic Kahlerian immersion of a
Kahler manifold Mn and d is odd, then Mn = CPn(c/d) and c is equivalent
to the d-th Veronese map. Here we recall the definition of fc-th Veronese
map (k = 1, 2, •)• This is a Kahler imbedding CPn(cjk) -> CPm\c) given by

kl

o! •••**

where [*] means the point of the projective space with the homogeneous

coordinates * and mf — \ X ) " ~ ^ M° r e generally, we prove that if

* Work done under partial support by Association of International Education, Japan.
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the image of each geodesic in Mn is locally properly contained in a
d-dimensional totally real totally geodesic submanifold, then Mn = CPn(c/d)
and c is equivalent to the d-th Veronese map. This result is a geometric
characterization of the Veronese map.

In § 3, we consider a proper cubic geodesic totally real immersion
t\ Mn —• CPm(c) of a Riemannian manifold Mn of dimension n. We shall
prove that c(Mn) is contained in a totally real submanifold iίPn+g(c/4) and
apply Nakagawa's theorem:

THEOREM N. For n ^ 3 , let M be an n-dimensional compact simply
connected Riemannian manifold and c a proper cubic geodesic immersion
of M into an (n + pydimensional sphere Sn+P(c), where p ^ 2. If c is
minimal, then M — Sn(ncβ(n + 2)) and t is equivalent to the immersion
cQ°cz of Sn into Sn+P, where c0 is a totally geodesic immersion of SN{3)(c)
into Sn+P, N(S) + 1 is the multiplicity of the third eigenvalue of the
Laplace operator of Sn and cz is the third standard minimal immersion
of Sn into SN{3)(c).

Here we recall the definition of the k-th standard minimal immersion
of Sn into Sn+P (cf. [4]). Let Hk>n be the eigenspace of the fe-th eigen-
value of the Laplace operator on Sn, where dim Hk>n = (n + 2k — ΐ)(n +
k — 2)1/k\(n — 1)! = : N(k) + 1. For an orthonormal basis {flf ,fN{k)+1}
of Hkn, an immersion ck of Sn into an (N(k) + l)-dimensional Euclidean
space EN{k)+1 defined by ck(x) = (£(&), , Λ(*)+i(a?))/(^(fc) + 1)1/2 is a minimal
isometric immersion into the unit hypersphere SN{k)(ϊ) in EN{k)+1 and ck(Sn)
is not contained in any great sphere of SN{k) (i.e., full). If k ^ 3, then
ck is rigid (cf. [23]). The immersion ck is called a k-th standard minimal
immersion.

The authors wish to express their gratitude to Professor S. Ishihara
for his constant encouragement.

1. Preliminaries. Let M and M be connected Riemannian manifolds
and c:M-*M an isometric immersion. We denote by V the covariant
differentiation with respect to the Riemannian metric of M. Then we
may write

(1.1) VXY= VXY+ H(X, Y)

for arbitrary tangent vector fields X and Y on M, where Vx Y and H(X, Y)
denote the components of VXY tangent and normal to ikf, respectively.
Then V becomes the covariant differentiation of the Riemannian manifold
M. The symmetric bilinear form H valued in the normal bundle is called
the second fundamental form of the immersion c. For a normal vector
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field C on a neighborhood of PeM, we write

(1.2) VXC= -A0X + ViC,

— ACX and VXC being the components of VXC tangent and normal to M9

respectively, where V1 is the covariant differentiation with respect to
the induced connection in the normal bundle TλM which will be called
the normal connection. Denoting by < , > the inner product with respect
to the Riemannian metric of M, we find that Ac and H are related by
(ACX, Y) = (H(X, Γ), C> for any vectors X, Y tangent to M. Thus Ac

is a symmetric linear transformation of TPM.
Let the ambient manifold M be a complete, simply connected complex

space form with constant holomorphic sectional curvature c. Thus M is
a complex protective space CPm(c). If we denote by J the complex struc-
ture, the Riemannian curvature tensor R of CPm(c) is of the form

