TOTALLY GEODESIC FOLIATIONS AND KILLING FIELDS, II

Gen-ichi Oshikiri

(Received May 30, 1985)

1. Introduction. A foliation \mathscr{F} of a Riemannian manifold (M, g) is said to be totally geodesic if every leaf of \mathscr{F} is a totally geodesic submanifold of (M, g). In [6], Johnson and Whitt studied some properties of Killing fields on complete connected Riemannian manifolds admitting codimension-one totally geodesic foliations by compact leaves. In [7], the author studied one of these properties of Killing fields on closed Riemannian manifolds admitting not necessarily compact codimension-one totally geodesic foliations and proved the following: Let (M, g) be a closed connected Riemannian manifold and \mathscr{F} be a codimension-one totally geodesic foliation of (M, g). Then any Killing field Z on (M, g) preserves \mathscr{F}, that is, the flow of Z maps each leaf of \mathscr{F} to a leaf of \mathscr{F}.

In this paper, we extend this result to higher codimensions by studying Jacobi fields along geodesics on totally geodesic leaves. We prove the following.

Theorem. Let (M, g) be a connected complete Riemannian manifold and \mathscr{F} be a totally geodesic foliation of (M, g). Assume that the bundle orthogonally complement to \mathscr{F} is also integrable. Then any Killing field Z on (M, g) with bounded length, i.e., $g(Z, Z) \leqq$ const. $<\infty$ on M, preserves \mathscr{F}.

The proof will be given in Section 3. In Section 4, we give some examples and study a related topic.
2. Preliminaries. Let (M, g) be a connected complete Riemannian manifold and \mathscr{F} be a codimension- q totally geodesic foliation of (M, g). Denote by D the Riemannian connection of (M, g) and by R the curvature tensor of D. We also denote $g(X, Y)$ by $\langle X, Y\rangle$. Let $c: \boldsymbol{R} \rightarrow M$ be a geodesic parametrized by arc length on a totally geodesic leaf L of \mathscr{F} and $Y(t)$ be a Jacobi field along c. Then $Y(t)$ satisfies the Jacobi equation $D_{c^{\prime}(t)} D_{c^{\prime}(t)} Y(t)+R_{t} Y(t)=0$ where $R_{t} Y(t)=R\left(Y(t), c^{\prime}(t)\right) c^{\prime}(t)$. Set $x=c(0)$. We choose an orthonormal basis $\left\{E_{1}, \cdots, E_{p}, X_{1}, \cdots, X_{q}\right\}$ of $T_{x} M$ with $E_{1}=c^{\prime}(0), E_{2}, \cdots, E_{p} \in T_{x} \mathscr{F}$ and $X_{1}, \cdots, X_{q} \in T_{x} \mathscr{F}^{\perp}$ where $\operatorname{dim}(L)=p$
and $\operatorname{dim}(M)=n=p+q$. By the parallel translation along c, we get a parallel frame field $\left\{E_{i}, X_{a}\right\}=\left\{E_{1}(t), \cdots, E_{p}(t), X_{1}(t), \cdots, X_{q}(t)\right\}$ along c. As L is a totally geodesic submanifold of (M, g), the frame field $\left\{E_{i}, X_{a}\right\}$ satisfies the following properties: $E_{1}(t)=c^{\prime}(t), E_{i}(t) \in T_{o(t)} L$ for $i=1, \cdots, p$ and $X_{a}(t) \in T_{c(t)} L^{\perp}$ for $a=1, \cdots, q$. With respect to this frame field $\left\{E_{i}, X_{a}\right\}$ we represent $Y(t)$ as $Y(t)=\sum_{i=1}^{p} u_{i}(t) E_{i}(t)+\sum_{a=1}^{q} v_{a}(t) X_{a}(t)$. Note that $\left\langle R\left(E_{i}(t), c^{\prime}(t)\right) c^{\prime}(t), X_{a}(t)\right\rangle=\left\langle R\left(X_{a}(t), c^{\prime}(t)\right) c^{\prime}(t), E_{i}(t)\right\rangle=0$, since L is totally geodesic. Thus $u_{i}(t)$ and $v_{a}(t)$ satisfy the following differential equations

