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Introduction. Let D be a bounded domain in Cn equipped with the
Bergman metric g. Let Raτcd be the components of the Riemannian
curvature tensor of g. The curvature operator Q of g at a point peD
is, by definition, the endomorphism

of the 2-symmetric tensor product of the holomorphic tangent space at
p. The eigenvalues of Q are holomorphically invariant and are all real
because Q is self-adjoint with respect to the Hermitian inner product
induced from g. In particular, if D is homogeneous, then the eigenvalues
of Q do not depend on the point of D under consideration. The following
is well-known ([4], [5]): If D is irreducible symmetric and the operator
Q is negative definite, then D is holomorphically equivalent to a ball.
Concerning this, we consider the following two problems:

(A) Let D be a, not necessarily irreducible, homogeneous domain in
C\ Suppose Q is negative definite. Then is D holomorphically equivalent
to a ball?

(B) Does there exist a bounded domain which is not holomorphically
equivalent to a ball and for which Q is negative definite?

Our aim of the present note is to show that problem (A) has an
affirmative answer by means of the theory of normal j-algebras by
Pyatetskii-Shapiro [8] (Theorem 1), and to show that a Thullen domain,
which is holomorphically inequivalent to a ball, has negative definite
curvature operator (Proposition 4). Problem (B) is also affirmative in
view of the deformation theory by Greene and Krantz [6], [7].

The author would like to thank Professor Hajime Urakawa for
helpful conversations on the subject of this note.

1. Homogeneous bounded domains. In this section we shall show
the following.
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THEOREM 1. Let D be a homogeneous bounded domain. Assume that
the curvature operator of the Bergman metric on D is negative semi-
definite. Then D is holomorphically equivalent to a product of balls. In
particular, if the operator is negative definite, then D is holomorphically
equivalent to a ball.

Let D be a homogeneous bounded domain and p be a point of D.
Then the real tangent space T£ at p possesses the structure (g, j , ω) of
a normal j-algebra such that g is a Lie algebra, which coincides with
Tp as a real vector space, j is the complex structure of T*, and ω is a
form on g with the property g(x, y) = ω[jx, y] for x, y e T* = g, where g
is the Bergman metric on D (cf. [8], [2]).

Let PI be the set of all primitive idempotents in g, i.e.,

PI = {r 6 g - {0}; {x e g; [jr, x] = x) = Rr} .

It is well-known ([8], [9]) that PI is nonempty and linearly independent.
The cardinality R of PI is called the rank of D. It is also known ([8])
that there exists a numbering rlf , rR of the set PI such that if

«.» = {x e β; [jrc, x] = ((δca + δcb)/2)x (c = 1, , R)}

for a, b 6 {1, , R} with a ^b, and

πα = {x e g; [jr., x] = (δJ2)x (c = 1, , R)}

for a 6 {1, , R}, then jnab = {xeQ; [jrc, x] = ((δac - δbc)/2)x (c = 1, , R)}
for a < b and the following orthogonal decomposition, with respect to
g{ , ), holds:

9 = Σ Πα6 + Σ JKab + Σ «α
^b b

In particular, naa = Rra for all a e {1, , R).
To prove Theorem 1, suppose that D is not holomorphically equivalent

to any product of balls. There then exists a pair (a, b) with a < b such
that the dimension N of the subspace πα6 is positive. Let {mlf •••, mN)
be an orthogonal basis of πα&. If we denote by X the mapping from T*
to the holomorphic tangent space Tp at p given by xv->(x—v/^ϊjx)/2,
then / = (Z(rα)2, ZCmJ2, , X(mNf) is an orthogonal system in the 2-
symmetric tensor product of the space Tv. Let Q be the curvature
operator of g at p. In this situation we know the following.

LEMMA 2 ([2; Proposition 6.5]). The matrix representing Q modulo
s p a n c / with respect to the basis f has the form
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0 2rmωixeN

where ωc = ω(rc) > 1 (c = a, 6), eN = (1, , 1) (N-times), EN = (ζ8t) with
ξ8t = 1 (s, ίe{ l , •••, N}), IN is the identity matrix of order N, and *eN

means the transpose of eN.

It follows from Lemma 2 that the matrix representing Q possesses
a principal minor which is not negative semi-definite, because the (1, 2)-
principal minor of the negative of the matrix (1.1) has the determinant

Γ 0 2-1/2ωr1 Ί
|_2 1/2ωά' a)-1 - ωϊι]

Therefore, Q itself is not negative semi-definite. Thus, the main assertion
of Theorem 1 is proved.

To prove the second assertion of Theorem 1, assume Q is negative
definite. Then D is holomorphically equivalent to a product of balls. It
is well-known (cf., e.g., [2; Proposition 1.4]) that if D is not irreducible,
i.e., if D is holomorphically equivalent to a product of two lower dimen-
sional domains, then zero is an eigenvalue of Q. From this, it follows
that D is holomorphically equivalent to a ball. The proof is completed.

REMARK 3. Let G be a maximal triangular analytic Lie subgroup
in the group of all biholomorphic transformations of D. Theorem 1 holds
if the Bergman metric is replaced by a G-invariant Kahler metric, since
Lemma 2 holds true also for this metric.

2. Thullen domains. Let Dp be a Thullen domain in C2 with pa-
rameter p > 0:

Dp = {zeC2; W < 1 , |z2|
2 < (1 - MY} .

