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Introduction. In this paper, we study the hypercuspidality of auto-
morphic cuspidal representations of the unitary group U(2, 2).

The hypercuspidality in the case of the symplectic group was intro-
duced by Piatetski-Shapiro [6]. For G = GSp,, a cusp form f on G, is
called hypercuspidal if the Whittaker function corresponding to f vanishes
(cf. [7]). _

Analogously, we define the hypercuspidality in the case of U(2, 2) by
the vanishing of some Whittaker functions occuring in the Fourier
expansion of the cusp form. More precisely, for a cusp form f on U(2, 2),
we consider the Fourier expansion of f with respect to the center of the
unipotent radical of the Borel subgroup. Then we obtain two Whittaker
functions W, and V,, where W, is the ordinary Whittaker function and
V, is as defined in Section 1. We note that in the case of Sp,, the
function V, did not appear in a similar Fourier expansion of a cusp form
f. In terms of these functions, we say f is U-cuspidal (resp. N-cuspidal)
if W, (resp. V;) vanishes. Further, if both of the functions W, and V,
vanish, f is called hypercuspidal.

Next, using the notion of the dual reductive pair, we investigate
cuspidal representations obtained from the Weil-lifting of cuspidal repre-
sentations of U(1, 1) or U(2, 1). Symbolicically, U(1, 1), U2, 1), - - -, denote
unitary groups over a global field of degree 2, 3, - .-, with maximal index.
Let 7 be a cuspidal representation of U(1,1) or U(2,1) and O(z, 4) a
cuspidal representation of U(2, 2) obtained from the Weil-lifting of z.
For per, let f, be an element in O(z, 4») corresponding to ¢. By an
explicit computation of the Fourier coefficients of f,, we have relations
between Whittaker functions of ¢ and f, (Lemma (3.2), Theorem (4.3)
and Proposition (4.4)). Using these relations, we prove the non-vanishing
of O(z, ). Further, under an additional assumption, we obtain some
results about the hypercuspidality of 6(z, ¢) (Theorem (3.1) and Corollary
to Proposition (4.4)).

The author would like to express his gratitude to Professor I. Satake
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1. Notation and preliminaries. Let F' be a global field whose
characteristic is different from 2. Let E be a quadratic extension of F,
and denote its Galois involution by # — . Let A, (resp. A;) be the adele
ring of F (resp. ). We denote the trace and norm of E over F by
Trz» and N respectively. We fix, once and for all, an element 7 in
E* such that Try(?) = 0 and a non-trivial character « of A;/F.

Let & be an algebraic group defined over F. Then we denote by &,
(resp. ®,) the F-rational points (resp. A,-rational points) in . When &
is reductive, let . (®,) (resp. ¥(®,) denote the space consisting of
automorphic forms (resp. cusp forms) on &,. Also, when A is a locally
compact group, let A be the group consisting of unitary characters on A.

Now, let V be a 4-dimensional vector space over E with a basis
{e,, €, €5 €}, and (, ), the skew-Hermitian form on V which is represented

by the matrix
(2, o)
-1, 0

with respect to {e, e, ¢, ¢,}. Let

0 1\ _ 0 1,
GF:{"GGL‘(E)I“’(—M 0>t"= (—12 0)}

0 1\ . 01
h th .
-1 0 -1 0
First, we construct representatives for proper F-parabolic subgroups

of G.
(1) Let B; be a Borel subgroup with the Levi-factor

and

]

H; = {h e GL,(E)

a
b
TF = — a, b GE*
a
5—1
and the unipotent radical
1 a x—ab b
01 b—a
Up = w v a,beE, 2,ycF
1 0
0
—a 1
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For simplicity, we put

1 o« z—ab b
b—ay y
u(ar b’ z, y)= 1 0 )
0
—a 1

u(a) = u(a, 0,0, 0) and z(x) = (0, 0, x, 0)

for a,be A; and x, ye A,.
(2) Let P; be the parabolic subgroup stabilizing the isotropic line Fe,,
for which the Levi-factor and the unipotent radical are given by

—r—1

a
c d
and N, = {u(a, b, z, 0)|a, be E, x € F'}, respectively.

