FEJÉR-RIESZ INEQUALITIES FOR LOWER DIMENSIONAL SUBSPACES

Nozomu Mochizuki

(Received October 24, 1985)

Introduction. The purpose of this note is to obtain inequalities of the Fejer-Riesz type for subspaces of the unit ball and the generalized halfplane in $C^{n}, n \geqq 2$. Let $B=\left\{z \in C^{n}| | z \mid<1\right\}$ denote the unit ball in C^{n}, where $|z|^{2}=z_{1} \bar{z}_{1}+\cdots+z_{n} \bar{z}_{n}$. We write $L_{2 k+1}$ for the space $\boldsymbol{R} \times \boldsymbol{C}^{k} \times\{0\} \times \cdots \times$ $\{0\} \subset \boldsymbol{C}^{n}$ and $L_{2 k}$ for $\boldsymbol{C}^{k} \times\{0\} \times \cdots \times\{0\}$, where \boldsymbol{R} means the real line in \boldsymbol{C}. We denote by B_{m} the unit ball in \boldsymbol{R}^{m}. Surface measures on ∂B and ∂B_{m}, respectively, will be denoted by $d \sigma$ and $d \sigma_{m}$. For $f \in H^{p}(B), 0<p<+\infty$, we define

$$
\|f\|_{p}^{p}=\sup _{0<r<1} \int_{\partial B}|f(r \zeta)|^{p} d \sigma(\zeta)
$$

In the following, (1) is known for $k=n-1$ ([1]), and (2) is also known for $k=n-1$ ([6, 7.2.4, (b)]). A similar inequality is given in [5], where the subspace is $\boldsymbol{R} \times \boldsymbol{R}$ in \boldsymbol{C}^{2}. Moreover, analogous inequalities are known for harmonic functions on the unit ball in \boldsymbol{R}^{n} ([4]).

The author wishes to thank M. Kaneko for useful conversations.
Theorem 1. There is a constant C, depending on n, k, such that the following holds for every $f \in H^{p}(B), 0<p<+\infty$:

$$
\begin{equation*}
\int_{B \cap L_{2 k+1}}|f(z)|^{p}\left(1-|z|^{2}\right)^{n-k-1} d z \leqq C\|f\|_{p}^{p}, \quad 0 \leqq k \leqq n-1 . \tag{1}
\end{equation*}
$$

There is a constant C such that

$$
\begin{equation*}
\int_{B \cap L_{2 k}}|f(z)|^{p}\left(1-|z|^{2}\right)^{n-k-1} d z \leqq C\|f\|_{p}^{p}, \quad 1 \leqq k \leqq n-1 \tag{2}
\end{equation*}
$$

$n-k-1$ is the smallest exponent in each case. The best possible constant $C_{0}(n ; 2 k+1)$ for (1) satisfies

$$
\frac{\Gamma(n / 2) \Gamma(n-k)}{2 \Gamma(n / 2+1 / 2) \pi^{n-k-1 / 2}} \leqq C_{0}(n ; 2 k+1) \leqq \frac{\Gamma(n-k)}{2 \pi^{n-k-1}}
$$

For (2), $C_{0}(n ; 2 k)=\left(2 \pi^{n-k}\right)^{-1} \Gamma(n-k)$ is the best possible constant.

[^0]Let $D=\left\{\left(z_{1}, z^{\prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{n-1}\left|\operatorname{Im} z_{1}-\left|z^{\prime}\right|^{2}>0\right\}\right.$ and let

$$
\|f\|_{p}^{p}=\sup _{y_{1}>0} \int_{R \times c^{n-1}}\left|f\left(x_{1}+i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right|^{p} d x_{1} d z^{\prime}
$$

for $f \in H^{p}(D), 0<p<+\infty$. In the following, $C_{0}(n ; j)$ denote the constants in Theorem 1. (3) is known for $k=n-1$ ([2]). Again, analogous inequalities for harmonic functions on $\boldsymbol{R}^{n} \times(0,+\infty)$ are given in [3].

