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0. Introduction and notation. This paper is in two loosely related
parts: the first part gives conditions for a nonnegative continuous function
or its logarithm to be subharmonic, and the second includes a Fejer-Riesz
type theorem for subharmonic functions.

The open ball, the closed ball, and the sphere of centre x and radius
r in Rn (n ^ 2) are denoted by B(x, r), B(x, r) and S(x, r). We denote
^-dimensional Lebesgue measure by ω and (n — l)-dimensional surface
area measure on S(x, r) by σ, and we write Ω(r) for the volume of
B(x, r) and Σ(r) for the surface-area of S(x, r). If a function /, defined
at least on B(x, r), is ω-integrable on B(x, r) and σ-integrable on S(x9 r),
we define means as follows:

A(f, x, r) = {Ω(r))A fdω
JB(x,r)

and

M(f x, r) = (Σ^yΛ fdσ .
JS(x,r)

Throughout the paper G will be a nonempty open subset of Rn. Recall
that a function is hypoharmonic in G if and only if in each connected
component of G it is either subharmonic or identically — oo. We shall
say that a function is PL if its logarithm is hypoharmonic in G.

1. Mean value conditions for subharmonicity.

1.1. The following results are well-known.

THEOREM A. Let u: G —> R be continuous in G. Then u is subhar-
monic in G if and only if

A{u, x, r) 5̂  M(u, x, r)

whenever B(x, r)aG.

THEOREM B. Let u:G-+[0, <̂>) be continuous in GaR2. Then u is
PL if and only if
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A(u\ x, r) ^ (M(u, x, r)Y

whenever B(x,r)czG.

See, for example, Radό [6, §3.25] for a proof of Theorem A in the
case n = 2 and [6, §3.26] for a proof of Theorem B.

Mochizuki [5] proved that the "if" part of Theorem B continues to
hold when GczRn for n ^ 3. By refining Mochizuki's method of proof,
we give the following improvement of his result. We refer to [5] for
references to the related literature.

THEOREM 1. Let u:G-+[0, ©o) be continuous in G. If

(1) A(u{n+2)/n, x, r) ^ (M(u, x, r))(n+2)/n

whenever B(x, r )cG, then u is PL.
The converse is true in the case n — 2 and false in the case n ^ 3.

We note that
( i ) In the case n — 2 Theorem 1 is Theorem B.
(ii) The continuity hypothesis cannot be replaced by upper semi-

continuity. (Consider, for example, the characteristic function of a one-
point set.)

(iii) In the case n ί> 3 the hypothesis (1) is weaker than Mochizuki's
hypothesis in which (n + 2)/n is replaced by 2; this follows from Holder's
inequality.

The method used to prove Theorem 1 is also used to prove sufficiency
in the following criterion for the subharmonicity of a nonnegative con-
tinuous function.

THEOREM 2. Let u:G-*[0, °°) be continuous in G. Then u is sub-
harmonic in G if and only if

(2 ) (n + 2)A(u\ x, r) ^ nM(u\ x, r) + 2{M{uy x, r))2

whenever B(x,r)cG. Indeed, for (2) to hold, it suffices that u is non-
negative and subharmonic (but not necessarily continuous) in G.

The sufficiency part of Theorem 2 has the following analogue for the
case where u is required to be PL.

THEOREM 3. Let u: G—> [0, oo) be continuous in G. If

(3 ) (n + 2)A(u\ x, r)£(n- 2)M(u\ x, r) + 4(Λf(w, x, r))2

whenever B(x, r)aG, then u is PL.

We note that
( i ) In the case n = 2 Theorem 3 is simply the sufficiency part of
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Theorem B, and in this case, by Theorem B, the converse of Theorem 3
is true. Whether the converse remains true when n ^ 3 is an open
question.

(ii) Again, the continuity hypothesis cannot be replaced by upper
semi-continuity.

(iii) Hypothesis (3) is again weaker than the corresponding hypothe-
sis in [5] when n ^ 3, since the Cauchy-Schwarz inequality implies that
(M(u, x, r))2 ^ M{u\ x, r).

The proofs of the following theorems are very similar to the proofs
of Theorem 1, 2 and 3 and are therefore omitted.