(i.3) R(X Ϋ)Z = (c/4){< Ϋ, zyx - <x, Z)Ϋ+ <jy, zyjx
- (jx, Z)JΫ - 2(jχ, Ϋyjz)

for all vectors X, Ϋ, Z tangent to CPm(c).
We denote by ProjΓif and ProjV^ the projections of TPM to the tangent

space TPM and the normal space T^M, respectively and put J — ProjΓif o
J\ TM, JN = Proj^,, oJ\TM,Jτ = ProjΓJf oj\ TLM and JL =ProjΓi^ °J\ TLM.
Then we can write

(1.4) JX = JX + JNX , JC = JTC + JLC

for every tangent vector X and normal vector C of M. Taking account
of J2 = —/, we find that these tensors satisfy

( 1 5 ) J2 + JTJN = -19 JNJ + JLJN = o ,

J ± 2 + JNJT = -I, JJT + Λ J 1 = o ,

/ being the identity transformation, and also we have

(i.6) (jNx,cy = -<x,Jτcy

with the help of <JX, Γ> = -<X, JΫy.

Differentiating covariantly the left hand side of (1.4), and using
V J = 0 and (1.4) itself, we can easily see that

(DXJ) Y = AJNYX + JTH{ Y, X) ,

(DM Y=JLH{Y, X) - H(JY, X),

(DXJT)C - AjiaX - JACX ,

(DXJ
L)C = -JNACX - H(X, JTC) ,

where D denotes the van der Waerden-Bortolotti co variant differentiation.
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Let us denote the curvature tensors of the connections V and V1 by
R and jβ1, respectively. Then, using (1.3), we find that the structure
equations of Gauss, Codazzi and Ricci are respectively given by

(1.8) R(X, Y)Z = (c/4){< Y, Z)X - <X, Z) Y + <JX ZyjX - (JX, Z)JY

2\jχ, Y/jz} + ΛH{YfZ)x AH{χtz) y f

(1.9) (DXH)(Y, Z) - {DYH){X, Z)

= (c/A){(JY, Z)JNX - (JX, Z)JNY - 2(JX, Y)JNZ} ,

(1.10) R\X, Y)C = (φ){(JNY, C)JNX - (JNX, C)JNY - 2(JX, Y)JLC}

+ H(X, ACY) - H{ACX, Y) ,

where {DXH){Y, Z) - VZ(H(Y, Z)) - H(VxYf Z) - H(Y, VXZ). Therefore,
if the submanifold M is complex or totally real, that is, JN = 0 or J — 0,
then

(1.11) (BXH)(Y, Z) - (DYH)(X, Z) = 0

because of (1.9). Conversely, if (1.11) is verified at every point of M,
then M is complex or totally real. Thus 3-dimensional complete totally
geodesic submanifolds in CPm(c) are i?P3(c/4).

Sometimes we denote (DZH)(Y, Z) by (DH)(X, Y, Z). It is clear that
DH is a normal bundle-valued tensor field of type (0, 3). For k ^ 1, the
fc-th covariant derivative of H is defined by

(1.12) (
fc+2

where D°H = H. It is clear that DkH is a normal bundle-valued tensor
field of type (0, fc + 2). By direct computation we have

(1.13) (PhH)(X» X» X* , Xk+ί) ~ (DkH)(X2f Xlt Xz, , Xfc+2)

fc+2

Σ
for fc ^ 2.

As for the second fundamental form H, if

(1.14) \\H(X, X ) | | 2 - λ 2

for every unit vector X tangent to M, then the immersion c is said to
be isotropic (or X-isotropic). The immersion £ is isotropic if and only if

(1.15) <iί(X, X), H(X, F)> = 0
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for any orthonormal vectors X and Y at every point. The condition is
equivalent to

(1.16) ®*<H(X19 X2), H(XB, Y)} = λ2@3<Xi, XtXXs, Y> ,

where Xi (i = 1, 2, 3) and Y are unit vectors and @3 denotes the cyclic
sum with respect to vectors X19 X2, Xz.