Theorem 2. For every $x_{1} \in \boldsymbol{R}$, every $f \in H^{p}(D), 0<p<+\infty$, and $0 \leqq k \leqq n-1$, we have

$$
\begin{equation*}
\int_{0}^{+\infty} d y_{1} \int_{L_{2 k}}\left|f\left(x_{1}+i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right|^{p} y_{1}^{n-k-1} d z^{\prime} \leqq C_{0}(n ; 2 k+1)\|f\|_{p}^{p} \tag{3}
\end{equation*}
$$

The following holds for $f \in H^{p}(D), 0<p<+\infty$, and $1 \leqq k \leqq n-1$:
(4) $\quad \int_{0}^{+\infty} d y_{1} \int_{L_{2 k-1}}\left|f\left(x_{1}+i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right|^{p} y_{1}^{n-k-1} d x_{1} d z^{\prime} \leqq 2 C_{0}(n ; 2 k)\|f\|_{p}^{p}$.

The exponent $n-k-1$ is unique in each case.

1. Proof of Theorem 1. We write $f_{r}(z)=f(r z), 0<r<1$. To prove (1), we may suppose that $0 \leqq k \leqq n-2$, since the case $k=n-1$ is included in [1]. Let $f \in H^{p}(B)$. Then for an arbitrarily fixed point $\left(x_{1}, z^{\prime}\right) \in B_{2 k+1}$, where $x_{1} \in \boldsymbol{R}$ and $z^{\prime}=\left(z_{2}, \cdots, z_{k+1}\right)$, the function $\mid f_{r}\left(x_{1}, z^{\prime}\right.$, $\left.\left(1-x_{1}^{2}-\left|z^{\prime}\right|^{2}\right)^{1 / 2} z^{\prime \prime}\right)\left.\right|^{p}$ of the variable $z^{\prime \prime}=\left(z_{k+2}, \cdots, z_{n}\right)$ is plurisubharmonic in a neighborhood of $\bar{B}_{2 n-2 k-2}$, hence

$$
\left|f_{r}\left(x_{1}, z^{\prime}, 0^{\prime \prime}\right)\right|^{p} \leqq\left|B_{2 n-2 k-2}\right|^{-1} \int_{B_{2 n-2 k-2}}\left|f_{r}\left(x_{1}, z^{\prime},\left(1-x_{1}^{2}-\left|z^{\prime}\right|^{2}\right)^{1 / 2} z^{\prime \prime}\right)\right|^{p} d z^{\prime \prime}
$$

By Fubini's theorem we can see that

$$
\begin{aligned}
I_{r}: & =\int_{B_{2 k+1}}\left|f_{r}\left(x_{1}, z^{\prime}, 0^{\prime \prime}\right)\right|^{p}\left(1-x_{1}^{2}-\left|z^{\prime}\right|^{2}\right)^{n-k-1} d x_{1} d z^{\prime} \\
& \leqq\left|B_{2 n-2 k-2}\right|^{-1} \int_{B_{2 n-1}}\left|f_{r}\left(x_{1}, z^{\prime}, z^{\prime \prime}\right)\right|^{p} d x_{1} d z^{\prime} d z^{\prime \prime}
\end{aligned}
$$

[1, Theorem 1, (3)] shows that the right side does not exceed $2^{-1} \Gamma(n-$ k) $\pi^{-(n-k-1)}\|f\|_{p}^{p}$. From

$$
I_{r}=r^{-2 n+1} \int_{\left|\left(x_{1}, z^{\prime}\right)\right|<r}\left|f\left(x_{1}, z^{\prime}, 0^{\prime \prime}\right)\right|^{p}\left(r^{2}-x_{1}^{2}-\left|z^{\prime}\right|^{2}\right)^{n-k-1} d x_{1} d z^{\prime}
$$

we obtain (1) by letting $r \rightarrow 1$. Next, for $N \geqq 1, \beta>-1, \rho>0$, note that

$$
\begin{equation*}
\int_{|x|<\rho, x \in R^{N}}\left(\rho^{2}-|x|^{2}\right)^{\beta} d x=A(N, \beta) \rho^{N+2 \beta} \tag{5}
\end{equation*}
$$

where $A(N, \beta)=\Gamma^{-1}(N / 2+\beta+1) \Gamma(\beta+1) \pi^{N / 2}$. Let $\alpha>-1, c<n$. Then, for $1 \leqq k \leqq n-1$, by Fubini's theorem and (5),

$$
\begin{aligned}
I_{2 k+1} & :=\int_{B \cap L_{2 k+1}}\left|1-z_{1}\right|^{-c}\left(1-|z|^{2}\right)^{\alpha} d z \\
& =A(2 k, \alpha) \int_{-1}^{1}\left(1+x_{1}\right)^{\alpha+k}\left(1-x_{1}\right)^{\alpha+k-c} d x_{1}
\end{aligned}
$$