THEOREM 4. Let u: G-» [0, ©o) be continuous in G. IfO<p<^l and

A(u{n+2-2p)/n, x, r) ^ (M(u, x, r)){n+2-2p)/n

whenever B(x, r)cG, then up is subharmonic in G.

THEOREM 5. Let u: G —> [0, oo) be continuous in G. 7/0 < p <; 1 and

(n + 2)A(u2, x, r)^(n + 2p- 2)M(u2, x, r) + (4 - 2p)(M(u, x, r)f ,

then up is subharmonic in G.

Recall that if u is PL, then up is subharmonic in G for each positive
p and that if up is subharmonic in G for some p e (0, 1), then u is sub-
harmonic in G. Thus Theorem 4 bridges the gap between Theorem A
and Theorem 1; similarly, Theorem 5 links Theorems 2 and 3.

1.2. We prove here Theorems 1, 2 (sufficiency part) and 3 in the
special case where u e &\G) and u > 0 in G.

The proofs depend upon Pizzetti's formula, a general form of which
is as follows: if fe(^p2k(G)f where k is a positive integer and if xeG,
then, as r—>0 + ,

(4) M(f, x, r) = Σ {2jjln(n + 2) (n + 2j - 2)}~1^f{x)r2ί + o(r2k) ,
3=0

where A3' is the j t h iterated ^-dimensional Laplace operator (Δ° is the
identity operator, and Aj = ΔΔ5'"1 for j = 1, 2, , where Δ is the ordi-
nary ^-dimensional Laplacian). This formula is given, with a smaller
error term, for the case where fe^°°(G) in [2, page 30]. The proof in
[2] is readily adapted to give (4) when fe<^2k(G). Since

A(ff x, r) = nr-Λ* F-Wtf, x, t)dt ,
J

we deduce from (4) that
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(5 ) A(f, x,r) = Σ* {2jjl(n + 2)(n + 4) (n + 2j)}-ιAίf{x)r2'] + o(r2k) .
i

In the case k = 1, which is all we need in this subsection

( 6) M(f, x, r) = f(x) + {2nY1Af{x)r2 + o{r2)

and

(7) A(f, x, r) = /(£) + (2n + 4)~1Δ/(a0r2 + o(r2) .

Now suppose that u e ^ 2 (G) and u > 0 in (?. If q > 0, then

(8) Auq = gw^Δw + g(g - l)ug"21V^ |2

and

(9) Δ(log u) = u-'Au - ^"21 Vu |2 ,

where |Vw|2 is the sum of the squares of the first partial derivatives of
u.

To prove Theorem 1 for such a function u, we have by (6), (7), (8)
and (9),

(M(u, x, r)Yn+2)/n - A(u ( n + 2 ) / n, x, r)

= {u(x) + (2n)-1Au(x)r2 + 0 (r 2 )} ( n + 2 ) / n

- {(u(x)Yn+2)/n + (2n + 4)-1Δ^(TO+2)/w(a;)r2 + o(r2)}

= (u(x)Yn+2)/n + —{n + 2)^-2(^(α;))2 / nΔ^(^)r2

Δ

- \(u(x)Yn+2)/n + — n-χu(x)γ/nΔu(x)r*+n-\u(x)y*-»)/n\Vu(x)\*Λ +o(r2)

= n-\u(x)Yn+2)/n{(u(x))-1Au(x) - (%(*))-2|Vw(*)|2 + o(l)}r2

= n-\u(x))(n+2)/n{A\ogu(x) + o(l)}r2 ,

so that

(10) Δ log u(x) = n2(u(x))-in+2)/" lim r~2{(M(u, x, r ) ) < π + 2 ) / n - A(uin+ΐ)/n, x, r)} .
r- 0+

Hence w is PL if and only if the limit on the right-hand side of (10) is
nonnegative for each x e G.