2. d-planar geodesic Kahler immersions. Let c: Mn -> CPm(c) be a
Kahler immersion of a connected complete Kahler manifold Mn into
CPm(c). We first prove:

PROPOSITION 2.1. Suppose that for each geodesic 7: R —> Mn and
each seR, there exist an open interval I8 (9 s) and a totally real totally
geodesic submanifold P8 of CPm(c) such that c(7(I8))czP8. Then Mn is a
compact simply connected Hermitian symmetric space.

PROOF. Let x e Mn be any point and X any unit tangent vector at
x of Mn. Let 7 be the unit speed geodesic satisfying 7(0) = x and
7(0) = X. Since Po is totally geodesic, we see that τ, Vfί and V?r is
tangent to Po on /0, where τ = coy. Since 7 is geodesic, we have

= H(X, X) ,

(V?τ)(0) = -Amx,X)X+ {DH){X, X, X) .

From the assumption that Po is totally real, we find

(2.1) <JH(X, X), (DH)(X, X, X)) = 0 .

Now we have JN = 0 and J Γ = 0, since c is a Kahler immersion. It follows
from (1.7) that

(2.2) H{JY, X) - JλH(Y, X) , H(JY, JX) = -£Γ(F, X)

for every X, Ye TXM. Moreover, Codazzi's equation (1.11) and (2.2)
imply that

(2.3) (DH)(JZ, Y, X) = JL(DH)(Z, Y, X)

for every Z, Y,XeTxM. Equation (2.1) holds for every XeTxM. Re-
placing X by JX in (2.1) and using (2.2) and (2.3), we thus have

(2.4) (H(X, X), {DH){X, X, X)) = 0

for every Xe TXM. Let X and Y be orthonormal tangent vectors. Let
X(θ) = cos ΘX + sin ΘY. Differentiating <H(X(Θ), X(β))> (DH)(X(Θ), X(θ),
X(θ))} = 0 at θ = 0, we see that
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2(H(X, Y), (DH)(X, X, X)> + 3<#(X, X), (DH)(X, X, Y)> = 0 .

This equation holds for all X, YeTxM in virtue of (2.4). Replacing X
by JX in the above equation, we have

-2<ff(X, Y), (£iί)(X, X, X)> + 3<tf(X, X), (DH)(X, X, 7)> = 0,

and hence

(2.5) <iϊ(X, Y), (Dfί)(X, X, X)> = 0

for every X, YeTxM. Symmetrize (2.5) with respect to X. Then for
every X, Y, Z,

(H{Z, Y)9 (DH)(X, X, X)> + 3<#(X, Y), (Diί)(X, X, Z)> = 0 .

Replacing Z and Y by JZt JY respectively, we see from (2.2) that

(H(Z, Y), (DH)(X, X, X)> - 0

for every X, Y, Ze TXM. By virtue of (1.11), we obtain

<#(X, Y), (£>H)(Z, U, V)) = 0

for every X, Y, Z, [7, Ve TXM, which shows that Mn is locally symmetric
because of the Gauss equation (1.8). In [22, Theorem 2.1 and its Corol-
lary], Takeuchi showed that if a complete locally homogeneous Kahler
manifold admits a Kahler immersion into CPm{c), then it is a compact
simply connected homogeneous Kahler manifold. Using this result, we
have the assertion. q.e.d.

Let M be a Riemannian manifold. A curve τ: I —>M is said to be
d-planar if there exist an open interval I8 (βeJ .c ί ) and a d-dimensional
totally geodesic submanifold P8 for each sel such that z(Is)aP8. An
isometric immersion c: ikf —> M is called a d-planar geodesic immersion if
τ = c o 7 is d-planar for each geodesies 7 of Jkf.

COROLLARY. Lei r. Mn —> CPm(c) be a d-planar geodesic Kahler immer-
sion of a Kahler manifold Mn into CPm(c). If d is odd, then Mn is a
compact simply connected Hermitian symmetric space.

PROOF. The assertion follows from the fact that an odd-dimensional
totally geodesic submanifold in CPm(c) is totally real. q.e.d.

