
Tδhoku Math. Journ.
89(1987), 89-94.

THE RANGE AND PSEUDO-INVERSE OF A PRODUCT

Lu SHIJIE

(Received February 12, 1986)

Abstract. By definition the cosine of the angle between the two sub-
spaces M and N is sup{|<%, v>|: uβM, veN, \\u\\ = 1 = |M|}. For operators
A and B with closed range in Hubert spaces, AB has closed range if and
only if the angle between ker A and B((ker AB)1) is positive. Moreover, if
we denote by A1 the pseudo-inverse of A, then {ABY=B^A1 if and only if

and A*((ker £*A*)1)c(ker B*)1.

Let H, K, L be Hubert spaces over complex field. For a subspace
MdH, we denote by M1 the orthogonal complement of M and by M the
closure of M. For two subspaces M and N of H, we shall say that the
angle between M and N is θ, if

cos0 = sup{|<w, v}\: ueM, v eN, \\u\\ = 1 = \\v||} .

For convenience, we denote the angle by Θ(M9 N). Let C(H, K) (resp.
B(H, K)) be the set of all closed linear operators (resp. bounded operators)
from H to K. For TeC(H, K) we denote the domain of T by D(T),
the kernel of T by ker T and the range of Γby R(T). Each TeC(H, K)
induces a one-to-one operator from (ker T)1 onto TH. This induced
operator is invertible. Define Γf to be that inverse on TH and to be
zero on (TH)1. We call Γ+ the pseudo-inverse of T. T is bounded if
and only if R(T) is closed (cf. [3, Theorem 3.1.2]). If H = K, we write
B(H) instead of B(H, H).

A basic problem in the theory of pseudo-inverse is to determine when
the range of a product is closed and the pseudo-inverse of a product is
the product of the pseudo-inverses. For A, BeB(H) with closed range,
Bouldin [1] indicated that the simple geometric condition

(1) 0(ker A n (ker A ΓΊ BH)\ BH) > 0

is both necessary and sufficient for AB to have closed range. Further-
more, he proved in [2] that (ABy = B^A1 if and only if the following
conditions hold:

( 2 ) (ABY is bounded

(3 ) A*H is invariant under BB*

(4) A*ΐΓΠkerjB* is invariant under A*A .
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In this paper we shall show that the condition (1) can be replaced by

(1') 0(ker A, 5((ker AB)1)) > 0

and the conditions (2), (3), (4) can be replaced by

(3') £((ker AB)L) a (ker A)1

(4') A*((ker B*A*)λ)(z(ker B*)1 .

Clearly, (1'), (3'), (4') are not only simpler than (l)-(4), but also have a
unified symmetric form and apparent geometric sense. Moreover, the
proofs we present are much simpler and clearer.

The following theorem is important for our purpose.

THEOREM (cf. [4, IV, 5.2]). Let X, Y be complex Banach spaces and
TeC(X, Y). Then T has closed range if and only if there is a positive
number δ such that

(5) || Tα|| ^ δdist(a, ker T) .

For Hubert space operators, the inequality (5) can be simplified as

(6) || Γα|| ^ δ\\x\\ , for xefeerT)1.

With those notation and preliminaries we can prove the first main
result directly.

THEOREM 1. Assume that AeB(K,H) and BeB(L,K) have closed
range. Then AB has closed range if and only if the angle between
ker A and 2?((ker AB)1) is positive.

PROOF. Sufficiency. Suppose 0(ker A, £((ker AB)1)) > 0. Then there
is a positive number δ < 1 such that

\<VfBz>\ £δ\\y\\ \\Bz\\ for y eker A, zeikerAB)1.

Write

Bz = y, + y2e ker A 0 (ker A)1 .

Since

we must have

IIUill £δ\\Bz\\ .

Since R(A), R(B) are closed, there are δlf δ2 > 0, such that

II Ay || ^ δ, dist(j/, ker A) for all y e K

IIBx|| ^ δ2distO, kerB) for all xeL .
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Thus for ze (ker AB)1 we have

\\ABz\\ ^ δ j i f e l l =δι\\Bz-yι\\ ^ (1 - d)δ1\\Bz\\

^ (1 - <5)δA dist(z, ker B)(via(ker AB)Ld(kev B)1)

^ (1 - δ)δAdist(«, ker A5) ,

which shows that R(AB) is closed.
Necessity. Assume that R(AB) is closed. We suppose 0(ker A,

β((ker AB)1)) = 0. Then there exist two sequences {yn}ckeτ A and {zn}a
(ker AB)1 such that

(7) \\yn\\ = \\BzJ = 1, |<tf n ,BO|->l.

Clearly, without loss of generality we may assume that \\zn\\ 2̂  η > 0.
Write

£zn = ?/ίn) + ^ n ) 6 ker A 0 (ker A)1 .

By (7) we have \(yn, y[n))\ —>1, which implies ||7/ίw) || —>1, and hence

l l ^ l l - o .
Therefore

\\ABzn\\ = \\Avn\-+0, for \\zn\\^η>0,

which contradicts the inequality (6).