(8) Let Q; be the parabolic subgroup stabilizing the isotropic subspace
FEe, + Ee,, for which the Levi-factor and the unipotent radical are given by

={o a)

and Sy = {u(0, b, z, ¥)|be E, x, y € F'}, respectively.
Let Z; be the center of Uy, that is, Z; = {z(x)|x € F'}. We identify
the group L, and E*x H, by

b b
L, = a' e E*, (a >eHF
c d

Ae GLz(E)}

b b
:E*xXHy = L, (a', <a >>l—> ¢
c d

c d

Further, for a, bec E, we put n(a, b) = u(a, b, 0. 0) mod Z,. We also use
the same notation in the adelic case. Then, Py/Z, is isomorphic to
(E*x Hp)X (E @ E) by the correspondence

(@', k)X (a, b) — (@', k)n(a, b) ,
where (o', h) e E*x H, and (a, b))c E@ E. Also, we have
(1.1) Z(a’, h)"'n(a, b)2(a’, b) = n(a'"(a, b)h) .

Next, we determine groups U,\U,)", (Nz;\N,)™ and (Z;\Z,)" consisting
of unitary characters of Uy\U,, N;\N, and Z,/Z,, respectively. For each
& LeE and te F, we define characters 4., V¢ and ¥, of U\U,, Nz\N,
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and Z,\Z,, respectively, by

Vie,0 (W@, by 2, ¥)) = ¥(Trgr(ta) + ty) ,
V0@, b, , 0)) = y(Trgz(éa + £b))
. and
P(2(x)) = (tx) ,
where a, be A;/FE and z, y€ A;/F. Then we have
UAU)" = {YenléeE teF}, (No\NJ~ = {¢e0lé (e E},
(ZQ\Z)" = (4|t e F} .

Finally, for a given automorphic form f on G, we define three
Whittaker functions corresponding to f by

wreo) = Feaifugdu,

vieow =\ Femingin
and
Jr) =\ | T eg)ds

2. Fourier expansions and the hypercuspidality. In this section,
we define the hypercuspidality for cusp forms on U(2, 2).

Let E' = {a € E*|Ny(a) = 1}. Let [F*] (resp. [E*]) be a complete
set of representatives of F*/Ng(E*) (resp. E*/E*). For a cusp form f
on G, we consider the Fourier expansion of f along Z;\Z,. Fix ¢ in
G4.. As a function on the compact abelian group Z.\Z,, f(zg) has a
Fourier expansion of the form

@) fo=|  fepde+ 3 I}

F\Z 4

a
1
- S fegydz + > JP e
ZF\ZA te[F*] a€[E*] a
1
We put
£i(g) = S flzg)dz .
ZF\ZA

We shall express this function f, by Whittaker functions W, and V,. In
order to do so, we first describe the Lg-orbit decomposition of (N,\N,) .
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L, acts on (N;\N,)~ by

“/"fe,C)(n) = P ns),

where .. € (Nz;\N,)" and 7€ L;,. Noting that Z, is the derived group
of N,, we can deduce from (1, 1) that

'¢"(‘é(fcl)'m = Par—1¢,0n
for (a’, h) e E*x Hy. Thus we obtain the following L-orbit decomposition:

(2-2) (NF\NA)A = {"/’(o,o)} U “P‘(LI?O) U (ceL[]Jm "/"(LlFm) .

We denote the stabilizers of ., and .., in Lz by L(1, 0) and L(1, t3),
respectively, and put

cy
Ry = cel', yeF
Cc

LeEMMA 2.1. For any cusp form f on G,, we have
(2.3) o= 3 { 3 Wree(rg)+ 3 VZ@ew(rg).

te[F*] reEp\Lp reLd,tiNLy

Proor. First we put

M) = | femdz (peP).

F\Z4
Then this is a function on P.Z,\P,. Note that this group is isomorphiec
to (E*\Axx H,\H,)X (Az/E)*. Fix p in P,. As a function on (4,/E)?
Mn(a, b)p) has the Fourier expansion of the form

Mp) = Ye.0(n(@, b)Mn(a, b)p)dadb .

(¢, e E? S(AE/E)Z

From (2.2), we have

)‘(p) - S(A /E.

E

Mnla, bp)dadb + V¥io(n(a, b))\(n(a, b)p)dadd

7eL(L,0\Lp S(AE/mz

i (n(a, B)Nn(a, b)p)dadb .

te[F*] reL(,ti\Lp S(AE/Eﬂ

Since f is a cusp form, the first integral vanishes. Further,

[ Form@ e, bp)dadb = | Fon v fnp)dn

= le/’u,ti)('yp) .
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Similary,

[,y Pl (e BYM(n(a, byp)dadb = [, L Fanmfrp)dn .