Secondly, we shall characterize the d-th Veronese map by the shape
of geodesies in the ambient space. Let M be an irreducible symmetric
Kahler manifold of compact type and d a positive integer. In [10],
Nakagawa and Takagi constructed a full equivariant Kahler imbedding
fd:M-+CPm(c) which is called the d-th full Kahler imbedding of M.
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Moreover Takagi and Takeuchi [20] constructed a full Kahler imbedding
of a (not necessarily irreducible) symmetric Kahler manifold of compact
type into a complex protective space as follows. Segre imbedding
S2: CPmKc)xCPm*(c) -* CPm(c) (m = (mx + l)(m2 + 1) - 1) is defined by the
tensor product of the homogeneous coordinates:

Similarly, we can define a full Kahler imbedding Sq: CPmi(c) x x CPm<i(c) —>
CPm(c) (m = (mi + 1) x x (rag + 1) — 1) by the multifold tensor product
of the homogeneous coordinates. Let Λf be a compact symmetric Kahler
manifold and Mk (k = 1, •••,?) its irreducible components, i.e., Λf =
JlίΊx xMg. Let fdk: Mk-> CPm*(c) be the dA-th full Kahler imbedding
of Mk. Then the tewsor product fdl £3 t/3/<v M-*CPm(c) (m =
ILU(m 4 + 1) - 1) of /djb (fc = 1, ., q) is defined as Sqo(fdiχ . . . χ / d g ) .
This is a full equivariant Kahler imbedding. In [10] and [22], it was
shown that any full Kahler immersion into CPm(c) of a symmetric Kahler
manifold of compact type is obtained in this way (cf. [22, Corollary 2,
p. 177]). In particular, we note that if M = CP\c/d), then the d-th full
Kahler imbedding is the d-th Veronese map whose defining equation is
given in the introduction.

A cί-planar curve τ in M is said to be proper d-planar if τ is not
(d — l)-planar. A d-planar geodesic immersion c: M-> M is said to be
proper if τ = c ° 7 is proper d-planar for each geodesic 7 of M.

LEMMA 2.2. The d-th Veronese map V?: CPn(c/d) -> CPm\c) is proper
d-planar geodesic.

PROOF. Since the map V2 is equivariant and there exists an isometry
of CPn(c/d) which maps 72 to 72 for any two geodesies 7X and 72 of
CPn(c/d), we have only to consider the geodesic 7:

7(ί) = [cosί, sinί, 0, •••, 0]

in homogeneous coordinates of CPn{c\d), where t is a parameter propor-
tional to the arc-length parameter. By the d-th Veronese map Vd, 7 is
mapped to the curve

τ(ί) = [a0, •••, ad, 0, •••, 0] ,

' n , Γ c o s t * sin'"& * ' (fc = 0, , d)— k)U

in homogeneous coordinates of CPm\c). Thus τ is contained in the totally
real totally geodesic submanifold iίPd(c/4) = {[zt]eCPm'(c); zteR for 0 ^
i ^ d, zt = 0 for d + 1 ^ i ^ m'}. The intersection of two totally geodesic



304 J. S. PAK AND K. SAKAMOTO

submanifolds in CPm'(c) is totally geodesic. Thus τ is proper d-planar,
since Σ akak(f) = 0. akeR easily implies ak = 0 (k = 0, 1, , d). q.e.d.

THEOREM 2.3. Let c: Mn-^CPm(c) be a proper d-planar geodesic Kdhler
immersion of a complete Kdhler manifold Mn into CPm(c). Suppose that
for each 7 and s, we can take P8 in the definition of d-planar geodesic
immersions to be a totally real totally geodesic submanifold. Then
Mn = CPn(c/d) and c is equivalent to i o Vd where i: CPm\c) -> CPm(c) is
a totally geodesic imbedding.

PROOF. By Proposition 2.1, we see that Mn is a symmetric Kahler
manifold of compact type. We shall prove that Mn is of rank one and
apply [22, Corollary, p. 203] (cf. [2], [11]). Assume that the rank r of
Mn is greater than 2. Let Mk (k = 1, , q) be the irreducible components
of Mn and rk the rank of Λffc, where r = rx + + rq ^ 2. It is known
that there is a totally geodesic Kahler immersion

φ: (CP\c/dj)rίx x {CP\cldq))T* -> Mn ,

where dlf •••, dq are certain positive integers (see [20, the proof of Theo-
rem 2, p. 515]). Since r ^ 2, we thus have a totally geodesic Kahler
immersion

ψ: CP\c\a) x CP\φ) -^ Mn , a,beZ+ .