This is valid for $k=0$ with $A(0, \alpha)=1$. Now suppose that $-1<\alpha<$ $n-k-1$. Then, for $c=\alpha+k+1$, the function $\left(1-z_{1}\right)^{-c}$ belongs to $H^{1}(B)$ and we have $I_{2 k+1}=+\infty$. Thus $n-k-1$ is the smallest exponent that guarantees (1). Finally, take $c<n$ and put $\alpha=n-k-1,0 \leqq$ $k \leqq n-1$. Then, by using Legendre's duplication formula, we have

$$
I_{2 k+1}=A(2 k, n-k-1) \frac{2^{2 n-c-1} \Gamma(n-c) \Gamma(n)}{\Gamma(2 n-c)}=\frac{\Gamma(n-c) \Gamma(n-k) \pi^{k+1 / 2}}{\Gamma(n-c / 2) \Gamma(n-c / 2+1 / 2)}
$$

On the other hand, we know from [6, p. 54] that

$$
J_{n}:=\int_{\partial B}\left|1-\zeta_{1}\right|^{-c} d \sigma(\zeta)=\frac{2 \Gamma(n-c) \pi^{n}}{\Gamma^{2}(n-c / 2)}
$$

hence

$$
\begin{equation*}
\frac{\Gamma(n-c / 2) \Gamma(n-k)}{2 \Gamma(n-c / 2+1 / 2) \pi^{n-k-1 / 2}} \leqq C_{0}(n ; 2 k+1) \leqq \frac{\Gamma(n-k)}{2 \pi^{n-k-1}} \tag{6}
\end{equation*}
$$

Letting $c \rightarrow n$, we obtain the desired estimate. Now we shall prove (2) using a formula which will be treated in the next section. Write z in the form $\left(z^{\prime}, z^{\prime \prime}\right)$ with $z^{\prime}=\left(z_{1}, \cdots, z_{k}\right), z^{\prime \prime}=\left(z_{k+1}, \cdots, z_{n}\right)$. The plurisubharmonicity of $\left|f_{r}\left(z^{\prime},\left(1-\left|z^{\prime}\right|^{2}\right)^{1 / 2} z^{\prime \prime}\right)\right|^{p}$ as a function of $z^{\prime \prime}$ implies that

$$
\left|f_{r}\left(z^{\prime}, 0^{\prime \prime}\right)\right|^{p} \leqq\left|\partial B_{2 n-2 k}\right|^{-1} \int_{\partial B_{2 n-2 k}}\left|f_{r}\left(z^{\prime},\left(1-\left|z^{\prime}\right|^{2}\right)^{1 / 2} \zeta^{\prime \prime}\right)\right|^{p} d \sigma_{2 n-2 k}\left(\zeta^{\prime \prime}\right)
$$

hence by the formula (7) we have

$$
\int_{B_{2 k}}\left|f_{r}\left(z^{\prime}, 0^{\prime \prime}\right)\right|^{p}\left(1-\left|z^{\prime}\right|^{2}\right)^{n-k-1} d z^{\prime} \leqq\left|\partial B_{2 n-2 k}\right|^{-1} \int_{\partial B}\left|f_{r}(\zeta)\right|^{p} d \sigma(\zeta) .
$$

Equality holds for $f=1$, so the constant is best possible. Next suppose that $-1<\alpha<n-k-1$ and let $c=\alpha+k+1$. Then, by (5),

$$
\begin{gathered}
\int_{B \cap L_{2 k}}\left|1-w_{1}\right|^{-c}\left(1-|w|^{2}\right)^{\alpha} d w=C(k, \alpha) \int_{B_{2}}\left|1-w_{1}\right|^{c}\left(1-\left|w_{1}\right|^{2}\right)^{\alpha+k-1} d w_{1} \\
1 \leqq k \leqq n-1
\end{gathered}
$$

