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1. Introduction. Let V be a complex Banach manifold with complex
structure J. Let N be a real submanifold of V and TN its tangent
bundle. We set

(1.1) ThN= TNnJ(TN) .

If ThN is a C°° complex subbundle of TV\N, then N is called a CR sub-
manifold of V. Assume further that V is a Kahler manifold. Let TVN
be the orthogonal complement of ThN in TN; it is a real subbundle of
TN. Thus, we have an orthogonal direct sum:

(1.2) TV\N =

where TλN is the normal bundle to N. The complex structure J leaves
ThN and TυNφ TλN invariant. We assume the following:

(a) J interchanges TVN and T1N]
(b) there is a submersion π: N-+W of N onto an almost Hermitian

manifold T^such that (i) TυNis the kernel of π* and (ii) π*\ T£N-^Tπ{p)W
is a complex isometry for every peN.1]

In this setting, we prove:

(1.3) THEOREM. Under the assumptions stated above, W is Kahler. If
Hv and Hw denote the holomorphic sectional curvature of V and W, then,
for any horizontal unit vector x e ThN of N, we have

Hv{x) = Hw{π*x) - 4 \B(x, x)\2 ,

where B denotes the second fundamental form of N in V.

There is nothing difficult about the proof. It is simply a combination
of the equation of Gauss for the submanifold Na V and the corresponding
equation for the submersion π: N—> W. The former is classical and appears,
for example, in [4] in the context of CR submanifolds. The latter is due
to O'Neill [3]. The reason for singling out this theorem is its application
to moduli spaces of stable holomorphic vector bundles over compact

* } Partially supported by NSF Grant DMS 85-02362.
1 } We may call π: N-+W a Hermitian submersion.
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Riemann surfaces. Let E be a fixed C°° complex vector bundle over a
compact Riemann surface M. We fix a Kahler metric on M and a
Hermitian structure h in E. Let V be the space of /^-connections in E,
completed with a suitable Sobolev norm. Let JV be the space of irreducible
Einstein A-connections, also completed in the same way. There is a
natural flat Kahler metric on V, and JV is a CR submanifold of V. The
group G of gauge transformations of (E, h) acts on the Kahler manifold
V and leaves JV invariant. Moreover, G acts freely and properly on JV,
and JV is a principal G-bundle over W = N/G. The G-invariant Kahler
structure of V induces an almost Hermitian metric on W. In a natural
way, V and W can be identified with the space of holomorphic structures
in E and the moduli space of stable holomorphic structures in E, respec-
tively. From our theorem it follows that this moduli space W has non-
negative holomorphic sectional curvature. This fact has been verified
computationally by Itoh [1]. Our theorem explains his calculation more
geometrically. It is because of this application that we prove the theorem
for infinite dimensional manifolds.

As in this application, we may replace Assumption (b) by a suitable
Banach Lie group G acting on V. Such a formulation would place the
theorem much closer to the set-up of the symplectic reduction theorem
of Marsden-Weinstein.

In the hope that the present set-up may occur in other contexts, I
separated this theorem from the problem of moduli of stable vector
bundles. Perhaps the theorem is of moderate interest by itself.

The proof is divided into three parts. The immersion Nd V is studied
in §2, the submersion JV —>W in §3, and they are combined in §4.

I would like to express my gratitude to the referee for pointing out
the error in my original formulation of the theorem.

2. Submanifold JV in V. In this section we recall the equation of
Gauss; for its proof we refer the reader to [2.II; p. 23]. Let V be a
Riemannian manifold, a Banach manifold with a Riemannian metric. Let
JV be a closed submanifold of V. (We do not assume here that JV is a
CR submanifold).

Let VΓ and V^ denote covariant differentiation operators of V and
JV. The proof in [2.1; p. 160] of the existence and uniqueness of the
Levi-Civita connections (or the Riemannian connections) VΓ and V^ is
valid in the infinite dimensional situation.