The composite £oψ> is equivalent to ϊo(Vi Kl W): CP\cla)xCP\c/b) ->
CPm(c), where ?: CPαδ+α+δ(c) -^ CPw(c) is a totally geodesic imbedding. Let
7χ (resp. 72) be a geodesic of CP\cja) (resp. CP\c/b)). Then f o γ . (j =
1, 2) is a geodesic in Mn. By Lemma 2.2, ίoψoγ1 (resp. c°ψ°Ύ2) is proper
α-planar (resp. 6-planar). Thus the assumption implies that a = 6 = c£.
Hence we have only to prove that

VI M Vi: CP\c/d) x CP\c/d) -> CPd(d+2)(c)

is not proper d-planar. Consider the geodesic 7 in CP\c/d)xCP1(c/d)
defined by

Ύ(t) = [cos t, sin t] x [cos ί, sin t]

in homogeneous coordinates, where t is a parameter proportional to the
arc-length parameter. The curve τ — (V* IEI Vi) °7 in CPd{d+2)(c) is given by

where ^(ί) is as defined in the proof of Lemma 2.2. This curve is con-
tained in RPd{d+2)(c/A) = {[vkl] eCPd{d+2)(c); vkleR for 0 ^ k, I ̂  d). We
easily see that functions ao(t)ao(t), ao{t)ax{t), , ao(t)ad(t), αi(ί)αd(t), ,
ad(t)ad(t) are linearly independent over U. Suppose that there exists a
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(d — l)-dimensional totally geodesic submanifold P such that τ ( I ) c P , for
some open interval. Then τ{I) is contained in RPd{d+2)(c/A)Γ\P which is
a totally real totally geodesic submanifold of dimension not greater than
d — 1. Thus the dimension of the vector space spanned by functions
cikaι (0 ^ k, I <; d) is not greater than d. We thus have a contradiction
2d + 1 <: d. q.e.d.

COROLLARY. Let c: Mn -> CPm{c) be a proper d-planar geodesic Kdhler
immersion of a complete Kdhler manifold Mn into CPm(c). If d is odd,
then Mn = CPn(c/d) and c is equivalent to io F<p.

3, Cubic geodesic totally real immersions. Let c:M~->CPm(c) be a
cubic geodesic immersion of a Riemannian manifold M into CPm(c), where
dim M ^ 3. Let x e M, X be a unit vector tangent to M at x and 7 the
unit speed geodesic such that 7(0) = x, τ(0) = X. There exists a totally
real, totally geodesic submanifold Po of dimension 3 such that r(I 0 )cP 0

for some open interval Jo containing 0, where τ = £°7. We now assume
that the isotropy X(x) at # is positive and hence λ > 0 on a neighborhood
of x. We take Io small enough if necessary and put τx — τ and r2 =
H(τίf TO/λ. Noting that V ^ = ϋ " ^ , τx), we see that τ2 is tangent to Po.
Then C : = VΓlτ2 is orthogonal to τ19 τ% and tangent to Po. Using (1.2),
we have

λC = -λ 'τ 2 - Aff(ΓlfΓl)r1 + (DH)(τl9 τ19 τλ) + λ2^ ,

where λ' = dx(Ύ(s))/ds, from which

(3.1) (ΰίOfa, τ l f τx) = λ'τ2 + λC

because of (1.15). The above equation shows that C is normal to M.
Covariantly differentiating (3.1) in the direction τlt we have

(3.2) (D2H)(τ19 τί9 τ19 τx) = AφHntltVltτϋτx - λλVx + λ"r 2 + 2λ'C + λVΓ lC .