$$
\begin{aligned}
& d^{2} u_{i}(t) / d t^{2}+\sum_{j=1}^{p} u_{j}(t) R_{i j}(t)=0 \quad \text { for } \quad i=1, \cdots, p \\
& d^{2} v_{a}(t) / d t^{2}+\sum_{b=1}^{q} v_{b}(t) R_{a b}(t)=0 \quad \text { for } \quad a=1, \cdots, q
\end{aligned}
$$

where $R_{i j}(t)=\left\langle R\left(E_{i}(t), c^{\prime}(t)\right) c^{\prime}(t), E_{j}(t)\right\rangle$ and $R_{a b}(t)=\left\langle R\left(X_{a}(t), c^{\prime}(t)\right) c^{\prime}(t), X_{b}(t)\right\rangle$. Hence we have the following.

Lemma 1. Let $Y(t)$ be a Jacobi field along c. Then the orthogonal projections $V(t)$ and $H(t)$ of $Y(t)$ to $T L$ and $T L^{\perp}$ are also Jacobi fields.

Now assume that the bundle $\mathscr{H}=\left\{(x, v) \in T M ; v \perp T_{x} \mathscr{F}, x \in M\right\}$ orthogonally complement to \mathscr{F} is integrable. Then the following is known.

Theorem (Blumenthal and Hebda [1]). Let (M, g, \mathscr{F}) be as above. Then the universal covering space \tilde{M} of M is topologically a product $L \times H$, where
(1) L (resp. H) is the universal covering space of the leaves of \mathscr{F} (resp. \mathscr{H}),
(2) the canonical lifting $\tilde{\mathscr{F}}$ (resp. $\tilde{\mathscr{H}}$) of \mathscr{F} (resp. \mathscr{H}) to \tilde{M} is the foliation by leaves of the form $L \times\{h\}, h \in H$ (resp. $\{l\} \times H, l \in L$), and
(3) the projection $P: \widetilde{M} \rightarrow L$ onto the first factor is a Riemannian submersion.

We identify a vector field X on L with the one \tilde{X} on \tilde{M} that is tangent to $\tilde{\mathscr{F}}$ and is P-related to X. We call \tilde{X} the canonical lifting of X. When X is defined only on a subset A of L (e.g., A is a geodesic on L), we also define the canonical lifting \widetilde{X} of X to \tilde{M} that is defined only on the subset $P^{-1}(A)$ in \tilde{M} and satisfies the above conditions.
3. Proof of Theorem. Let \tilde{M} be the universal covering space of M and $\tilde{\mathscr{F}}$ (resp. $\tilde{\mathscr{H}}$) be the canonical lifting of \mathscr{F} (resp. \mathscr{H}) to \widetilde{M}. We continue to use the notations in Section 2. Let $L \times\{h\}, h \in H$, be a leaf of $\tilde{\mathscr{F}}$ and $c: \boldsymbol{R} \rightarrow L \times\{h\}$ be a geodesic parametrized by arc length. By

Lemma 1, any Jacobi field $Y(t)$ along c decomposes into the sum of two Jacobi fields $W(t)+H(t)$, where $W(t) \in T \tilde{\mathscr{F}}$ and $H(t) \in T \tilde{\mathscr{H}}$. Hereafter, we consider only the $T \tilde{\mathscr{H}}$-component $H(t)$ of $Y(t)$ and call it an H-Jacobj field. Note that the dimension of the space of H-Jacobi fields along c is equal to $2 q$. Let $\left\{E_{i}(t), X_{a}(t)\right\}$ be a parallel frame field along c given in Section 2. Denote by $H_{c(t)}$ the leaf of $\tilde{\mathscr{H}}$ passing through $c(t)$, that is, $H_{c(t)}=\{P(c(t))\} \times H$.