To prove the sufficiency of (2) in Theorem 2, we have by (6), (7) and
(8),

nM(u\ x, r) + 2(M(u, x, r))2 - (n + 2)A(u\ x, r)

= n{(u(x)Y + (2n)~1Au\x)r2 + o(r*)} + 2{u(x) + (2n)-ιΔu(x)r* + o(rψ

- (n + 2){(u(x)Y + (2n + ty-'A
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= n{(u(x)Y + n~1u(x)Au(x)r2 + n"1 \Vu(x) |V2} + 2{(u(x)Y + n-1u(x)Au(x)rΐ)

-(n + 2){(u(x)γ +(n + 2)-1u(x)Au(x)r* + (n + 2)"11 Vu(x) | V} + o(r2)

= 2ίt"1«(a;)Δu(a;)r2 + o(r2) ,

so that

(11) Au(x) = — n(u(x))~ι lira r~*{nM{u\ x, r)
2 *•-*<>+

+ 2(M(u, x, r))2 - (n + 2)A(^2, α, r)} .

Hence % is subharmonic in G if and only if the limit on the right-hand
side of (11) is nonnegative for each xeG.

To prove Theorem 3, we have, by a calculation similar to the above,

(12) Δ log u{x) = — n(u(x))~2 lim r~2{(n - 2)M(u\ x, r)
2 r-»o+

+ 4(M(u, x, r))2 - (n + 2)A(u2, x, r)} ,

so that u is PL if and only if the limit on the right-hand side of (12)
is nonnegative for each xeG.

1.3. Here we complete the proofs of Theorems 1, 2 (sufficiency) and
3.

Recall that v: G —> [— ©o, oo) is hypoharmonic in G if and only if v is
upper semi-continuous in G and for each xeG there exists r0 > 0 such
that v(x) ^ M(v, x, r) whenever 0 < r < r0. Hence, to prove Theorems 1
and 3, it suffices to show that u is PL in the open set G* = {x e G: u(x) > 0},
for log u is continuous in G and trivially satisfies the mean-value inequality
on spheres contained in G and centred in G\G*. Similarly, to prove
sufficiency in Theorem 2, it is enough to prove that u is subharmonic in
G*. Hence, for the remainder of this subsection, we need consider only
the case where u > 0 in G.

We deal first with Theorem 1. For each p > 0 let

GP = {xe G: dist(α, dG) > p} .

If GP is nonempty, define up in Gp by

(13) uP(x) = {A{n\ x, p)Y« ,

where q = (n + 2)/n. Suppose, for the moment, that ue^iG). Then,
as is well-known, uP e ^\G) and uP-*u uniformly on compact subsets of
G as p—>0 + , and hence log^—»logw uniformly on such sets. Since
subharmonicity is preserved by uniform limits and is, as was indicated
above, a local property, it suffices to prove that l o g ^ is subharmonic in
Gp. If we show that
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(14) A{u% x, r) ^ (M(uP, x, r))q

whenever B(xf r)cGp, then since Upβ^XGp) and uP > 0 in GP, the sub-
harmonicity of \oguP in GP will follow from the case considered in §1.2,
and the theorem will be established in the case where w e ^ G ) . A re-
petition of this argument will then give the theorem in its generality,
for if u is continuous in G, we have uP e ^\GP). Hence the theorem will
be proved, provided we can show that (1) implies (14).

Suppose that B(x, r)<zGP, and let 0 be the origin of Rn. Then

% x, r) = ( β ( r ) H Wp)rι\ (u(y + z)γdω{z)dω{y)
JB(x,r) JB(O,P)

(u(y + z))<dω(v)dω(z) ,
B(O,P) JB(x,r)

the change of order of integration being justified, since u > 0 in G.
Hence, by (1) and the integral form of MinkowskΓs inequality,

A « x, r) ^ mpVλ {(Σir))-1 \ u(y + z)dσ{y)Ydω(z)

^ \(Σ(r))-ι\ \(Ω(p))-Λ (u{y + z)ydω(z)\1/gdσ(y)Y
\ JS(x,r) K JB{O,p) ) )

= h(r)r\ uP{y)dσ(y)Y

= (M(uP, x, r))q ,

and the proof is complete.