F

Put
Mo = et .
Np\N4
Therefore we have
Mp) = 3 MOD) + S, Viwa(vp).
TGL(I.O)\LF te[Fx*] TeL(l,ti)\LF
Next let
1y
P .= 11, eF
and
D, = {/(a, (a (_) >> aeE*} .
0 a

Note that L(1,0) = DpxXP, . For teF, we define a character ,4 of

PI,F\PI,A by
1 v .
oA ) = v,

Then, as before, D, acts on (P, z\P, )" and we have the Dg-orbit decom-
position

(PP = () U( Y, D) .

Let D,r be a common stabilizer of . for te[F*] in D, that is, D,, = -
{cl,|]ce E'}. Now, viewing p, — \(p,p) as a function on P, ;\P, ,, we can
express its Fourier expansion in the form

we) =\ uewdp + 3 AP PP)D, -

Py, 7\P1, 4 te[F*] 3eDy,p\Dp SPI,F\PI.A

The first integral equals

S(AE/E>2 m{gﬂ,m\pmh flan(a, b)plp)ddel}dadb
={,  FTE@)|  feu@pids}da=o0.
Furthermore,
SPI,F\PI,A A PIMPp) dp, = SPI,F\pl,A '“/’(51’15_’){SNF\NAWf(npm) dnlap, .
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Here if we put

1y
P, = /(1, (O 1>> and n = u(a, b, x, 0) ,

this integral equals

|, @, T TEa@)(onspopn)dy

265

=\, | 3@+ wifnpspdndy = WFeop) .
Ap/F JNp\N 4
Thus
MO = S S Weo@Ep) .
te[F*] 3eDy, p\Dp
Hence
fo(®) = N(p)
= 3> nmOP+ X S, VYws(yp)
7eL(1,0\Lp te[F*] reL(,ti\Lp
=>1{ 3 Wpee@vp) + 3, VFee(rp)
te[F*] reDpPy p\Lp 3¢Dg, p\Dp reL(Lti\Lp
= > { X Wiwo(yp) + 3>, VF@ww(yp)y,
te[F*] reDy, Py, p\Lp reL(L,ti\Lp
where

ourr ey %)

We have thus proved the relation (2.3) for g€ P,.

ce R’ yeF} = Ry .

On the other hand, since there exists a compact subgroup K in G,
such that G, = P,K, we obtain the assertion for all g e G, by the right

translation with respect to elements of K.

From this Lemma and (2.1), we have

q.e.d.

flg) = > Wiwe(vg)+ 5, VFen(vg)
te[F*] | 7eRp\Lp reL(,tiN\Lp
a
” 1
+ ae%‘*]Jf t 71 g
a
1

In view of this expansion, we put
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W) = {WFw0),eeal f € (G0}
and
V() = (VI 0t0),etem| f € (G} .

We define a linear map &2 from (G, to W)@ V(y) by 2(f) =
(WYwo),, (V¥ww),), Noting that the mapping f i (J7*).er is injective
on % (G,), we give the following definition.

DEFINITION. Let f be a cusp form on G,. We say f is N-cuspidal
(resp. U-cuspidal) if f is contained in 2 '(W(y)) (resp. 2 (V(¥))). Fur-
ther, we say f is hypercuspidal if f is contained in Ker(2).

Clearly, these subspaces are invariant under the action of the Hecke
algebra of G,, and are independent of a choice of a character 4+ and a
set of representatives [F™*].

EXAMPLE. Let F be an algebraic number field. We assume that F
has a real place » which does not split in E. Let G, be the group con-
sisting of F,-rational points in G. It is known that holomorphic discrete
series representations of G, do not have an ordinary Whittaker model for
any non-degenerate characters of U, (Hashizume [2]). Thus, if = is a
cuspidal representation of G, whose G,-component is a holomorphic discrete
series representation, then z is U-cuspidal. But, we do not know whether
7 is hypercuspidal or not.

In Sections 8 and 4, we will construct U-cusp forms and N-cusp forms
by the Weil-lifting.

3. Lifting from U(1, 1) to U(2, 2). In this section, we consider the
Weil-lifting ©(z, ¥) of an irreducible automorphic cuspidal representation
7z of H, to G,, and investigate the cuspidality of O(z, ¥).