Lemma 2. There exist q H-Jacobi fields $V_{1}(t), \cdots, V_{q}(t)$ along c with the following properties:
(1) $V_{a}(0)=X_{a}(0)$ for $a=1, \cdots, q$,
(2) $S_{c^{\prime}(t)} V_{a}(t)=V_{a}^{\prime}(t)$ where "'" means the covariant differentiation with respect to $c^{\prime}(t)$ and $S_{c^{\prime}(t)}$ is the second fundamental form of the leaf $H_{c(t)}$ in the normal direction $c^{\prime}(t)$ given by $\left\langle S_{c^{\prime}(t)} X, Y\right\rangle=-\left\langle c^{\prime}(t), D_{X} Y\right\rangle$ for $X, Y \in T_{c(t)} H_{c(t)}$, and
(3) $V_{1}(t), \cdots, V_{q}(t)$ are linearly independent for all $t \in \boldsymbol{R}$.

Proof. For each $a=1, \cdots, q$, take a smooth curve $c_{a}:(-\varepsilon, \varepsilon) \rightarrow \tilde{M}$ in $H_{c(0)}$ with $c_{a}(0)=c(0)$ and $c_{a}^{\prime}(0)=X_{a}(0)$. Identify c with the geodesic $P \circ c$ on L, where $P: \widetilde{M} \rightarrow L$ is the natural projection, and lift $c^{\prime}(0)$ canonically along curves c_{a} for $a=1, \cdots, q$. For each $a=1, \cdots, q$ define $F_{a}:(-\varepsilon, \varepsilon) \times \boldsymbol{R} \rightarrow \widetilde{M}$ by $F_{a}(s, t)=\exp _{c_{a}(s)} t c^{\prime}(0)$, and set $V_{a}(t)=F_{a^{*}}\left(\partial /\left.\partial s\right|_{(0, t)}\right)$. We show that V_{a} 's satisfy the above properties. By the construction, we have $P \circ F_{a}(s, t)=c(t)$. It follows that $V_{a}(t)$ is an H-Jacobi field for each a. Clearly V_{a} satisfies Property (1). For each X_{b}, we have $\left\langle S_{c^{\prime}(t)} V_{a}\right.$, $\left.X_{b}\right\rangle=-\left\langle D_{V_{a}} X_{b}, c^{\prime}(t)\right\rangle=\left\langle X_{b}, D_{V_{a}} c^{\prime}(t)\right\rangle=\left\langle X_{b}, D_{c^{\prime}(t)} V_{a}\right\rangle$ if we locally extend V_{a}, X_{b} and $c^{\prime}(t)$ to suitable vector fields. On the other hand, for each $E_{i},\left\langle D_{c^{\prime}(t)} V_{a}, E_{i}\right\rangle=-\left\langle V_{a}, D_{c^{\prime}(t)} E_{i}\right\rangle=0$ as \mathscr{F} is totally geodesic. Thus we have $S_{c^{\prime}(t)} V_{a}(t)=V_{a}^{\prime}(t)$ which is Property (2). Finally we show that $V_{a}(t)$'s are linearly independent. Suppose not. Then there exist t_{0} and $\left(x_{a}\right) \in \boldsymbol{R}^{q}$ with $\left(x_{a}\right) \neq 0$ and $\sum_{a=1}^{q} x_{a} V_{a}\left(t_{0}\right)=0$. Set $W(t)=\sum_{a=1}^{q} x_{a} V_{a}(t)$, hence $W\left(t_{0}\right)=0$. Further, by Property (2), we have $W^{\prime}\left(t_{0}\right)=\sum_{a=1}^{q} x_{a} V_{a}^{\prime}\left(t_{0}\right)=$ $\sum_{a=1}^{q} x_{a} S_{c^{\prime}\left(t_{0}\right)} V_{a}\left(t_{0}\right)=S_{c^{\prime}\left(t_{0}\right)} W\left(t_{0}\right)=0$. As $W(t)$ is an H-Jacobi field, we have $W(t)=0$ and $\left(x_{a}\right)=0$, which is a contradiction.

