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Introduction. In this paper, we study the hypercuspidality of auto-
morphic cuspidal representations of the unitary group £7(2, 2).

The hypercuspidality in the case of the symplectic group was intro-
duced by Piatetski-Shapiro [6]. For G = GSp4, a cusp form / on GA is
called hypercuspidal if the Whittaker function corresponding to / vanishes
(cf. [7]).

Analogously, we define the hypercuspidality in the case of £7(2, 2) by
the vanishing of some Whittaker functions occuring in the Fourier
expansion of the cusp form. More precisely, for a cusp form / on £7(2, 2),
we consider the Fourier expansion of / with respect to the center of the
unipotent radical of the Borel subgroup. Then we obtain two Whittaker
functions Wf and Vf9 where Wf is the ordinary Whittaker function and
Vf is as defined in Section 1. We note that in the case of Sp4, the
function Vf did not appear in a similar Fourier expansion of a cusp form
/. In terms of these functions, we say / is £7-cuspidal (resp. iV-cuspidal)
if Wf (resp. Vf) vanishes. Further, if both of the functions Wf and Vf

vanish, / is called hypercuspidal.
Next, using the notion of the dual reductive pair, we investigate

cuspidal representations obtained from the Weil-lifting of cuspidal repre-
sentations of £7(1, 1) or £7(2, 1). Symbolically, £7(1, 1), £7(2, 1), , denote
unitary groups over a global field of degree 2, 3, , with maximal index.
Let r be a cuspidal representation of £7(1, 1) or £7(2, 1) and Θ(τ, ψ) a
cuspidal representation of £7(2, 2) obtained from the Weil-lifting of τ.
For φ€τ, let fφ be an element in Θ(τ, ψ) corresponding to φ. By an
explicit computation of the Fourier coefficients of fφ, we have relations
between Whittaker functions of φ and fφ (Lemma (3.2), Theorem (4.3)
and Proposition (4.4)). Using these relations, we prove the non-vanishing
of Θ(τ, ψ). Further, under an additional assumption, we obtain some
results about the hypercuspidality of θ(τ, φ) (Theorem (3.1) and Corollary
to Proposition (4.4)).

The author would like to express his gratitude to Professor I. Satake
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for useful advice and encouragement and to Professor Y. Morita for many
valuable comments.

1. Notation and preliminaries. Let F be a global field whose
characteristic is different from 2. Let E be a quadratic extension of F,
and denote its Galois involution by x —> x. Let AF (resp. AE) be the adele
ring of F (resp. E). We denote the trace and norm of E over F by
T r ^ and NE/F, respectively. We fix, once and for all, an element i in
E* such that ΎrE/F(i) = 0 and a non-trivial character ψ of AF/F.

Let © be an algebraic group defined over F. Then we denote by ©^
(resp. ©Λ) the F-rational points (resp. ^-rational points) in ©. When ©
is reductive, let Jzf(®A) (resp. j^(®A)) denote the space consisting of
automorphic forms (resp. cusp forms) on © .̂ Also, when A is a locally
compact group, let A be the group consisting of unitary characters on A.

Now, let V be a 4-dimensional vector space over E with a basis
{βi, e2, eΆ, ej, and ( , )v the skew-Hermitian form on V which is represented
by the matrix

0 1,

with respect to {elt e2, e3, e j . Let

and

GF =

Hp= \he GL2(E) h

0 1,
- L 0

0 1\ _

- 1 0
*h =

- 1 , 0

0 1

- 1 0

First, we construct representatives for proper i^-parabolic subgroups
of G.

(1) Let BF be a Borel subgroup with the Levi-factor

and the unipotent

Ό,

radical

/

= -

/I a

0 1

. 0
\

la

1

X

b

b

a'1

— ab

— ay

1

—a

\

b-ιl

b

y
0
1

a

a,beE*

, b e E, x, yeF
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For simplicity, we put

261

u(a, b, x, y) =

/I a x — ab b\

0 1 b — ay y

0
\ -a 1/

u(a) = u(a, 0, 0, 0) and z{x) = u(0, 0, x, 0)

for α, 6 6 AE and x, y e AF.
(2) Let PF be the parabolic subgroup stabilizing the isotropic line Ee3,

for which the Levi-factor and the unipotent radical are given by
Πa'

\

a

c

a1'1

\

b

dl

a' e E\
la

\o dj
6 HF

and NF = {u(a, b, x, 0) \a, b e E, x e F), respectively.
(3) Let QF be the parabolic subgroup stabilizing the isotropic subspace

Eez + Ee±, for which the Levi-factor and the unipotent radical are given by

(A -_) AeGL2(E)
\0 ιA V

and SF = {u(0, b, x, y)\beE, x, y eF}t respectively.