Letting $w_{1}=\left(z_{1}+i\right)^{-1}\left(z_{1}-i\right)$, where $z_{1}=x_{1}+i y_{1}$ with $x_{1} \in \boldsymbol{R}, y_{1}>0$, we can see that

$$
\begin{aligned}
& \int_{B_{2}}\left|1-w_{1}\right|^{-c}\left(1-\left|w_{1}\right|^{2}\right)^{\alpha+k-1} d w_{1} \\
&=C^{\prime}(k, \alpha) \int_{0}^{+\infty} d y_{1} \int_{-\infty}^{+\infty}\left(x_{1}^{2}+\left(y_{1}+1\right)^{2}\right)^{-(\alpha+k+1) / 2} y_{1}^{\alpha+k-1} d x_{1}=+\infty
\end{aligned}
$$

Remark. If, formally, we let $n=1, k=0$ in (6), then $C_{0}(1,1)$ becomes $1 / 2$. It may be worth mentioning that this is actually so. Indeed, letting $e^{i \theta}=(t+i)^{-1}(t-i),-\infty<t<+\infty$, in

$$
J_{1}=\int_{0}^{2 \pi}\left|1-e^{i \theta}\right|^{-\sigma} d \theta, \quad c<1,
$$

we see from $d \theta=2\left(t^{2}+1\right)^{-1} d t$ that $J_{1}=2^{1-c} \Gamma^{-1}(1-c / 2) \Gamma((1-c) / 2) \pi^{1 / 2}$ and, together with $I_{1}=2^{1-\theta}(1-c)^{-1}$, we get (6).
2. An integral formula. Let $n \geqq 2,1 \leqq k \leqq n-1$. For $f \in L^{1}(\partial B$, $d \sigma$) we shall show that

$$
\begin{align*}
& \int_{\partial B} f(\zeta) d \sigma(\zeta) \tag{7}\\
& \quad=\int_{B_{2 k}}\left(1-\left|z^{\prime}\right|^{2}\right)^{n-k-1} d z^{\prime} \int_{\partial B_{2 n-2 k}} f\left(z^{\prime},\left(1-\left|z^{\prime}\right|^{2}\right)^{1 / 2} \zeta^{\prime \prime}\right) d \sigma_{2 n-2 k}\left(\zeta^{\prime \prime}\right),
\end{align*}
$$

where $z^{\prime}=\left(z_{1}, \cdots, z_{k}\right), \zeta^{\prime \prime}=\left(\zeta_{k+1}, \cdots, \zeta_{n}\right)$. Note that, if we employ normalized measures, this yields 1.4.4 and 1.4.7, (2) of [6]. In the rest of this section, Lebesgue measure on \boldsymbol{R}^{j} will be denoted by $d \nu_{j}$.

Lemma. Let $m \geqq 3,1 \leqq k \leqq m-2$. Let $f \in L^{1}\left(\partial B_{m}, d \sigma_{m}\right)$. Then

$$
\begin{aligned}
& \int_{\partial B_{m}} f(x) d \sigma_{m}(x) \\
& \quad=\int_{B_{k}}\left(1-\left|x^{\prime}\right|^{2}\right)^{(m-k-2) / 2} d \nu_{k}\left(x^{\prime}\right) \int_{\partial B_{m-k}} f\left(x^{\prime},\left(1-\left|x^{\prime}\right|^{2}\right)^{1 / 2} x^{\prime \prime}\right) d \sigma_{m-k}\left(x^{\prime \prime}\right),
\end{aligned}
$$

where $x^{\prime}=\left(x_{1}, \cdots, x_{k}\right), x^{\prime \prime}=\left(x_{k+1}, \cdots, x_{m}\right)$.
Proof. Let Ψ be the usual parametrization for ∂B_{m} defined by $\Psi(\theta)=\Psi\left(\theta_{1}, \cdots, \theta_{m-1}\right)=\left(x_{1}, \cdots, x_{m}\right)$, where

$$
\begin{aligned}
x_{1} & =\cos \theta_{1}, \\
x_{j} & =\sin \theta_{1} \cdots \sin \theta_{j-1} \cos \theta_{j}, \quad 2 \leqq j \leqq m-1, \\
x_{m} & =\sin \theta_{1} \cdots \sin \theta_{m-2} \sin \theta_{m-1}
\end{aligned}
$$