Since τ19 τ2 and C are mutually orthogonal, VΓlC is orthogonal to rx.
Suppose that C(0) ^ 0. If necessary, we choose Io so that C(s) Φ 0 for
every selo. Put j« = | |O|| and τ3 = C/^. Vector fields τ19 τ2 and τ3 are
orthonormal and tangent to Po, Therefore, VΓlC is spanned by τ2 and r3

which are normal to M. It follows from (3.2) that

(3.3) <(DH)(X, X, X), H(X, Y)) = 0

for every Ye TXM orthogonal to X. If C(0) = 0, then (3.1) and (1.15)
also imply (3.3).

LEMMA 3.1. The immersion t is constant isotropic.

PROOF. Let xeM, Ye TXM with || Γ | | = 1 be arbitrarily fixed. Let



306 J. S. PAK AND K. SAKAMOTO

X be a unit tangent vector orthogonal to Y. We shall prove Y-x2 = 0.
If \(x) = 0, then λ2 attains the minimum at x and hence Y λ2 = 0. Thus
we may assume X(x) > 0. Extend X and Y to orthonormal vector fields
X* and F*, respectively, on a neighborhood of x so that VX* = VΓ* = 0
at x. We have

Γ λ2 - Y-(H(X*, X*), #(X*, X*)> = 2((DH)(Y, X, X), H(X, X)) .

Using (1.9), we obtain

γ . λ * = 2<(DH)(X, X, Y), H(X, X)) - - |c<JX X)(JNX, H{X,

Since Po is totally real, we have <JX, iϊ(X, X)) = 0. Therefore,

Γ λ2 = 2((DH)(X, X, Y), H(X, X)}

= 2{X <H(X*, Γ*), iί(X*, X*)> - <H(X, F), (ΰff)(X, X,

= 0

by virtue of (1.15) and (3.3). q.e.d.

In the sequel, we assume that the cubic geodesic immersion c:M-+
CPm(c) is proper and totally real. By means of Lemma 3.1, we may
assume that λ > 0. We next prove that μ is a nonzero constant and
independent of the choice of the geodesic 7. From (3.1), we have

(3.4) \\ΦH)(X, X, Xψ = λ!/ί(I) ,

where μ is regarded as a non-negative function on the unit sphere bundle
UM of M.

LEMMA 3.2. The function μ is constant on the unit tangent sphere
UXM for every xeM.

PROOF. Let x be an arbitrary point. Suppose that there exists a
vector Xo e UXM such that μ(X0) > 0. Put S= {Xe UXM: μ{X) > 0}, which
is an open set in UXM because of the continuity of μ. For each XeS,
we consider the unit speed geodesic 7 such that 7(0) = x and 7(0) = X.
Taking Lemma 3.1 into account, we see that (3.3) holds for every
X, YeTM and hence AiDH){XfX>X)X = 0 for any XeTM. From (3.2), we
have (D2H)(τlf τlf τ19 τλ) = λVΓlC. The right hand side is spanned by τ2

and τ3. It follows that (DΉ)(X, X, X, X) is spanned by H(X, X) and
(DH)(X, X, X) for X e S . Let Y be orthogonal to X. Differentiate

«DH)(X*, X*, X*), H(X*, Γ*)> = 0

in the direction X where X* and F* are local vector fields used in the
proof of Lemma 3.1. Then we have
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, X, X, X), H(X, Y)) + ((DH)(X, X, X), (DH)(X, X, Y)) = 0 ,

from which

(3.5) <(DH)(X, X, X), (DH)(X, X, Y)) = 0

in virtue of (1.15) and (3.3). This means that \\(DH)(X, X, X)||2 is constant
on each connected component of S. Therefore, the component (3 Xo) of
S is open and closed. We have proved μ is constant on S = UXM. q.e.d.

By Lemma 3.2, we see that μ is a function defined on M. If μ(x) > 0,
then for each Xe UXM

(3.6) μ{D*H){X, X, X, X) = (X μ)(DH)(X, X, X) - μ*H{X, X)

because of (DH)(X, X, X) J. H(X, X), ((D2H)(X, X, X, X), H(X, X)> =
-X2μ2 and 2((D2H)(X, X, X, X), (DH)(X, X, X)> = λ2(X ^ 2 ).

LEMMA 3.3. μ is a nonzero constant.