Let W be a 2-dimensional vector space over E, (, ), the skew-
Hermitian form on W which is represented by the matrix

1 o

-1 0

with respect to a basis {w, w,}. Let X; = (V ® W)r be a vector space
over F. We consider the symplectic space X, obtained by taking the
imaginary part of the Hermitian form (, )z:(, ),. We have a dual
reductive pair (H, G)CSp,,.. Let Sp,(4;)~ be the two-fold covering group
of Sp,(4r). Let wy be the Weil-representation of Sp,(A4;)~ associated to

4. Then, in the same manner as in [1, Sections 6 and 8], wy gives an
ordinary representation of G,H,. Let X,= X @ X, be a complete
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polarization of X, and (X, ,) the Schwarz-Bruhat space on X, ,. Now,
let (z, V.) be an irreducible automorphic cuspidal representation of H, in
S (H,). For each pe V. and @€ (X, ,), we put

HORS S { 2 oy(g-Wo)e()dh (9€Go)

Hp\H4 veX; p

and

Oz, ¥) = {fZlpe V., 0 AX, )} .

It is well known that O(z, 4r) gives an automorphic representation of G,
in &(G,). We call it the Weil-lifting of . The aim of this section is
to prove the following:

THEOREM 3.1. Let (7, V.) be an irreducible cuspidal representation
of H, in (H,). If v is mon-trivial, then O(z, ¥) is also non-trivial.
Further, if O(c, ¥) 1s cuspidal, then it is U-cuspidal but not hypercuspidal.

We need a few lemmas for the proof. We give a complete polariza-
tion of X; by X, =e, QW+ V. Qw, and X, = ¢, QW + V,® w,, where
V., = Ee, + FEe,. Asa basis of X, we take {e, ® w,, ie, ® w,, e, ® w,, ¢, Q
Wy, € Q w,, 16, ® w,, e, ® w,, e, ® w,} and choose a basis of X, in such a
way that the symplectic form Im( , ),:(, ) is represented by the matrix

<o ﬂ
—-1, 0/°

Then we can use the Schroedinger realization of wy on (X, ,) (cf. [7],
[9]). We identifiy X, with WP V, = {a,w, + a,w, + a:e, + aela;€e E, 1 <
J < 4}, and we write a Schwarz-Bruhat function ¢(X) on X, , as &(w, v)
or &(a, a, a, a). Then for 0e (X, ) and u = u(a, b, x, y)€ U,, the
action of wy(u) on @ is given by
B.1) wywo(a, ay ay a) = Y(Im(ad,@ — @b) + 3,0,(b — @y) + a,d3,a)

X O(a, ay, aa, + ag ba, + ya, + a,) .
Also, when we put

1y
h(y)=(0 1

the action of wy(h(y)) on @ is given by
(3.2)  wyh(®)D(ay, Ay a5 @) = ¥y Im(a@))P(ay Ya, + @y ay a,) .

By a calculation analogous to that in [7], for any f = ff€0O(z, ¥), we
obtain a formula

>eHAy
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@3 fo=| (3 odenoo vehdh

Hp\H4 veV1,p

+ 350 {3 eugmowi, + w, Ne®dn,

Hy,p\H4q v€Vy,p

where H,, is the stabilizer of yiw, + w, in Hy. For y =0, we have
H,» = {h(y)|ye F}. Let U’ be the derived group of U. For each auto-

morphic form f on G, we put
)=\ fugdu.
Up\U4

Then, by (3.1), (8.2) and (8.8), after a simple calculation, we obtain the
following formulas for f = fg in O(z, ).

(3.9 9=, (3 oxe-no, e
1 LS oxahotw, dletdh

and

(3.5 fule) =, L3 oula- 100, vphdn

Using these formulas, we compute the Fourier coefficients W7 and VY
of f.
LEMMA 3.2. For any f= f2ebB(zr,¥) and a mnon-trivial character

Ve € Na\NL™, we have:
(1) If Im(¢Q) = 0, then VYo =0,
(2) If Im(Q) # 0, then VY©o 4s equal to the integral

[ wue-m00,1, ~T HW=cman,
Hy, A\H 4

where

wymam = | SuTmE)etw): by .
Ap
ProoF. Clearly we have

Vieo(g) = S Ve (M)f(ng)dn .