Let ZF be the center of UF9 that is, ZF — {z(x)\xeF}. We identify
the group LF and E*xHF by

α'

la b\
a. c d

a

a'-1

Further, for a, beE, we put n(a, b) = u(ay b, 0r 0) mod ZF. We also use
the same notation in the adelic case. Then, PF/ZF is isomorphic to
(E* x HF) κ(Eξ& E) by the correspondence

(a', h) K (α, 6) ι-> /(α', h)n(a, b) ,

where (α', h)eE*xHF and (α, b)eE@ E. Also, we have

(1.1) /{a\ h)-ιn{fl, b)/(a', h) = n(a'-\a, b)h) .

Next, we determine groups (UF\UAT, (NF\NA)~ and (ZF\ZA)~ consisting
of unitary characters of UF\UA, NF\NA and ZF/ZA, respectively. For each
ξ, ζeE and teF, we define characters ^ ( f ) ί ), ^ ( f } ζ ) and ψt of UF\UA, NF\NA
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and ZF\ZA9 respectively, by

φ{ξtt)(u(a9 6, x, y)) =

φ«tζ)(u(flf b> %> 0)) =

and

ξa) + ty) ,

where α, b e -4̂ /2? and as, 2/ £ .Â /i*7. Then we have

= {ψ{$tt) \ζeE,teF), (NF\NAT = {ψ(ξ.c, I ft C 6 ^} ,

Finally, for a given automorphic form / on GΛ, we define three
Whittaker functions corresponding to / by

VF\Uj

JNF\NA

and

2. Fourier expansions and the hypercuspidality. In this section,
we define the hypercuspidality for cusp forms on Z7(2, 2).

Let E1 = {aeE*\NE/F(a) = 1}. Let [F*] (resp. [E*]) be a complete
set of representatives of F*/NE/F(E*) (resp. E*/E1). For a cusp form /
on GA, we consider the Fourier expansion of / along ZF\ZA. Fix g in
GA. As a function on the compact abelian group ZF\ZA, f(zg) has a
Fourier expansion of the form

(2.1) f(g) = f{zg)dz + Σ <
J ZF\ZA t e F*

= L\zf(z9)dz+tS-1'S./f

//α

We put

/o(ί)0 =

We shall express this function f0 by Whittaker functions Wf and V/β In
order to do so, we first describe the LF-orbit decomposition of (NF\NAy.
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LF acts on (NF\NAT by

263

where ^(tffC) 6 (NF\NA)~ and / 6 LF. Noting that ZA is the derived group
of NΛ, we can deduce from (1, 1) that

for (α', h)eE*x HF. Thus we obtain the following LF-orbit decomposition:

(2.2) (NF\NAT = {t(o.o)}U^αfo,U( U tfifϋ))

We denote the stabilizers of ψilt0) and ψ{liU) in LF by L(l, 0) and L(l, ίΐ),
respectively, and put

[\

cy

c I

ceE1, yeF

LEMMA 2.1. For any cusp form f on GA, we have

(2.3) fo(g) = Σ { Σ Wt«>»{tg) + Σ vp^
tlF*-] R\L reUl,ti)\Lp

PROOF. First we put

λ(p) =
ZF\ZA

f(zp)dz (pePA).

Then this is a function on PFZA\PA. Note that this group is isomorphic
to (E*\A*xHF\HA)κ{AEIE)\ Fix p in PA. As a function on (AB/E)%,
\(n(fl, b)p) has the Fourier expansion of the form

= Σ \

From (2.2), we have

= \ X(n(a, b)p)dadb
J(AE/E)2

+ Σ Σ
tlF*] Lati)\L

, b)p)dadb .

ra,l)(n(a, b))\(n(a, b)p)dadb

, b))x(n(a, b)p)dadb .