PROOF. If μ vanishes identically on M, then the image τ of each
geodesic 7 is a circle in P = RP3(c/A). Thus τ is contained in a totally
geodesic submanifold RP\c/4) of /?P3(c/4). This contradicts the assump-
tion that c is proper cubic geodesic. Put S = {xeM: μ(x) > 0}. Let xeS
and Ye UXM be fixed. Let Xe UXM be orthogonal to Y. Then from
(3.4), we have

χχγ.μ>) = 2((D2H)(Y, X, X, X), (DH)(X, X, X)> .

Making use of (1.10) and (1.13), we find

(D>H)(Y, X, X, X) - CD2#)(X, X, X, F)

= Λ^Y, X)iϊ(X, X) - 2H(R(Y, X)X, X)

{(JNXf H(X, X))JNY- (JNY, H(X, X))JNX
4

, X)} + iϊ(Γ, AH(X,X)X) - H(AmZtZ)Y, X)

-2H(R(Y, X)X, X) .

Using the fact that (JNX, H{X, X)> = <J^X, (DH)(X, X, X)> = 0, J = 0f

A F ( Z ) Z ) X= λ2X and (3.3) holds for every X, Ye UXM, we have

, X, X, Γ), (Z)fΓ)(X, X,

Differentiate ((DHXX*, X*, X*), (DH)(X*, X*, Γ*)> = 0 (cf. (3.5)) in the
direction X. Then

<(Z>2if)(X, X, X, X), (DH)(X, X, Γ)>

+ ((DH)(X, X, X), (-D2iϊ)(X, X, X, Γ)> = 0 .
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Substitute (3.6) into the above equation and use Lemma 3.1 and (3.5).
We obtain Y-μ2 = 0. It follows that μ is a nonzero constant on each
connected component of S. q.e.d.

Next we shall prove that there is a totally real, totally geodesic
submanifold Q of CPm(c) such that c{M)(zQ and r.M->Q is full. In
contrast with Erbacher [5], our proof is based on the situation that
r.M—>CPm(c) is proper cubic geodesic, totally real immersion.

Since each geodesic is mapped locally into a 3-dimensional totally real,
totally geodesic submanifold, the discussion up to this point yields

( 3 > 7 ) (JX, H(X, X)) = 0 , (JX, (DH)(X, X, X)) = 0

(JH(X, X), (DH)(X, X, X)) = 0.

for every Xe TM. Moreover we have, from (3.6) and Lemma 3.3,

(3.8) - (D2H)(X, X, X, X) = -μ*H{X, X)(X, X)

for every Xe TM. Let O3 denote the third osculating space Sp{X, H(X, X),
(DH)(X, X, X): Xe TXM} at a distinguished point x.

LEMMA 3.4. The third osculating space O3 is totally real, i.e.,
JOZ l O3.

PROOF. We must show (1) (JX, Y) = 0, (2) (JX, H(Y, Z)) = 0, (3)
(JX, (DH)(Y, Z, W)) - 0, (4) (JH{X, Y), H(Z, W)} = 0, (5) (JH(X, Y),
(DH)(Z, W, U)) = 0 and (6) (J(DH)(X, Y, Z), (DH)(W, U, V)) = 0 for any
X, Y,Z, U, V, WeTxM.

(1) is the definition of totally real immersions.
The first equation (1.7) with J = 0 gives AJNYX + JTH( Y, X) = 0

and, consequently, (JNX, H(Y, Z)) = (JNY, H(Z, X)). On the other hand,
the first equation of (3.7) implies @3<JX, H{Y, Z)) = 0. Thus we obtain
(2).

(3) is shown as follows. From the second equation of (3.7) it follows
that @4<JX, (DH)(Y, Z, W)) = 0. Differentiating (JX*, H(Y*, Z*)} = 0
in the direction W, we have

(3.9) (JH(W, X), H(Y, Z)) + (JX, (DH)(Y, Z, W)) = 0 .

The first term on the left hand side is symmetric with respect to W and
X. Thus we see that (JX, (DH)(Y, Z, W)) = (JW, H(Y, Z, X)). There-
fore, we have (3).