NpZ 4\N 4

By (8.4), the right hand side equals
Tea®| [, 15 opng-W00, Dlph)dh i

SNFZA\NA Hp\H4q veVyp

We,m(’ﬂ)u { > wy(ng-h)O(w, 'v)}cp(h)dh:,dn .

SNFZA\NA Ho,p\HA veVyp
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By (3.1), the first term equals

[SNFZA\NAmd”]U { 32 wu(g-mo, v)}tP(h)dh]

Hp\H4 veVy,p

The second term equals

e Fea@@ O | (3 oy, bg-m0w, vie(dh dadb

o, F\H4 veVy p

- SHO,F\HA[(%M%“EEZ {SAE/E' n[r(Im(l;(as + Z)))db}
xA{{, ,#Im@@, - O)dafwsg-n00, 1, 0s a) [pl)dn

Sﬂo.F\HA

Il

@3g-000, 1, - O{[  HuTmE)etw) 1 dy}dh .

SHo,A\HA

Since @ is a cusp form, if Im() = 0, the inner integral equals zero.
This implies the assertion (1). On the other hand, if Im(e) # 0, the last
integral is no more than the one in the assertion (2). q.e.d.

LEMMA 38.8. For any f=f2€O(r,¥), £€E* and tcF, we have
WYen =0,

ProOF. From (3.5), we have
wres@ = Feafaugdu
Fer@ | (5 ouug-no0, Dptdh i

SUFU’A\UA Hp\H4 v€Vy,p

"I"(é,t)(u(a'y 0’ 01 y))

SA g/E+Ap/F

x[| (3 s 00,9100, Olp()dh Jdady

Hp\H4q4 veVy p

=1, F (|, ¥

F

% B (S wug-h)oO, 0, a, ya3+a4)}cp(h)dh]dy} ~0.

Hp\H4 (ag,ay) ¢E2

q.e.d.

Note that Lemmas 3.2 and 3.3 remain true without the assumption
of the cuspidality of O(z, ).

PrOOF OF THEOREM 3.1. Let (z, V,.) be a non-trivial irreducible cus-
pidal representation of H,. For any a € F, we define a character 4, of
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H, \H, « by v¥,(h(y)) = ¥(ay). Then for each o€ V,, we have a Fourier
expansion of the form

= 3 3 Wf»((“ __1)h).
t [P+ aéTan) a

Thus, if we put W(z, v,) = {(WY:|pe V.}, then there exists at least one
t'e[F*] such that W(z, +,,) = {0}. We choose elements ¢ (e E* such
that Im(¢€) = t. Then, from Lemma 8.2, for any f = f?e€0O(r, v), we
have
V¥eod) = S 0u()00, 1, —T, W (h)dh .
Hy,A\HA
Since W}* = 0, this integral does not vanish at least for one @ ¢ (X, ,).

Hence 6O(z, 4) is non-trivial. The last assertion is obvious by Lemma
3.3. q.e.d.

Finally, we state a result on the cuspidality of O(z, 4). We define
a theta-series of H, with respect to wy by

Ou(h) = 30 w300, v)

for @€ #(X, ). Let X be the central character of z. We denote by
Oy, X™*) the space consisting of the theta-series of H, which are trans-
formed according to X under the center of H,. We can easily show
that fe®(z, ¥) is cuspidal if and only if f, = 0. Therefore, by (3.5),
O(z, ¥) is cuspidal if and only if V. is orthogonal to &(y, X™).

4. Lifting from U2, 1) to U(2, 2). We use an argument similar to
that in Section 3.

Let W be a 3-dimensional vector spaces over E with a basis {w_,, w, w,},
and (, ), the Hermitian form which is represented by the matrix

0 1
)
1 0
with respect to {w_,, w, w,}. Let H° be the corresponding unitary group
and N° the unipotent subgroup of H°:

1 a b
N2 = (0 1 -—d) a, 2€ K, Try2) = —Ngz(a)

00 1 |
Let Z° be the center of N°:
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1 0 =z
Z2 =40 1 O) 2eE, Tryz) =0} .
0 0 1

For the general theory of cusp forms on HS, we refer the reader to [1].
We define a character 4° of N2\N$ by

1 a z
¥v°[{0 1 "—d)) = P(Trgz(a)) .
0 0 1

We denote by Li(HJ) the space consisting of the square-integrable cusp
forms on H?. For each o€ LiHS), we put

wrm =\ Fwemhdn
and

Po(h) = S " p(zh)dz .