$0<\theta_{1}, \cdots, \theta_{m-2}<\pi, \quad 0 \leqq \theta_{m-1}<2 \pi$. Then $d \sigma_{m}=\prod_{j=1}^{m-2}\left(\sin \theta_{j}\right)^{m-j-1} d \theta_{1} \cdots$ $d \theta_{m-1}=: J(\theta) d \theta$. Put $\Psi_{k}\left(\theta^{\prime}\right)=\left(x_{1}, \cdots, x_{k}\right), \theta^{\prime}=\left(\theta_{1}, \cdots, \theta_{k}\right)$. Then the mapping $\Psi_{k}:(0, \pi)^{k} \rightarrow B_{k}$ gives a parametrization for the ball B_{k}, and $d \nu_{k}=$ $\Pi_{j=1}^{k}\left(\sin \theta_{j}\right)^{k-j+1} d \theta_{1} \cdots d \theta_{k}=: J^{\prime}\left(\theta^{\prime}\right) d \theta^{\prime}$. Finally define the mapping ψ by

$$
\psi\left(\theta^{\prime \prime}\right)=\left(y_{k+1}, \cdots, y_{m}\right), \quad \theta^{\prime \prime}=\left(\theta_{k+1}, \cdots, \theta_{m-1}\right) \in(0, \pi)^{m-k-2} \times[0,2 \pi),
$$

where $y_{k+1}=\cos \theta_{k+1}, \cdots, y_{m}=\sin \theta_{k+1} \cdots \sin \theta_{m-1}$. Then ψ gives a parametrization for ∂B_{m-k}, and $d \sigma_{m-k}=\prod_{j=1}^{m-k-2}\left(\sin \theta_{k+j}\right)^{m-k-j-1} d \theta_{k+1} \cdots$ $d \theta_{m-1}=: J^{\prime \prime}\left(\theta_{k+1}, \cdots, \theta_{m-2}\right) d \theta^{\prime \prime}$. Note that $\prod_{j=1}^{k} \sin \theta_{j}=\left(1-\left|\Psi_{k}\left(\theta^{\prime}\right)\right|^{2 / 2}\right)^{1 / 2}$, so $\Psi(\theta)=\left(\Psi_{k}\left(\theta^{\prime}\right),\left(1-\left|\Psi_{k}\left(\theta^{\prime}\right)\right|^{2}\right)^{1 / 2} \psi\left(\theta^{\prime \prime}\right)\right)$. On the other hand, we can write

$$
\begin{aligned}
J(\theta) & =\left(\prod_{j=1}^{k} \sin \theta_{j}\right)^{m-k-2} J^{\prime}\left(\theta^{\prime}\right) J^{\prime \prime}\left(\theta_{k+1}, \cdots, \theta_{m-2}\right) \\
& =\left(1-\left|\Psi_{k}\left(\theta^{\prime}\right)\right|^{2}\right)^{(m-k-2) / 2} J^{\prime}\left(\theta^{\prime}\right) J^{\prime \prime}\left(\theta_{k+1}, \cdots, \theta_{m-2}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{\partial B_{m}} f(x) d \sigma_{m}(x) & =\int_{(0, \pi)^{m-2} \times[0,2 \pi)} f(\Psi(\theta)) J(\theta) d \theta \\
& =\int_{(0, \pi)^{k}}\left(1-\left|\Psi_{k}\left(\theta^{\prime}\right)\right|^{2}\right)^{(m-k-2) / 2} J^{\prime}\left(\theta^{\prime}\right) d \theta^{\prime} \int_{(0, \pi)^{m-k-2} \times[0,2 \pi)}(*) d \theta^{\prime \prime},
\end{aligned}
$$