Next consider the sufficiency part of Theorem 2. Arguing as in the
case of Theorem 1, we see that it suffices to show that the function uP,
defined in GP by (13) with the power q replaced by 2, satisfies

(n + 2)A(u2

p, x, r) ^ nM(u2

p, x, r) + 2(M(uP, x, r))2

whenever B(x,r)czGp, provided that u satisfies (2). Using changes of
order of integration, hypothesis (2) and the integral form of Minkowski's
inequality, we find that if B(x, r)aGp, then

(n + 2)A(u% x, r) = (n + 2)(β(r)Γ1( (Ω(p))-1 \ (u(y + z))2dω(z)dω(y)
JB{x,r) JB(O,P)

= (n + 2){Ω{P))-A (Ω(r)Γ \ (u(y + z)fdω{y)dω(z)
JB(O,P) JB(xtr)

^ (Q{p))-ι\ {ndir))-^ (u(y + z))*dσ(y)
JB(O,P) I JS(x,r)

(r))-1\ u(y + z)dσ{yγ)\dω{z)
JS(x,r) I )
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-A (Ω(p))-Λ (u(y + z)fdω(z)dσ{y)
JS(x,r) JB(O,P)

2(Ω(p)Γ \ ((Σir))-1 \ u{y + z)dσ(y)fdω(z)

( r ) H {uP{y)γdσ{y)ι

JS{x,r)

2\(Σ(r))-1\ ((Ω(p))A {u{y+z)fdω{z)Tdσ{y)Y
\ JS(x,r)\ JB(O,P) / )

= nM(u% x, r) + 2(M(uP, x, r)f .

The proof of Theorem 3 is similar.

1.4. In proving the necessity of condition (2) in Theorem 2, we
suppose without loss of generality that x = 0. Let u: G —> [0, ©o) be sub-
harmonic (but not necessarily continuous) in G. Suppose that B(O, r)czG,
and let / denote the Poisson integral in B(O, r) of the restriction of u
to S(O, r). Then / is a harmonic majorant of u in B(O, r) and the function
u*f equal to I in B(O, r) and equal to u in G\B(0, r) is subharmonic in
G ([4, p. 69]). As is well known, we can write I = Σĵ ofyjffy ίn B(Q, r),
where Hά is a homogeneous harmonic polynomial of degree j in Rn such
that for each p > 0

(ί = fc)

and the series is locally uniformly convergent in J5(O, r). Hence, if
0 < p < r, then

2, 0, |0) = Λ/o- ^t -W^*2, O, ^ i f
Jo i=o Jo

i=o

Hence, since M(u*, 0, p) = u*(O) — α0, we have

(15) nM(u*\ 0, /o) + 2(M(u*, 0, ô))2 - (n + 2)A(ι̂ *2, 0,

^ 0 .

Since u* and w*2 are subharmonic in G, the means on the left-hand side
of (15) are continuous functions of p on (0, r] . Hence the expression on
the left-hand side of (15) remains nonnegative when p = r. Using this
result and the fact that u ^ u* in B(O, r) with equality on S(O, r), we
have
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(n + 2)A(u\ 0, r) rg (n + 2)A(u*\ 0, r) ^ nM(u*\ 0, r) + 2(M(u*, 0, r))2

= wM(^2, O, r) + 2(M(u, 0, r)) 2 .

1.5. In the case n = 2 the converse of Theorem 1 follows from
Theorem B. We give here an example to show that the converse is false
in the case n ^ 3. The Euclidean norm of xeRn is denoted by ||g||.

EXAMPLE. If u is defined in Rn\{0}, where n^3, by

u(x) = exp^Uccll2"71) ,

then u is PL in Rn\{0}, but there exist points y of jβn\{0} such that

A(u{n+2)/n, y, r) > (M(u, y, r)){n+2)/n

for all sufficiently small r.

It is well-known that logu is harmonic in Λn\{0}, so u is PL there.
To estimate the means in this example, we use the case k = 2 of (4)

and (5):

(16) M(f, xy r) = fix) + {2n)-x^f{x)r2 + {Sn(n

and

(17) A(/, x, r) - f{x) + i2n + 4)

+ {8(^ + 2)in

For each a > 0, define va in Rn\{0} by

vaix) = exvia\\x\Γn) .

Straightforward calculations give

(18) Δvaix) = a\n - 2)21| x | |MX(ίc)

and

(19) tfvaix) = a\n - 2)21| x ||4~4n{α2(^ - 2)2

+ Aain - l)in - 2)|M|*"2 + 2n(n - l)\\x\\2n"}vaix) .