By Theorem 1 we can obtain a sufficient condition for AB to have
closed range:

COROLLARY 2. Let AeB(K,H) and BeB(L,K) have closed range.
If 0(ker Ay BL) > 0, then AB has closed range.

PROOF. It is a consequence of Theorem 1 and the obvious inequality

0(ker A, BL) ^ 0(ker A, £((ker AB)1)) .

Also we can deduce the first corollary in [1]:

COROLLARY 3. Suppose AeB(K,H) and BeB(L,K) have closed
range and ker Af]BL = {0}. Then AB has closed range if and only if
0(ker A, BL) > 0.

PROOF. Since B(ker AB)aker Af)BL = {0}, we have

BL = BdkerAB)1) .

Thus Corollary 3 results from Theorem 1.

COROLLARY 4. Let A e B(H) have closed range. Then T2 has closed
range if and only if 0(ker T, T((ker Γ2)1)) > 0.

COROLLARY 5. Let AeB(K, H), BeB(L, K) and suppose A\ Bt are
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bounded. Then {AB)f is bounded if and only if 0(ker A, BiQzerAB)1)) > 0.

Now we turn to the second main result, whose proof consists of
three propositions.

PROPOSITION 6. Let TeB{H, K) and suppose 271" is the {not necessarily
bounded) pseudo-inverse of T. Then (T1")* is the pseudo-inverse of T*.

PROOF. By definition, Tf satisfies the equations

ker T f = {THY = ker T*

(8) TΓ = I on TH;

(9) R{Γ) = (ker T)1 .

Therefore Γ1" is densely defined and hence (T+)* exists. We shall prove that

(10) (TOT* = I on ΊΊT - (ker T*)1 .

Indeed, for fixed fe~TH and each g = g^g^eTH + (ΪΉ) 1 , (8) implies

\<T*f, Γg)\ = |</, TT\Ql + g2)}\ = |<

Hence <Γ*/, ϊ 7 ^ ) is a continuous linear functional on THφ{THy. This
implies that Γ*/GD((ϊ7t)*) and (10) holds. On the other hand, (9) implies
that

(11) ker{Tψ = R{TY = ker Γ =

(10) and (11) indicate that {Tψ is the pseudo-inverse of T*.

Denote by IH the identity on i ϊ and by PA the orthogonal projection
on ker A.

PROPOSITION 7. Let A e B{K, H) and B e B{L, K) have closed range.
Then

(12) B*A*AB = h - PΛB

if and only if the condition (3') holds.

PROOF. First we have, by definition, that

AA = IK-PA, B"B=IL-PB.

For z 6 ker AB the equation (12) is trivial. If z e (ker AB)1, then PBz = 0.
Hence

(13) BΆABz = B\IK - PA)Bz = {IL - PB - BΨAB)z = z - BΨABz .

Suppose that (3') holds. Then PABz = 0. By (13) we have

B'A'ABz = z = {IL - PAB)z .
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Thus (3')=>(12) is proved.

Conversely, if (12) holds, then for 2 e (ker AB)L we have

BWABz = z - BΨABz = z .

Thus BΨABz = 0 and hence PABz e ker B" = (BL)1. Write

Bz = u + v e ker A 0 (ker A)1 .

Since u = PABz e (BL)1, we have

(u, u) = (u, Bz) — (11, v) = 0 *

This shows that Bze(kev A)1.

PROPOSITION 8. Let A e B(K, H) and B e B(L, K) have closed range.
Then

(14)

if and only if the condition (4') holds.

PROOF. By Lemma 6 we have

(BYB* = IK- PB* , (ATA* = I H - PA* .

By Lemma 7 the equation

(15) (AT(BTB*A* = IH- PB*A*

holds if and only if (4') holds. By considering conjugate operators we
see that (15) holds if and only if (14) holds.

Combining Propositions 7 and 8 we establish the following:

THEOREM 9. Let AeB(K,H) and BeB(L,K) have closed range.
Then

(ABY = BΆ

if and only if (3') and (4') hold.

REMARK 10. Note that the condition (3') is equivalent to (3). Indeed,
if (3') holds, then, by Theorem 1, R(AB) is closed and hence R((AB)*) =
(ker AB)L. Therefore

J5((ker AB)1) = B(AB)*H = BB*A*H .

Since R(A) is closed, we have (ker A)1 = A*H. Thus (3') implies (3).
Conversely, suppose that (3) holds. Since A*H is closed, we have

B((kerABy) = B(B*A*H)cA*H = (ker

Thus (3') holds.
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REMARK 11. Similarly (4') is equivalent to (4). Indeed, by the above
argument, (4') is equivalent to

(16) A*ABLaBL .

Since A* A is self-adjoint, (16) is equivalent to

(17) A*A(BLY(Z(BLY ,

namely, A*AkerB*cker JS*. Since A*H is always invariant under A*A,
we see that (17) is equivalent to (4).

REMARK 12. The condition (2) can be removed, because (3) implies
(2). For if (3) holds, then (3') holds and hence the angle between kerA
and B((ker AB)1) is the right angle. By Theorem 1, R(AB) is closed and
hence (AB)1" is bounded.
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