It is well-known (cf., e.g., [1], [3]) that for every zeDp one can find a
biholomorphic transformation Φ of Dp such that φ(z) e {(0, ω); 0 ^ ω < 1}.
As in [1], [3] we make use of the auxiliary variables

r = (1 - p)/(l + p) (p > 0) ,

t = (1 - α>2)/(l - rω2) (0 ^ ω< 1)

and the functions

a = 3 + rt2 ,

£ = 3 - rt2 ,

A = 6 + 4rί8 + (1 + r)rf ,
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B = 2(9 + 3rί2 - 3(1 + r)rf + 2rH4)/a ,

C = .3(6 - Qrf + (1 + r)rf)/β .

Then the Bergman metric tensor gaτ at (0, a>) 6 Dp with 0 ^ α) < 1 is
given by

ga = α/(l + r)t,

(2.1) fif2i = β(l - rί)*/(l - r) 2 ί 2 ,
£fl2 = 0 ,

and the curvature tensor R$a is given by

Bnή = 4A/(1 + r)2ί2 - 2(firlϊ)
2,

ie^r = 2(1 - rtγBJO- + r)(l - r)2ί3 -

Λar = 4(1 - rί)4C/(l - r)*ί -

-^1Π2* = : : -^1212" : = : -^1222" :—' vf

Let / = (31 31/v/"2\ 32 32/v/"2", Sx S,) with 9< = (3/3^)(0,ω). It follows
from (2.1) and (2.2) that the matrix representing the curvature operator
at (0, ω) with respect to the basis / is written as

1/2Λ2

= - 4

- 1/2 0 0

0 C/β2 - 1/2 0
0 0 B/aβ - 1/2J

where Rfb = i2α

cd

6. Using Fourier's theorem concerning the zeros of a
polynomial (cf. [3; Appendices]), we see that for any re(—1,1) the
functions Ala2, C/β2, and Bjaβ are all greater than 1/2 for every t e (0, 1].
Thus we have proved the following.

PROPOSITION 4. Let Dp be a Thullen domain with pφl. Then the
curvature operator of the Bergman metric on Dp is negative definite at
every point of Dp, and Dp is not holomorphically equivalent to a ball.

The latter assertion of Proposition 4 is well-known (cf., e.g., [1;
Proposition 2.8]).

POSTSCRIPT. We would like to take this opportunity to point out
necessary corrections to our previous paper [2].

Page 201, J14: "g(Φ*op(x), Φ+op(p))» should read "g(Φ*°ρ{x), Φ*°ρ{y))".
Page 205, |9 : "X(D)" should read " j r ( £ ) ' \
Page 206, TIB: "UrJ2ωa + jrb/ωb)(x, y}ω" should read "(jra/2ωa +

jrb/2ωb)(x9 y}ω".
Page 209, T16: X X 1 should read "ωVwχ\
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Page 209, |16: "ωV[tf3,W4^2)" should read "ωVίuz,Vilu2".
Page 210, J2: "(δ6β + δbt)y'/2" should read "(S6β + δbt)y'/2".
Page 211, | 4 : "Lemma 5.4" should read "Lemma 5.3".
Page 212, j l5 : "(ii)2 α i = α 2 ^ α 3 = α 4 " should read "(iiX α 1 = α 2 ^ α 3 = α 4 " .
Page 213, |13: "< ,~>" should read "the Hermitian inner product in-

herited from < ,"> (see (1.4))".
Page 215, | 3 : "(E(u, v), y)" should read "<F(u, v\ y)".
Page 216, 116: "-1/fc*" should read "-l//c Λ ".
Page 217, |12: "u, u' e uα*" should read "u, u' e ttα*".
Page 219, |10: "min HSC ^ " should read "min HSC ^ ".
Page 221, 19: "B&xy should read "B&Xy.

REFERENCES

[1] K. AZUKAWA, Bergman metric on a domain of Thullen type, Math. Rep. Toyama Univ.
7 (1984), 41-65.

[2] K. AZUKAWA, Curvature operator of the Bergman metric on a homogeneous bounded
domain, Tδhoku Math. J. 37 (1985), 197-223.

[ 3 ] K. AZUKAWA AND M. SUZUKI, The Bergman metric on a Thullen domain, Nagoya Math.
J. 89 (1983), 1-11.

[4] A. BOREL, On the curvature tensor of the Hermitian symmetric manifolds, Ann. of
Math. 71 (1960), 508-521.

[ 5 ] E. CALABI AND E. VESENTINI, On compact, locally symmetric Kahler manifolds, Ann. of
Math. 71 (1960), 472-507.

[6] R.E. GREENE AND S.G. KRANTZ, Stability properties of the Bergman kernel and curva-
ture properties of bounded domains, in "Recent Developments in Several Complex
Variables" (J. Fornaess, ed.), Ann. of Math. Studies No. 100, Princeton Univ. Press,
Princeton, N.J., 1981, 179-198.

[7] R.E. GREENE AND S.G. KRANTZ, Deformation of complex structures, estimates for the

d equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), 1-86.
[ 8 ] 1.1. PYATETSKII-SHAPIRO, Automorphic Functions and the Geometry of Classical Domains,

Gordon and Breach, New York, 1969.
[9] M. TAKEUCHI, Homogeneous Siegel Domains, Publications of the Study Group of Ge-

ometry, vol. 7, Tokyo, 1973.

DEPARTMENT OF MATHEMATICS

TOYAMA UNIVERSITY

TOYAMA, 930

JAPAN