Now represent $V_{a}(t)$ as $V_{a}(t)=\sum_{b=1}^{q} A_{b a}(t) X_{b}(t)$ and set $S_{a b}=\left\langle S_{c^{\prime}(t)} X_{a}(t)\right.$, $\left.X_{b}(t)\right\rangle$. Let $A(t)$ (resp. $S(t)$) be a (q, q)-matrix whose (a, b)-component is $A_{a b}(t)$ (resp. $\left.S_{a b}(t)\right)$. Denote by $A^{\prime}(t)$ (resp. $\left.\int_{a}^{b} A(t) d t\right)$ the componentwise differentiation (resp. integration) with respect to the parameter t. Then, by Lemma 2, (2), we have $A^{\prime}(t)=S(t) A(t)$. Note that $\operatorname{det} A(t) \neq 0$ by Lemma 2, (3), and $A^{\prime \prime}(t)+R(t) A(t)=0$, where $R(t)$ is a (q, q)-matix $\left(R_{a b}(t)\right)$.

The following lemma is proved in Goto [4] and Eschenburg and O'Sullivan [3] $(A(t)$ is a Legendre tensor in the sense of [3]). But we give a proof for convenience. We also refer to these literatures and Eschenburg and O'Sullivan [2] for generalities on Jacobi fields.

Lemma 3. Set $B(t)=A(t) \int_{0}^{t} A^{-1}(s)^{*} A^{-1}(s) d s$, where ${ }^{*} A$ is the transposed matrix of A. Then $B(t)$ satisfies the following matrix Jacobi equation

$$
B^{\prime \prime}(t)+R(t) B(t)=0
$$

Proof. By differentiating $B(t)$ with respect to t, we have $B^{\prime}(t)=$ $A^{\prime}(t) \int_{0}^{t} A^{-1}(s)^{*} A^{-1}(s) d s+{ }^{*} A^{-1}(t) \quad$ and $\quad B^{\prime \prime}(t)=A^{\prime \prime}(t) \int_{0}^{t} A^{-1}(s)^{*} A^{-1}(s) d s+$ $A^{\prime}(t) A^{-1}(t){ }^{*} A^{-1}(t)+\left({ }^{*} A^{-1}\right)^{\prime}(t)$. As $\left({ }^{*} A^{*} A^{-1}\right)^{\prime}(t)={ }^{*} A^{\prime}(t){ }^{*} A^{-1}(t)+{ }^{*} A(t)\left({ }^{*} A^{-1}\right)^{\prime}(t)$, we have $\left({ }^{*} A^{-1}\right)^{\prime}(t)=-{ }^{*} A^{-1}(t){ }^{*} A^{\prime}(t){ }^{*} A^{-1}(t)$. It follows that $B^{\prime \prime}(t)+$ $R(t) B(t)={ }^{*} A^{-1}(t)\left({ }^{*} A(t) A^{\prime}(t)-{ }^{*} A^{\prime}(t) A(t)\right) A^{-1}(t){ }^{*} A^{-1}(t)={ }^{*} A^{-1}(t)\left({ }^{*} A(t) S(t) A(t)-\right.$ $\left.{ }^{*} A(t) S(t) A(t)\right) A^{-1}(t)^{*} A^{-1}(t)=0$ by the remark preceding Lemma 3.

It follows from Lemma 3 that the space of H-Jacobi fields consists of the elements of the form $A(t) x+B(t) y$ for $x, y \in \boldsymbol{R}^{q}$.