Given tangent vector fields x, y of JV, we can write

(2.1) Vζy = Vζy + B(x, y) ,
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where Vξy is the tangential part and B(x, y) is the normal part of Vζy.
Then B is a symmetric bilinear mapping

B: TNxTN-^TλN,

where TλN is the normal bundle of N. It is called the second fundamental
form of N in V.

The curvature Rv of V is given by

(2.2) Rv(x, y) = [VΓ, VJ] - V£if] .

It is a 2-form with values in End(TΎ). With the same symbol Rv we
denote the corresponding quadrilinear form. Thus

(2.3) Rv(w, z, x, y) = <Rv(x, y)z, w) ,

where < , > stands for the given Riemannian inner product for V. We
define RN in a similar manner. As a quadrilinear form, the curvature
RN of N is related to Rv by the following equation of Gauss.

(2.4) Rv(w, z, x, y) = RN(w, z, x, y) + <β(x, z), B(y, w)) - (B(y, z\ B(x, w)) .

3. Submersion of N onto W. In this section we extract parts of
O'NeilΓs paper [3] which are needed in our proof. Let N and W be
Riemannian manifolds and π:N-^W a Riemannian submersion. By a
submersion π we mean that both π and its differential π* are surjective.
Using the metric of N we decompose the tangent bundle TN into a direct
sum
(3.1) TN = ThN® TVN ,

where TVN = Ker π* is the vertical part and its orthogonal complement
ThN is the horizontal part. A submersion π is said to be Riemannian
if 7Γ*: TpN—> Tx{9) W is an isometry at each point p of N.

A horizontal vector field x of N is said to be basic if it induces (or
comes from) a vector field x* on the base manifold W. This vector field
is sometimes denoted by π*x; thus x* = π*x. Clearly, x \-+ x* gives a one-
to-one correspondence between the basic vector fields of N and the vector
fields of W.

The following lemma is from O'Neill [3].

(3.2) LEMMA. Let x and y be basic vector fields of N. Then
(a) (x, y) = <#*, 2/*>oτr;
(b) the horizontal part [x, y]h of [x, y] is a basic vector field and

corresponds to [x*, y*], i.e., π*([x, y]h) = [#*, y*\;
(c) [ξy x] is vertical for any vertical vector field ξ of N;
(d) (yζy)h is the basic vector field corresponding to VZy*.
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In (d) above, V^ is the covariant differentiation on W. We define

the corresponding operator V^ for basic vector fields of N by setting

(3.3) VJy = (Vξy)h for basic vector fields x, y .

Then VJy is a basic vector field by (d) and

(3.4) π+φΐy) = V^, .

We define C by

(3.5) VΐV = V?V + C(x,y),.

where C(x, y) denotes the vertical part of Vξy. It is easy to check that
C defines a bilinear mapping ThNx ThN-> TVN. Moreover, C is skew-
symmetric and satisfies

(3.6) -2C(x, y) = [x, y]v .

In fact, if ς is any vertical vector field of N, then

0 = £«av aj» = 2<Vfx, x) = 2<Vff + [f, x], x) = 2<V*f, x)

= -2<f, Vξx) = -2(ξ, C(x, x)) .

Hence, C(x, x) = 0, i.e., C is skew-symmetric. From

[x, V] = Vζy - Vζx ,

we obtain

[x, V]υ = C(x, y) - C(y, x) = 2C(x, y) .

For a basic vector field x and a vertical vector field ξ of N, we set

(3.7) V*£ = (Vff) + A^ , where A,f = (V^f)fe .

It is easy to check that Ax defines a bilinear map

A: ThNx TυN-+ ThN , (x, ξ) H* Axξ .

Since

Vfx - V2Tξ = [ί, »]

and since [f, x] is vertical, we obtain

(3.8) (Vfx)h = C W = A,ί .