Now let y be a point of Λn such that

112/11- {(2tt- 4)M}1/("-« = λ , say.
Since u = vn, we can use (16), (18) and (19) to obtain after some simpli-
fication

, y, r))n+2 = exvinin + 2)λ2-n)ll + —nin + 2)in - 2)2λ2~2V
^ Li

Ln(n 2)V-^[W1(Λ 2)2L
n
(
n
- 2 ) V - ^ [ W

1
( Λ - 2)

8

2n(n - l)λ
2
"-

4
 + n(n + l)(n + 2)(Λ - 2)

2
]r

4
 + o(r

4
)J .
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Similarly, since u{n+2)/n = vn+2, we obtain from (17), (18) and (19) that

(A(u{n+2)/n, y, r))n = exv(n(n + 2)λ2~n)jl + — n(n + 2)(n - 2 ) V " 2 V

+ λn(n + 2)(n - 2)2(ra+4)-1λ*-t"[(Λ1 - 4)2+4(Λ+2)(w - l)(n -2)λ"-*
8

- l)λ2"-4 + (Λ + 2)(Λ - l)(n - 2)2(% + 4)]r4

Subtracting and simplifying, we find that

(20) (M(u, y, r))"+ 2 - (A(tt("+ί)/", y, r))n

= — exv(n(n + 2)X2~n)n(n - 2)\n + 4)~ 1\*-*ΛKr* + o(r*) ,
tit

where

K = 2(n - 2)2 - 4(Λ - l)(n - 2)λπ"2 + n(n - l)λ2n"4 = 2(2 - n^n*1 < 0 .

Hence for all sufficiently small r the left-hand side of (20) is negative,
and the required conclusion follows.

2. Fejer-Riesz type inequalities.

2.1. In view of Theorem A, it is natural to ask whether, for any
nonnegative subharmonic function in G, we have, for p > 0,

(21) A(up, x, r) ^ C(n, p)(M(u, x, r))p

whenever B(x, r)cG. Here and in the sequel we use C(a, 6, •) to denote
a positive constant, depending only on α, 6, , not necessarily the same
on any two occurrences. We infer from Theorem 4 that if p > 1, the
inequality (21) fails in general with C(n, p) = 1. There is no loss of
generality in supposing that JB(O, l ) c G and considering (21) only in the
case where x = 0 and r = 1. A more general problem is then to find
conditions on a measure μ on B{0, 1) which are sufficient to ensure that

( u'dμ ^ C(n, p, μ)(M(u, 0, 1))*
JB{O,1)

for any nonnegative subharmonic function u in G.

For the remainder of this section we simplify the notation by writing
B = £(O, 1) and S = S(O, 1). Let K denote the Poisson kernel of B; then
K is defined on BxS by

We write u 6 S^ if u is nonnegative and subharmonic in a domain con-
taining B, and we put Λf(w) = M(u, O, 1).
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THEOREM 6. Suppose that p ^ 1 and that μ is a measure on B such
that

sup ( (K(x, y))pdμ(x) = I < oo .
yes JB

If ueS^, then

[ updμ ^ I(Σ{l)M{u)Y .
JB

The result fails if 0 < p < 1.

COROLLARY. Suppose that p ^ 1 and that μ is a measure on B such
that

sup [ \\x- y\\{1~n)pdμ(x) = J < oo .
yes JB

If ue<9*, then

\ updμ ^ J(2M(u)Y .
JB

By taking μ to be n-dimensional Lebesgue measure, we obtain from the
Corollary the following result in the case where 1 ^ p < n/(n — 1).

THEOREM 7. If 0 < p < n/(n — 1) and ue^, then

A{up, 0, 1) ^ C(w, p)(M(u))' .

The result fails if p ^ n/(n — 1).

By modifying the proof of Theorem 6, we shall also prove the fol-
lowing theorem, which is analogous to the Fejer-Riesz theorem (see, e.g.,
[3, p. 46]); the analogy is most apparent when the measure μ is concen-
trated on B intersected with a proper subspace of Rn.