Lemma 4. Let $Y(t)$ be an H-Jacobi field given by $A(t) x+B(t) y$ for $x, y \in \boldsymbol{R}^{q}$. If $B(t) y \neq 0$ for some t, then the norm $|Y(t)|=\langle Y(t), Y(t)\rangle^{1 / 2}$ of $Y(t)$ is unbounded.

Proof. Assume that $|Y(t)| \leqq N<\infty$ for $t \in(-\infty, \infty)$. Set

$$
h(t)=\left|\left(Y(t),{ }^{*} A^{-1}(t) y\right)\right|=\left|\left(\int_{0}^{t} A^{-1}(s)^{*} A^{-1}(s) d s y+x, y\right)\right|
$$

where (x, y) denotes the standard inner product of $x, y \in \boldsymbol{R}^{q}$. By assumption we have $\left|\left(Y(t),{ }^{*} A^{-1}(t) y\right)\right| \leqq\left. N\right|^{*} A^{-1}(t) y \mid$, that is, $h(t) \leqq\left. N\right|^{*} A^{-1}(t) y \mid$. Note that ${ }^{*} A^{-1}(t) y \neq 0$ for all $t \in \boldsymbol{R}$ because $y \neq 0$ and $A(t)$ is invertible for all $t \in R$.

Case 1: $\quad(x, y) \geqq 0$. For $t \geqq 0$, we have $h(t)=\left.\left.\int_{0}^{t}\right|^{*} A^{-1}(s) y\right|^{2} d s+(x, y)$. Thus $h(t)>0$ for $t>0$. Set $k(t)=1 / h(t)$ for $t>0$. Then $k^{\prime}(t)=$ $-\left.\left.\right|^{*} A^{-1}(t) y\right|^{2} / h^{2}(t)$. Hence we have $k^{\prime}(t) \leqq-1 / N^{2}<0$, which is impossible because $k(t)$ is defined on ($0, \infty$) and positive everywhere on $(0, \infty)$.

Case 2: $\quad(x, y)<0$. For $t \in(-\infty, 0)$ we have $h(t)=-\left.\left.\int_{0}^{t}\right|^{*} A^{-1}(s) y\right|^{2} d s-$ (x, y). Then $h(t)$ is positive on $(-\infty, 0)$. Set $k(t)=1 / h(t)$. Then by the same computation as in Case 1, we have $k^{\prime}(t)=\left.\left.\right|^{*} A^{-1}(t) y\right|^{2} / h^{2}(t) \geqq 1 / N^{2}>0$ which is impossible because $k(t)$ is defined on $(-\infty, 0)$ and positive everywhere on $(-\infty, 0)$.

We now finish the proof of Theorem. Recall that Z preserves \mathscr{F} if and only if $[Z, E] \in \Gamma(T \mathscr{F})$ for all $E \in \Gamma(T \mathscr{F})$. Let Z be a Killing field with bounded length. We denote also by Z the canonical lifting of Z to \tilde{M} and perform the proof on \tilde{M}. As Z is a Killing field, the restriction to c is a Jacobi field along c. By Lemma 1, the $\tilde{\mathscr{H}}$-component Z^{H} of Z is an H-Jacobi field. By the assumption that $\langle Z, Z\rangle$ is bounded on c and by Lemma 4, Z^{H} is of the form $A(t) u$ for some $u \in \boldsymbol{R}^{q}$. Thus $Z^{H}(t)=\sum_{a=1}^{q} u_{a} V_{a}(t)$. Let E be the canonical lifting of a vector field on L. In order to prove that Z preserves $\tilde{\mathscr{F}}$ it suffices to see that $\left[Z^{H}, E\right]=0$. Now let x be any point of M and c be a geodesic with $c(0)=x$ and $c^{\prime}(0)=E_{x}$. We use the same notation as above. Lift $P \circ c^{\prime}$ canonically on the vertical leaf H_{x} passing through x and denote it by c^{\prime}, too. Then $E=c^{\prime}$ along the orbit of the flow generating Z^{H} and passing through x. It follows that $\left[Z^{H}, E\right]=D_{z^{H}} E-D_{E} Z^{H}=D_{Z^{H}} c^{\prime}-D_{c^{\prime}} Z^{H}=$ $\left[Z^{H}, c^{\prime}\right]=\sum_{a=1}^{a} u_{a}\left[V_{a}, c^{\prime}\right]=0$ by Lemma 2 and the fact that $\left[V_{a}, c^{\prime}\right]=$ $F_{a^{*}}\left(\left.[\partial / \partial s, \partial / \partial t]\right|_{(0, t)}\right)=0$.