ZF
Then we have

a

a
900(]1/) = ;* Wy. 1 h) .

In particular, @, vanishes if and only if so does WY". Let
L (H2) = {pe LHL) WS = 0)

and let L§ ,(HS) be the orthogonal complement of Lj, in L;. These spaces
are invariant under HS and independent of . Clearly, we have an
orthogonal decomposition Li{(HY) = Li(HZ) @ Li,(HS). We know from
[1] that the multiplicity one theorem holds for L (HJ).

In the same manner as in Section 3, let X, = (V® W), be a vector
space over F' with the symplectic form {, > = Re(, )w*(, )y. We have a
dual reductive pair (H®, G)CSp,. Let (z, V.) be an irreducible cuspidal
representation of H. We denote by O(z, ¥-) the Weil-lifting of ¢ with
respect to the Weil-representation wy of Sp,(4,)~. We give a complete
polarization of X, by X, = X, P X,, where X, = ¢, QW + ¢, ® W and
X,=¢, QW +¢,®W. Further, as a basis of X, we take {e, ® w_,,
16, @ w_y, e, Q) Wy, 16, Q Wy **+, &, Q w,, 16, ® w,} and choose a basis of X,
in such a way that the symplectic form ¢ , ) is represented by the matrix

( 0 1m>
-1, 0/°
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As before, for each e V, and each Schwarz-Bruhat function & on X, ,
we put

f;’(g):S (S wulg-how)eh)dh .

Hyp\Hy veXyp

We identify X, with W@ W. Then, for & € (X, ,) and u = u(a, b, z, y) €
U,, the action of w on @ is given by

(4.1) 0, W)X, Y)

= P1/2{x(X, X)y + 2Re(0(X, Y)y) + ¥(Y, V), hO(X, a X + Y),
where X, Ye W,. Also for he H, we have
(4.2) Wy(h)O(X, Y) = &(X-h, Y-h) .

First we consider the cuspidality of @(z, ). We define the action of H7
on WAW by (X, Y)-h=(X-h, Y'h) for (X, Y)eW P W and heHS.

Let Gr(X, Y) be the Gram matrix of (X, Y), that is,
X, X)w (X, Y)w)

Gr(X, Y) = ( .

&0 =\w, 200 (¥, V)

For a, t€ F, we put

tr «a

Gr(a, 1) = {<X, Y)e W @ W|Gr(X, Y) = (_0_ ”)} .

and Gr(a) = Gr(a, 0). Applying Witt’s theorem, we can easily show the
following:

LEMMA 4.1. Gr(a, t) has the following Hy-orbit decomposition.
(1) Gr(0) = {(0, 0} U (w,, 0)-HF U (Usez(aw,, w,)-HF).
(2) If ae Ny (E*), we write o« = a’'@’. Then

Gr(a) = (0, d'w,)-H# U (w, a'w,)-Hy .
(8) If a¢ Ngp(E*) and a + 0, then
Gr(a) = (0, 1/2w_, + aw,)-Hf .
(4) If teF*, then for any a € F,
Gr(a, t) = (tiw,, w_, + 1/2aw,)-Hy .

For Xe W, let H°(X) be the stabilizer of X in Hf. In particular,
we put H? = H°(1/2w_, + aw,) for ae F*.

THEOREM 4.2. Let (7, V) be an tirreducible cuspidal representation
of H? in S/(HZ). Then O(z, v) is cuspidal if and only if



AUTOMORPHIC CUSPIDAL REPRESENTATIONS 273

p(kh)dk = 0

SH&,F\H&,A
for all pe V,, he H; and ac F*.

PrROOF. By definition, for a given automorphic form f on G, f is
cuspidal if and only if

S flsg)ds =0  and S fing)dn = 0
Sp\S4 Np\N 4

for all ge G, Thus, for f= f2€6B(z, ), we compute these integrals.
First

Ss \SAf(sg)ds = S S0, b, z, y)g)dbdxdy

(Ap/F)2? SAE/E

(w0, b, z, ¥)g-h)P(X, Y)}

S(AF/F)2 XAE/E [SH'F\H;{(X,Y) eXy)p
% g)(h)dh]dbdxdy :
By (4.1), this equals

< ], ¥Ry, Dmdyloye-nox, 1) fpwdn

wy(9-MO(X, Y)lph)dh .