Combining (3) with (3.9), we have (4).
Differentiating (JH(X*, Y*), H(Z*, W*)} = 0 in the direction U, we

find
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(J(DH)(U, X, Y)9 H(Z, W)) + (JH(X, Y), (DH)(U, Z, W)} = 0 .

By virtue of Codazzi's equation (1.11), we see that (JH(-, •)> (DH)( , , •)>
is a symmetric 5-form on TXM. Thus the third equation of (3.7) shows (5).

Finally, we prove (6). Differentiating (JH(X*, Y*)9 (DH)(Z*9 W*,
U*)) = 0 in the direction V, we find

(J(DH)(V, X, Y), {DH){Z, W, U))

+ (JH(X, Y), {D*H)(V, Z, W, C/)> = 0 .

Thus it suffices to show that (JH(X, Y), (DΉ)(V, Z, Z, Z)) = 0 for any
X, Y,Z, Ve TXM. Equation (3.8) gives

(D2H)(V, Z, Z, Z) + S(D*H)(Z, Z, Z, V)

= -2μ*H(V, Z)(Z, Z) - 2μ*H(Z, Z)<Z, V) .

Since (D2H)(V, Z, Z, Z) - (DΉ)(Z, Z, Z, V) is a linear combination of
H(V, AH{ZfZ)Z), H(AH{Z>Z)V, Z) and H(R(V, Z)Z, Z) (see the proof of
Lemma 3.3), (D2H)(V, Z, Z, Z) is a linear combination of vectors i ί( , •)•
Thus (4) implies (6). q.e.d.

LEMMA 3.5. There exists a totally real, totally geodesic submanifold
Q ** RPn+9(c/4) in CPm(c) suck that c(M)aQ and the immersion r.M-^Q
is full, where n = dim M and q = dim O3 — n.

PROOF. Let xeM be fixed. Since O3 is totally real, there exists a
unique totally real, totally geodesic submanifold Q such that xeQ and
TXQ = O3. Let y e M and 7 be a unit speed geodesic from x to y. The
curve τ — t^Ί satisfies the Frenet equation:

τ = ?i f Vrirx = λτ2 , VΓlτ2 = - λ ^ + μτ3 , VTlτ3 = —μτ2,

where λ and μ are constants. Let 7(0) = x and 7(0) = X. The initial
conditions of the above differential equation are τ(0) = x, τλ(0) — Xf

r.(0) = H(X, X)/x and r8(0) = (DH)(X, X, X)/xμ which are elements of
O3. Consider a helix ω in Q whose curvature and torsion are λ and μ,
respectively, and which satisfies α>(0) = x, ω^O) = X, α>2(0) = H(X, X)/λ
and o)3(0) = (DH)(X, X, X)/xμ, where ωx, ω2 and ω3 are unit tangent,
principal normal and binormal vectors, respectively. Since Q is totally
geodesic, the fundamental theorem of ordinary differential equation implies
τ = a). Therefore, we have y e Q. It is clear that e: ilf-> Q is full, q.e.d.

THEOREM 3.6. Let M be an n(^ ^-dimensional compact simply con-
nected Riemannian manifold and c: M —> CPm(c) be a proper cubic geodesic,
totally real immersion. If c is minimal, then M is isometric to a sphere
Sn(nc/12(n + 2)) with curvature nc/12(n + 2) and c is equivalent to i°π°tz,
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where i: Q —• CPm(c) is the inclusion, π: Sn+?(c/4) -> Q the covering and
c3: S

n(nc/12(n + 2)) —> Sn+q{cji) the third standard minimal immersion.

PROOF. By Lemma 3.5, we have only to consider the immersion
c: M^ Q f* RPn+q(c/4). We can apply Theorem N stated in the introduc-
tion to a lifting c: M —> Sn+9(c/4) of c, since ΐ is also proper cubic geodesic
(ΐ is a helical immersion of order 3 in the sense of [15]). Noting that
the immersion ΐ is full, we see that M — Sn(nc/12(n + 2)) and ΐ is equiva-
lent to c3. Thus clearly c is equivalent to π<>c3. q.e.d.
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