Since / is a cusp form, the first integral vanishes. Further,

S ΫCuMa, 6))λ(n(α, b)p)dadb = \
J(AE/E)2 J

\
JNF\NA
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Similary,

I Ψra,l)(n(a, b))X(n(a, b)p)dadb = \
J(AE/E)2 J

1 _

)(AE/E)2

Put

χ(p) = ί f (i,o
JNF\NA
JNF\NA

Therefore we have

λ(p)= Σ λχ(τp)+ Σ Σ
reL(l,0)\£F •

Next let

and

la 0

Note that L(l, 0) = DF x P1F. For ί e ί 7 , we define a character tψ> of

Then, as before, DF acts on (P^FXP^AT
 a n ( i we have the D^-orbit decom-

position

u ,<f B ' ).
[* ]

Let i)0 ) F be a common stabilizer of tψ for te[F*] in ί?F, that is, D0F =
{c^lce.E'1}. Now, viewing Pi ι-* λ i^p) as a function on P1>F\P1)A, we can
express its Fourier expansion in the form

ι(VιV)dVι + Σ Σ I
<e[F*] δeDOiF\DF JP1}F\Pi,A

The first integral equals

\ Ψa,o)(n(a> V))\\ f(zn(a, fypj
J(AE/E)2 \JPI,FZF\P1,AZA

= \ ψ(TrE/F(a))\\ f(su(a)p)ds\da = 0 .
JAF/E {JSF\SA *

\
JAF/E

Furthermore,

\ tΨδ~\Pi)Xi(PiP)dp, = \ Mδpβ-*))( Ψa.o)(n)finpj>)dn\dp, .
JPltF\PltA Jpl,F\Pl,A KJNF\NA )
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Here if we put

this integral equals

\ ~Wy)\ \
J ΛFIF \ J

= \

and n = u(a, 6, x, 0) ,

ΛFIF }NF\NA
ty)f(np1δp)dndy =

χ(p)= Σ Σ

Thus

Hence

/.(P) =
= r e £ α Σ L λ»(7p) + t Σ^ r e L ( Σ Λ L V/" «>(7p)

= Σ { Σ Σ Wp^Qvp) + Σ V/tf.«>(7p)}
ίe[F*] γeDFPlyF\LF δeDOtF\DF γeL{l,ti)\LF

= Σ { Σ W?<i.«(7p)+ Σ V/« «'(7P)} ,
ίe[F*] reDOfFP1)F\LF reL(l,ti)\LF

where

0 c
DQtFPltF= \/ c,

We have thus proved the relation (2.3) for gePA.
On the other hand, since there exists a compact subgroup K in G^

such that GA = PΛK, we obtain the assertion for all g eGA by the right
translation with respect to elements of K. q.e.d.

From this Lemma and (2.1), we have

f(g) = Σ Σ
γeRp\LF

+ Σ V/<i.«>(70)
reL{i,ti)\LF

+ ΣΣ
αe[i ]

\\

In view of this expansion, we put

/J
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and

Vffl =

We define a linear map & from sf^GA) to W(ψ) © F(f) by
((TF/u'Όί, (Vr/(1'<<))ί). Noting that the mapping /h-> (J/OίβCf] is injective
on j^(G^), we give the following definition.

DEFINITION. Let / be a cusp form on G .̂ We say / is N-cuspidal
(resp. U-cuspidal) if / is contained in «̂ r~1(Wr('f)) (resp. £&~ι(y(ψ))). Fur-
ther, we say / is hypercuspidal if / is contained in

Clearly, these subspaces are invariant under the action of the Hecke
algebra of GAy and are independent of a choice of a character ψ and a
set of representatives [F*].

EXAMPLE. Let F be an algebraic number field. We assume that F
has a real place v which does not split in E. Let Gv be the group con-
sisting of ^-rational points in G. It is known that holomorphic discrete
series representations of Gv do not have an ordinary Whittaker model for
any non-degenerate characters of Uv (Hashizume [2]). Thus, if π is a
cuspidal representation of GA whose G^-component is a holomorphic discrete
series representation, then π is [/-cuspidal. But, we do not know whether
π is hypercuspidal or not.

In Sections 3 and 4, we will construct £7-cusp forms and ΛΓ-cusp forms
by the Weil-lifting.

3. Lifting from Z7(l, 1) to Z7(2, 2). In this section, we consider the
Weil-lifting θ(τf ψ) of an irreducible automorphic cuspidal representation
τ of HA to GA, and investigate the cuspidality of θ(τf ψ).