SH}:\H;. (X,Y) €Gr(0)

By Lemma 4.1, this equals
L, @#@ MO0, OpWdh + {5 0yg-1)0(w, 0-Mip@dh

Hyp\HY TeH (w)\HF

S, wy(g-h)0(aw, w,)-7}ph)dh .

+ S
aeE JHF\Hy 7eH (w\HF

Since @ is a cusp form, it follows from (4.2) that the first integral is
equal to zero. Also, since H°(w,) contains Ng, the second integral is
equal to

wy(g-h)O(w,, 0)p(h)dh

SHW,)\H'A
wy(g-h)Ow, O)ﬂmmq)(nh)dn}dh =0.

For the same reason, the third term is equal to zero. Hence we have

S Sfsg)ds = 0
Sp\S4

S He(w)NQ\HY
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for all fe6(z, ).
Secondly, for f = f?e€®6(z, ), put

fule) = |, fuodu,

where U’ is the derived group of U. Then using the formula (4.1) and
Lemma 4.1, and making a calculation similar to that above, we have

fu(9) = wy(9- )P0, a'w)p(h)dh

aeNg/ p(E* {SH ° (o) \H

+ ], @90, €w)p()dh}

+ w%(g'h)¢(0’ 1/27'0-1 + (XW1)¢(h)dh ’

aeF*—Np p(E¥ SH,;,F\HZ,,A

where, for a € Ny (E*), o denotes an element of E* such that a =
Ng(a). Moreover, we have

S . Af (ng)dn = SA  Fulu(@)-g)da

F

. @y(g-h)20, a'w)p(h)dh

aeNgp/p(E%) {S}P(wo)\HA

+, | wwe-wow, aw, + ew)ph)dhdal
Ap/E ZF\HY

+ L wy(g- WD, 1/2w_, + aw)p(h)dh .

ae F*—Ng, p(E* SHa F\HY

For any a € A;/E, we put

1 a —1/2aa
m(a)=(0 1 —a )eNﬁ\Nj’.

0 0 1
Then

S E S @y(g - O(w,, d'w, + aw,)p(h)dhda

P\H®,

wy(g - m(—a'"'a)h)@(w,, a’w,)p(h)dhda

Ap/E SZF\HA

[
S S s ww(g h)®(w,, a'wy)p(m(a)h)dhda
Lo
v

cw(g Mo, dw)i| p(m(@eh)dzdal dh

z°, Ap/E SzF\

0¥ mow, aw){|  emhdn}dh

zy F\VY

0.
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Note that for a € N, (E*), we have
0, d'w,) - Hg = (0, 1/2w_, + aw,) - HS .

Consequently, we obtain

|, fmodn =5, ayle- 100 12w, + aw)p@in

eF* JHy F\H

for each f= f%c®(r, ). Hence O(z, +) is cuspidal if and only if

@y(g - h)P0, 1/2w_, + aw,)p(h)dh = 0

aeF* SH&,F\H;
for all o (X, ,) and pe V..

For & ¢ &(X, ), we put &,(Y) = @0, Y). The correspondence @ —
@, e ¥ (W, is surjective. Since we have

wy(g - )P0, 1/2w_, + aw,) = (w4(9)9).((1/2w_, + aw,) - k) ,
O(z, +r) is cuspidal if and only if

0,(1/2w_, + aw,) - hyp(h)dh = 0

o‘eF*SH:,;,F\H;’4
for all ¢,¢ (W, and e V.. For acF* we put W,ya) = {we W,|
(w, w)y = a}. Since W, («) is a closed subset in W,, when we choose an
element w’ € W (a), there exists a function @, ,, € (W) such that @, ,,.(w') =
1 and that @, , |y, = 0 if 8 # a. Thus for a fixed pc V,,

s e+ aw) Wt
aeF* )y, pHY,
=3 S 0.((1/2w_, + awl)-h){s go(kh)dk}dh
aeF* JHY, A\H H,p\Ha, 4
~ 0

for all @, e &¥(W,) if and only if
S p(kh)dk = 0
Hy,p\Hy, 4
for all ¢€ F* and he H;. q.e.d.
In particular, if we put
1 0
TR = ¢ ce B},
0 1

then T% is contained in HJ, for any a€ F'*. Therefore we obtain the
following:
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COROLLARY. If V. satisfies the condition

(%) ST‘, ., P(th)dE =0

for all pe V. and he H;, then O(z, ) is cuspidal.