where $(*)=f\left(\Psi_{k}\left(\theta^{\prime}\right),\left(1-\left|\Psi_{k}\left(\theta^{\prime}\right)\right|^{2}\right)^{1 / 2} \psi\left(\theta^{\prime \prime}\right)\right) J^{\prime \prime}\left(\theta_{k+1}, \cdots, \theta_{m-2}\right)$.
3. Proof of Theorem 2. The Cayley transform $\Psi: D \rightarrow B$ is defined by $\Psi\left(z_{1}, \cdots, z_{n}\right)=\left(w_{1}, \cdots, w_{n}\right)$, where $w_{1}=\left(z_{1}+i\right)^{-1}\left(z_{1}-i\right)$ and $w_{j}=$ $2 z_{j}\left(z_{1}+i\right)^{-1}, 2 \leqq j \leqq n$. For $f \in H^{p}(D), 0<p<+\infty$, there is a unique $g \in H^{p}(B)$ such that

$$
\begin{equation*}
f(z)=(g \circ \Psi)(z)\left(z_{1}+i\right)^{-2 n / p}, \quad z \in D \tag{8}
\end{equation*}
$$

and this correspondence determines an isomorphism of $H^{p}(D)$ onto $H^{p}(B)$. Moreover, $\|g\|_{p}^{p}=A(n)\|f\|_{p}^{p}$ for a constant $A(n)$ ([7]). We note here that $A(n)=2^{2 n-1}$, which is seen from a computation by letting $g=1$. Now, to see (3), it suffices to assume that $x_{1}=0$. Take $f \in H^{p}(D)$. Then by (1) and (8)

$$
I:=\int_{B \cap L_{2 k+1}}|g(w)|^{p}\left(1-|w|^{2}\right)^{n-k-1} d w \leqq 2^{2 n-1} C_{0}(n ; 2 k+1)\|f\|_{p}^{p}
$$

Put $w=\Psi(z)$, where $z=\left(i y_{1}, z_{2}, \cdots, z_{k+1}, 0, \cdots, 0\right), y_{1}>\left|z^{\prime}\right|^{2}$. Then Ψ maps $D \cap\left(i \boldsymbol{R} \times \boldsymbol{C}^{k} \times\{0\} \times \cdots \times\{0\}\right)$ onto $B \cap L_{2 k+1}$ and the Jacobian determinant is seen to be $2^{2 k+1}\left(y_{1}+1\right)^{-2 k-2}$. Note that $1-|\Psi(z)|^{2}=4\left(y_{1}-\left|z^{\prime}\right|^{2}\right)\left(y_{1}+1\right)^{-2}$. Thus

$$
\begin{aligned}
I & =2^{2 n-1} \int_{y_{1}>\left|z^{\prime}\right|^{2}}\left|f\left(i y_{1}, z^{\prime}\right)\right|^{p}\left(y_{1}-\left|z^{\prime}\right|^{2}\right)^{n-k-1} d y_{1} d z^{\prime} \\
& =2^{2 n-1} \int_{0}^{+\infty} d y_{1} \int_{L_{2 k}}\left|f\left(i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right|^{p} y_{1}^{n-k-1} d z^{\prime}
\end{aligned}
$$

and this proves (3). To verify (4) it is enough to see that Ψ maps $D \cap L_{2 k}$ onto $B \cap L_{2 k}$ and that the Jacobian determinant is $2^{2 k}\left|z_{1}+i\right|^{-2 k-2}$. Next we shall show that $n-k-1$ is the unique admissible exponent. First, in (3), consider y_{1}^{α} with $\alpha>n-k-1$, and let $c=\alpha+k+1$. Then
$\left(z_{1}+i\right)^{-c} \in H^{1}(D)$ as is seen from (8), and changing variables we can see that, for $0 \leqq k \leqq n-1$,

$$
\int_{0}^{+\infty} d y_{1} \int_{\boldsymbol{c}^{k}}\left(y_{1}+\left|z^{\prime}\right|^{2}+1\right)^{-c} y_{1}^{\alpha} d z^{\prime}=C \int_{0}^{+\infty}\left(y_{1}+1\right)^{-(\alpha+1)} y_{1}^{\alpha} d y_{1}=+\infty
$$