Let IF be a 2-dimensional vector space over E, ( , ) w the skew-
Hermitian form on W which is represented by the matrix

0 «

\-l 01

with respect to a basis {wlf w2). Let XF = (V ® W)F be a vector space
over F. We consider the symplectic space XF obtained by taking the
imaginary part of the Hermitian form ( , ) w ( , )F. We have a dual
reductive pair (H, G)aSp1Q. Let Sp1Q(AFy be the two-fold covering group
of Splβ(AF). Let a)ψ be the Weil-representation of Sp1Q(AFy associated to
ψ. Then, in the same manner as in [1, Sections 6 and 8], ω^ gives an
ordinary representation of GAHA. Let XF = Xx φ X2 be a complete
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polarization of XF, and S^(XliA) the Schwarz-Bruhat space on XltA. Now,
let (τ, Vτ) be an irreducible automorphic cuspidal representation of HA in

. For each φe Vτ and Φeg*(XltA), we put

fΦλ9) = j Σ (ύψ(g h)Φ(v)}φ(h)dh (geGA)
HF\HA veXltF

and

θ(τ9 ψ) = {/<? I φ e Vτ, Φ e g*(XίtA)} .

It is well known that Θ(τ, ψ) gives an automorphic representation of GA

in J^(GA). We call it the Weil-lifting of τ. The aim of this section is
to prove the following:

THEOREM 3.1. Let (τ, Vτ) be an irreducible cuspidal representation
of HA in j*fQ(HA). If τ is non-trivial, then Θ(τ, ψ) is also non-trivial.
Further, if Θ(τ, ψ) is cuspidal, then it is U-cuspidal but not hyper cuspidal.

We need a few lemmas for the proof. We give a complete polariza-
tion of XF by X1 = ex 0 W + Vλ (g) wx and X2 = ez (g) W + Vt (g) w2, where
Vι — Ee2 + Ee±. As a basis of Xx we take {βx ® Wj, iex (x) tί;^ ex 0 te;2, iex (g)
w2»

 β2 ® wlf ie2 (g) wlf e4 (g) wlf ie4 (g) ̂ J and choose a basis of X2 in such a
way that the symplectic form Im( , )F ( , ) w is represented by the matrix

0 L

Then we can use the Schroedinger realization of ωψ on S?(XltΛ) (cf. [7],
[9]). We identifiy X1 with T F φ Vx = {α^i + α2tt;2 + α3β2 + α4e4 |αy e ί ί , 1 <;
j ^ 4}, and we write a Schwarz-Bruhat function Φ{X) on X1?^ as Φ(w, v)
or Φ(αi, α2, α3, α4). Then for Φ 6 S^(XlfA) and u = u{a, b, x, y) 6 UA, the
action of ω^(u) on Φ is given by

(3.1) ω+(u)Φ(a19 a2, α3, α4) = ^(Im(a1a2(« — aδ) + a2a3(6 — at/) + a2a4a)

x Φ(alf a2, aa1 + a3, bax + 2/a3 + a4) .

Also, when we put

the action of ω+(h(y)) on Φ is given by

(3.2) ω+(My))Φ(a19 a2, α3, α4) = ^(y Im(α3α4))Φ(α1, yax + α2, α3, α4) .

By a calculation analogous to that in [7], for any / = /• 6 Θ(τ, ψ), we
obtain a formula
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(3.3) f{g) - S { Σ ωΨ(g h)Φ(O, v)}φ{h)dh
JHF\HA veVUF

+ Σ \ { Σ ωψig-h)Φiyiw1 + w2, v)}<pih)dh ,
yeF jHyfF\HA veVltF

where HVfF is the stabilizer of yiwί + w2 in HF. For y = 0, we have
iJOjP = {fe(2/)|2/eF}. Let Z7' be the derived group of U. For each auto-
morphic form / on GA, we put

= \ , , f(ug)du .
JUF\UA

Then, by (3.1), (3.2) and (3.3), after a simple calculation, we obtain the
following formulas for / = /* in Θ(τ, ψ).

(3.4) /o(fi0 = ( { Σ ω+(g h)Φ(0, v)}φ(h)dh
JHF\HA veV1>F

S { Σ (ύir(g-h)Φ(w2,v)}φ(h)dh
jHOtF\HA veVUF

and

(3.5) fOQ(g) =\ { Σ ω+(g h)Φ(0, v)}φ(h)dh .
JHF\HA veVlfF

Using these formulas, we compute the Fourier coefficients Wf and Vf
of/.