Unfortunately, we do not know yet any example of the cuspidal
representations satisfying the condition ().

Next, we compute the Fourier coefficient WY. We choose a complete
set of representatives [F*] of F*/N;(E*) which contains 1. For the
sake of convenience, we use {t/2|t € [F*]} instead of [F*]. It is enough
to compute WYwwa for te[F*].

THEOREM 4.3. Let (z, V.) be an irreducible cuspidal representation
of H}. For f= f2e€0O(c, ), we have the following:

(1) If V.CL:(HS), then Wlwws =0 for all te[F*].

(2) If V.cL},(HY), then for te[F*] we have

0 if t=1
I, ouo W0, w)WY Mk if t=1
Z°\H°,

A

WY wen(g) = {

for all geG,.
ProOF. For te[F*], we compute the integral
UYwea(g) = S
S
By (4.1), this equals

“l'u,tm(s)f(sy)ds .
\S 4

F

= | a0 B % 0w, b, 2, w)g)dbdedy
(Ap/F)2 ) Ag/E

WX, X)y)da}

SH'F\H; (X,Y)eX; p {SAF
Al re0c Dol
X wy(g - O(X, Y)lp(h)dh

wy(9 - (X, Y)lp(h)dh

PR — (%, D)y}

F

SH;.\H; (X,¥)ert)

SH. . 0y(g - RO, 1/2w_, + tw)p(h)dh if t=1
- SWO)\H_ 0y(g - OO, w)pt)dh + | wy(g - h)0w, w)ph)dh

if t=1.
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If ¢t #1, we have

Wrevag) = | FTE @ Uy evs(ua)g)da

E
={|, 3T r@nda} Upesni) = 0.
Ag/E
On the other hand, if ¢ =1, we have

WP wya(g) = SA LV Trep@) Uf wvo(u(a)g)da

E

-, 7

He(w)\

e @y(u(@)g + h)@(0, wy)p(h)dh
+ Sz;,m; wy(u(a)g - B)P(w,, wo)«;o(h)dh}da
= {SAE/E w(TrE/F(a))da} {SH. (WY (Dw(g - h)®(0, wo)?(h)dh}

4§ o P aD][ |, 04l 10, 0w, + w)phdh}da

Z\H
= 3@ ] | om0, aw, + viehdhlda .
Agp/E Z:‘\Hg
If pe L3 (HS), then @, =0. Thus WYwwvs = 0. This proves the asser-
tion (1).
On the other hand, if @ e L},(H?). then we have

W}I'(l.x/z)(g)
= SA /E w(TrE/F(a)){S \H® w%‘(g * m(—a)h)@(wu wO)¢0(h)dh}da

ZY\HY

=, wug-mow, w)| I @pm@ndaldn

AV A E:

= S o\HS wy(g + R)P(wy, wo) Wf.(h)dh .

VAN

This proves the assertion (2). q.e.d.

Note that this theorem remains true without the assumption of the
cuspidality of O(z, ¥).

By the verification similar to that for Theorem 8.1, we can show the
following:

COROLLARY. Suppose V.CL;,(HS). If t is mon-trivial, then O(z, )
is also mon-trivial.

Finally, we compute the Fourier coefficient VYwta, For each ac F
and @ € 7 (HS), we put
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1 0
J¥e(h) = SAF/F«;r(a‘x)q» 01 0)lds.
00 1

Then, by Lemma 4.1. (4) and a simple calculation we can deduce the
following:

PROPOSITION 4.4. Let (7, V.) be an irreducible cuspidal representation
of H;. For any f= f2€0O(z, v) and t€[F*] we have

vyesa) = | | oue-wottin, v+ sw)Iy-Wdhds .
7 A

Further, if V. satisfies the condition (%), then Vw2 yanishes for all
te[F*].

Combining this proposition with Theorem 4.3, we obtain the following:

COROLLARY. We assume that there exists a mnon-trivial irreducible
cuspidal representation (z, V.) of HjS satisfying the condition (%) in
Corollary to Theorem 4.2. Then we have:

Q) If V.cLi,HY), then O(z, ) is N-cuspidal but not hypercuspidal.

@2 If V.cL;(H2), then O(z, ¥) is hypercuspidal.
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