Now, the two tensor fields A and C are related by

(3.9) (Axξ, w) = <yζς, w) = -<f, Vζw) = -<f, C(x, w)) ...

By straightforward calculation making use of (3.3) through (3.8), we
obtain
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(3.10)

Hence,

(3.11)

vf v z = v.
VζVξz = V:

V ^ z = Vfΐ

RN(x, y)z = (Rw

ΐV z +
ζVYz +

Vty]hZ T" ̂

(a; y )i

A,

A,

IA.

•*ϊ

:(C(y, z)) +
,{C{x, z)) +

,(C(», y)) +

* + Ax(C{y,

vertical ,
vertical ,

vertical .

z))
- Ay(C(x, z)) - 2Az(C(x, y)) + vertical ,

where (Rw(x+, y*)z*)* denotes the basic vector field of N corresponding
to Rw(x*, y*)z*. Taking the inner product of (3.11) with a basic vector
field w and making use of (3.9), we obtain

(3.12) R»(w, z, x, y) = Rw(w^ z*, x+, y*) - (C(y, z), C(x, w))

+ (C(x, z), C(y, w)) + 2(C(x, y), C(z, w)) ,

4. Submersed CR submanifold N. Let V be a Kahler manifold and
N a CR submanifold of V. Let W be an almost Hermitian manifold and
TΓ: N^Wa, Riemannian submersion such that TNf)J(TN) is the horizontal
part of TN and, at each point pe N, π* is a complex isometry of
TfN = TPNΓ\J(TPN) onto Tπ{p)W. First we find the relationship between
the bilinear maps B and C. Throughout this section, x, y, z and w shall
denote basic vector fields of N. We have the following orthogonal de-
composition of TV\N.

(4.1) TV\N = ThN® TVN® TLN .

Accordingly,

(4.2) Vίi/.= VJy + C(x, y) + B(x, y) .

Hence,

(4.3) JVly = JVζy + J{C(x, y)) + J(B(x, y)) .

Since π*: TpN-> Tπ{p)W preserves J,Jy is also basic. Applying (4.2) to
Jy, we have

(4.4) VUy = VΐJy + C(x, Jy) + B(x9 Jy) .

Since V is Kahler, VζJy = JVζy. Assume that J interchanges TVN and
TλN. Then equating (4.3) and (4.4), we obtain

(4.5) VΐJy = JVΐy e ThN ,

(4.6) C(x, Jy) = J(B(x, y)) e TVN ,

(4.7) B(x, Jy) = J(C{x, y)) e T±N .

From (4.5) we see that the almost complex structure of W is parallel and,
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hence W is Kahler. From (4.6) and (4.7) we obtain

(4.8) B(Jx, Jy) = B(x, y) , C(Jx, Jy) = C(x, y) .

In order to compare the holomorphic bisectional curvature of F w i t h
that of W, we set z = Jw and y = Jx in (2.4) and (3.12). Making use
of (4.8), we obtain

(4.9) Rv(w, Jw, x, Jx) = RN(w, Jw, x, Jx) - \B{x, Jw)\2 - \B(x, w)\2 ,

(4.10) RN(w, Jw, x, Jx) = Rw(w+, Jw*, x+, Jx*) - \C{x, w)\2

- \C(x, Jw)\2 - 2(C(x, Jx), C(w, Jw)) .

Making use of (4.6) and (4.7), we combine (4.9) and (4.10) to obtain

(4.11) Rv(w9 Jw, x, Jx) = Rw(w*, Jw*, x*, Jx*) - 2C\(x, w)\2

- 2\C(x, Jw)\2 - 2(C(x, Jx), C(w, Jw)) .

Setting x = w in (4.11) we obtain the holomorphic sectional curvature.
(4.12) Rv(x, Jx, x, Jx) = Rw(x*, Jx*, x*, Jx*) - 4|C(a?, Jx)\2

= Rw(x*, Jx*, x*, Jx*) - i\B(x, x)\2 .
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