4. Concluding remarks. First we give two examples.

Example 1. Let \boldsymbol{E}^{2} be the flat Euclidean plane with coordinates (x, y). Define \mathscr{F} to be the orbits of the flow $\partial / \partial x$. Then \mathscr{F} is a codimension-one totally geodesic foliation of \boldsymbol{E}^{2}. Let Z be a Killing field generated by rotations, e.g., $Z=y \partial / \partial x-x \partial / \partial y$. Then the function $\langle Z, Z\rangle$ is unbounded and Z does not preserve \mathscr{F}. This implies that we cannot drop the assumption on the boundedness of $\langle Z, Z\rangle$.

Example 2. Let \boldsymbol{E}^{3} be the flat Euclidean space with coordinates (x, y, z). Define \mathscr{F} to be the orbits of the flow $\sin (2 \pi z) \partial / \partial x+\cos (2 \pi z) \partial / \partial y$. Then \mathscr{F} is a one-dimensional totally geodesic foliation of \boldsymbol{E}^{3}. Note that the complementary orthogonal bundle is not integrable. The parallel vector field $Z=\partial / \partial z$ does not preserve \mathscr{F}. This implies that we cannot drop the integrability condition of the complementary orthogonal bundle. In this case, we can define V_{a} as in Lemma 2. But they do not satisfy Property (2) of Lemma 2. Consequently, Lemma 3 no longer holds good.

On the behavior of compact leaves of \mathscr{F} by the flow of a Killing field Z, we have the following under weaker assumptions.

Proposition. Let (M, g) be a complete connected Riemannian manifold and \mathscr{F} be a minimal foliation with integrable complementary orthogonal bundle. Assume that \mathscr{F} has a compact leaf L_{0}. Then any flow-generating Killing field maps L_{0} to a leaf of \mathscr{F}.

For the proof, we use the notion of calibration introduced by Harvey and Lawson [5]. In this case, the volume form χ_{5} of leaves, which is a smooth p-form on M, gives a calibration of \mathscr{F}. The existence of a calibration implies the homologically mass-minimizing property of compact leaves. It follows that any flow-generating Killing field maps L_{0} to a leaf of \mathscr{F}.

Note that the assumption on the integrability of the complementary orthogonal bundle cannot be removed. In fact, we can construct a codi-mension-2 totally geodesic foliation on the flat torus \boldsymbol{T}^{3} from Example 2. This example shows that Proposition does not hold good in this case.

References

[1] R. Blumenthal and J. Hebda, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier Grenoble 33 (1983), 183-198.
[2] J. Eschenburg and J. O'Sullivan, Growth of Jacobi fields and divergence of geodesics, Math. Z. 150 (1976), 221-237.
[3] J. Eschenburg and J. O'Sullivan, Jacobi tensors and Ricci curvature, Math. Ann. 252 (1980), 1-26.
[4] M. S. Goto, Manifolds without focal points, J. Differential Geom. 13 (1978), 341-359.
[5] R. Harvey and H. Lawson, Jr., Calibrated foliations, Amer. J. Math. 103 (1981), 411-435.
[6] D. L. Johnson and L. B. Whitt, Totally geodesic foliations, J. Differential Geom. 15 (1980), 225-235.
[7] G. Oshikiri, Totally geodesic foliations and Killing fields, Tôhoku Math. J. 35 (1983), 387-392.

Department of Mathematics
College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