THEOREM 8. Suppose that p > 0 and that μ is a measure on B such
that

\ (1 - \\x\\yι-n)ί>dμ(x) = L < oo .
JB

If ueS^, then

[ updμ ^ L(2M(u))p ,[
JB

2.2. Our proof of Theorem 6 is a generalization of the proof of [1,
Theorem 2].

Let h be the Poisson integral in B of u restricted to S. Then

h(x) = \ K(x, y)u(y)dσ(y) (x e B)
JS
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and h is a harmonic majorant of n in B (in fact, the least such majorant).
Hence, if p Ξi 1,

, y)u(y)dσ(y)J'dμ(x)

, y)yu(y)dσ(y)dμ(x)

\ (K(x, y))"u(y)dμ(x)dσ(y)
JSJB

The second of the above inequalities follows from Holder's inequality.
The change of order of integration is justified, since the integrand is
nonnegative.

2.3. We now suppose that 0 < p < 1 and show that the result fails.
Let yw = (1, 0, , 0) and let w — K( , y{1)). Then it is easy to see that
wp is a potential in B and hence that M(wp, O, r) —> 0 as r —> 1 —.
For each positive integer m, let μm be the measure supported by
S(O, m/(m + 1)) which is proportional to surface-area measure and is
such that μm{B)M{wp, 0, m/(m + 1)) — 1. Then, by the symmetry of μm,

sup ( (K(x, y))pdμm{x) = \ wpdμm = 1 .
yes JB JB

Hence, if the theorem held with 0 < p < 1, then, taking u = 1, we would
have μm(B) <J {Σ{l))p for all m, contradicting the fact that μm(B) —> oo.

2.4. The Corollary follows from the inequality

K(x, y) < (2/^(1))\\x-y\r n (xeB,yeS).

2.5. To prove Theorem 7 when 1 ^ p < nftn — 1), note that for each
yeS,

\ \\χ - y\\{1-n)pdx ^ S \\x - y\\{1~n)pdx = C{ri)^t{n-1){1-p)dt = C(n, p) ,
JB JB(y,2) JO

so that the required result follows if we take μ to be Lebesgue volume
measure in the Corollary to Theorem 6.

If 0 < p < 1, then, by Holder's inequality and the result already
established for p = 1,

A(up, 0, 1) ^ (A(u, O, l))p ^ (C(n, 1))P(M(^))P .

2.6. Now suppose that p ^ n/(n — 1). Let y{P) = (p, 0, , 0), where
p ^ 1, and let
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KP{x) = (p 2 - \\xf)\\x - yin\\- (xeB(O, p)) .

Then iζo is positive and harmonic in B(O, p) (since it is a positive multiple
of the Poisson kernel of B(O, p) with pole y{P)). Hence if p > 1, then
KpGSr and

(22) M(KP) = JΓ,(O) = ?2-* .

Further, by considering a contraction mapping on J8n, we find that

(23) A{K*P, 0, 1) = p^~n)A{K?, 0, p~*) .

Let yl denote the Stolz cone

{x e B: \\x - y{1) | | < 1 , x\ + . . + x\ ^ (1 - ^)2} .

Then it is easy to see that

1 - | |α? | | 2 ^(v/"2"- l ) | | a ί- t f ( 1 ) | | (xeΛ) ,

so that

(v/y - 1)|| x - y(1) II1"71 (xeΛ).

Let ΛPj= {xeA:\\x- yw \\ > (2τ/Y+ 2)(1 - IO"1)}, where 1 < p < (2 i/Y+ 2)
x ( 2 i / 2 + I)" 1 . Then, since ^ c ^ n B ( 0 , ^o"1), we have

f, 0, p-1) ^

= C(n, p)pn[ _ tin-lHl-p)dt -> oo as p -* 1 + .

It now follows from (22) and (23) that the theorem fails if p ^ w/(w — 1).

2.7. To prove Theorem 8, note first that, as in §2.2,

\updμ ^ 5 B ( 5 ^ ( ^ V)u(y)dσ(v))Pdμ(x) .

Now for each cc e JB and each yeS,

Hence

' ί (1 - ||a?||)(1-n)»(^(l)Jlf(u))^(iB) = L(2M(u))p .
JB
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