In the case $\alpha<n-k-1$, put $c=\alpha+k+1$. Then $f(z):=z_{1}^{-c}\left(z_{1}+i\right)^{-2 n+c} \in H^{1}(D)$ by (8). If $1 \leqq k \leqq n-1$, we see that

$$
\begin{aligned}
\int_{0}^{+\infty} d y_{1} \int_{L_{2 k}}\left|f\left(i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right| y_{1}^{\alpha} d z^{\prime} & >C \int_{0}^{1} d y_{1} \int_{\left|z^{\prime}\right|<1}\left(y_{1}+\left|z^{\prime}\right|^{2}\right)^{-c} y_{1}^{\alpha} d z^{\prime} \\
& >C \int_{0}^{1} y_{1}^{-1} d y_{1}=+\infty
\end{aligned}
$$

The case $k=0$ is straightforward. In (4) consider y_{1}^{α} with $\alpha>n-k-1$ and put $c=\alpha+k+1$. Then

$$
\begin{aligned}
\int_{0}^{+\infty} d y_{1} \int_{L_{2 k-1}}\left(x_{1}^{2}+\left(y_{1}+\left|z^{\prime}\right|^{2}+1\right)^{2}\right)^{-\sigma / 2} y_{1}^{\alpha} d x_{1} d z^{\prime} & =C \int_{0}^{+\infty}\left(y_{1}+1\right)^{-(\alpha+1)} y_{1}^{\alpha} d y_{1} \\
& =+\infty
\end{aligned}
$$

Finally, let $\alpha<n-k-1$ and put $c=\alpha+k+1$. We suppose that $2 \leqq k \leqq n-1$, the case $k=1$ being similar. For $f(z)=z_{1}^{-c}\left(z_{1}+i\right)^{-2 n+c}$ we have

$$
\begin{aligned}
I: & =\int_{0}^{+\infty} d y_{1} \int_{L_{2 k-1}}\left|f\left(x_{1}+i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right| y_{1}^{\alpha} d x_{1} d z^{\prime} \\
& >C \int_{0}^{1} d y_{1} \int_{\left|z^{\prime}\right|<1} d z^{\prime} \int_{\left|x_{1}\right|<1}\left(x_{1}^{2}+\left(y_{1}+\left|z^{\prime}\right|^{2}\right)^{2}\right)^{-\sigma / 2} y_{1}^{\alpha} d x_{1}
\end{aligned}
$$

where

$$
\begin{gathered}
\int_{-1}^{1}\left(x_{1}^{2}+\left(y_{1}+\left|z^{\prime}\right|^{\prime}\right)^{2}\right)^{-c / 2} d x_{1}>C\left(y_{1}+\left|z^{\prime}\right|^{2}\right)^{1-c} \\
\int_{\left|z^{\prime}\right|<1}\left(y_{1}+\left|z^{\prime}\right|^{2}\right)^{1-c} d z^{\prime}>C y_{1}^{-\alpha-1}
\end{gathered}
$$

Thus $I=+\infty$.

References

[1] M. Hasumi and N. Mochizuki, Fejér-Riesz inequality for holomorphic functions of several complex variables, Tôhoku Math. J. 33 (1981), 493-501.
[2] N. Mochizuki, The Fejér-Riesz inequality for Siegel domains, Tôhoku Math. J. 36 (1984), 581-590.
[3] N. du Plessis, Half-space analogues of the Fejér-Riesz theorem, J. London Math. Soc. 30 (1955), 296-301.
[4] N. du Plessis, Spherical Fejér-Riesz theorems, J. London Math. Soc. 31 (1956), 386-391.
[5] S. C. Power, Hörmander's Carleson theorem for the ball, Glasgow Math. J. 26 (1985), 13-17.
[6] W. Rudin, Function theory in the unit ball of \boldsymbol{C}^{n}, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
[7] N. J. Weiss, An isometry of H^{p} spaces, Proc. Amer. Math. Soc. 19 (1968), 1083-1086.
Department of Mathematics
College of General Education
Tômoku University
Kawauchi, Sendai 980
Japan

[^0]: Partially supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