LEMMA 3.2. i^or any f = /* e Θ(τ, ψ) α^d α non-trivial character
Ψ(ζ,o e (NF\NAΓ, we have:

(1) // Im(fζ) - 0, ίfeen y/«.« =o,
(2) // Im(fζ) ^ 0, ίfeen V/(*.« is eguαi ίo ίΛe integral

\ ω+(g-h)Φ(0, 1, - ζ ,

JΛF/F

PROOF. Clearly we have

Vp^{g) = \
JNFZA\NA

By (3.4), the right hand side equals

{ Σ ω+(ng h)Φ(0, v)}φ(h)dh]dn
F\HA veVltF

 y J

\ Ψ«,ι:)W)\ \ i Σ ωΨ{ng-h)Φ(w2, v)}φ{h)dh\dn .
JNFZA\NA LJHOfF\HA veVltF J
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By (3.1), the first term equals

Γί Ψ^Jn)dnJ\ { Σ ω+(g h)Φ(0, v)}φ(h)dh] = 0 .
LJNFZA\NA JLJHF\HA veVλtF J

The second term equals

I f (? o(^(α, 6)) \ { Σ a)ψ(n(a, b)g-h)Φ(w2, v)}φ{h)dh \dadb
J(AE/E)2 LjHOiF\HA veVlfF J

= \ Γ Σ , j( Ψ(ϊm(b(a3 + Q))db\
jHOtF\HAL{as,a^eE^ KUE/E )

x |\ τKIm(α(α4 - ξ)))da)tωψ(g-h)Φφ, 1, α3, a,)k>{h)dh

= \ ω+(g h)Φ(0, 1, - ζ , ξ)<p(h)dh
jHQtF\HA

ψ(ylm(ζζ))φ(h(y)'h)dy\dh .

Since φ is a cusp form, if Im(fζ) = 0, the inner integral equals zero.
This implies the assertion (1). On the other hand, if Im(£ζ) Φ 0, the last
integral is no more than the one in the assertion (2). q.e.d.

LEMMA 3.3. For any / = /*eθ(τ, Ή ζeE* and teF, we have
«.« = 0.

PROOF. From (3.5), we have

^{g) = \ , TZ&)Mug)du
JUFUΆ\UA

= ( , Ψ7JU)\\ { Σ ωΨ(ug h)Φ(0, v)}φ(h)dh]du
JUFUA\UA LJHF\HA veVlfF J

= \ Yiu)(v(a, 0, 0, y))
JAE/E+AF/F

x Γ( { Σ ωψ{u{a, 0, 0, y)g-h)Φ(0, v)}φ(h)dh]dady

= \\
AF/F

x Γ( { Σ ωψ(g-h)Φ(Q, 0, α3, ί/α3 + αJJ^W^Idt/i = 0.
LJHF\HA (a3,H)eE^ J J

q.e.d.

Note that Lemmas 3.2 and 3.3 remain true without the assumption
of the cuspidality of β(τ, ψ).

PROOF OF THEOREM 3.1. Let (τ, Vr) be a non-trivial irreducible cus-
pidal representation of HA. For any α e ί 7 , we define a character ψa of



270 T. WATANABE

HOfF\HOtA by φa(h(y)) = ψ(ay). Then for each φe Vτ, we have a Fourier
expansion of the form

= Σ Σ wp[[a _ \h) .[
Thus, if we put W(τ, ψt) = {Wf'lφe Fr}, then there exists at least one
t'e[F*] such that W(τ, ψt>) Φ {0}. We choose elements ζ, ζeE* such
that Im(fζ) = ί\ Then, from Lemma 3.2, for any / = /• e Θ(r, ψ), we
have

JHOfA\HA

Since ΪF/*' ̂  0, this integral does not vanish at least for one y

Hence Θ(τ, ψ) is non-trivial. The last assertion is obvious by Lemma
3.3. q.e.d.

Finally, we state a result on the cuspidality of Θ(τ, ψ). We define
a theta-series of HA with respect to ωψ by

ΘΦ{h) = Σ ω+(h)Φ(0, v)
veVltF

for <?Gy(J M ) . Let X be the central character of τ. We denote by
θ(ψ9 Z"1) the space consisting of the theta-series of HA which are trans-
formed according to Z"1 under the center of HΛ. We can easily show
that / e θ ( τ , f ) is cuspidal if and only if /M = 0, Therefore, by (3.5),
θ(τ, ψ) is cuspidal if and only if Vτ is orthogonal to θ(ψ, Z"1).

4. Lifting from 17(2, 1) to 17(2, 2). We use an argument similar to
that in Section 3.

Let W be a 3-dimensional vector spaces over E with a basis {w_lf wQ, wj,
and ( , ) w the Hermitian form which is represented by the matrix

with respect to {w_lf w09 wj. Let H° be the corresponding unitary group
and N° the unipotent subgroup of H°:

11 a z\

0 1 -a

\θ 0 ly

Let Z° be the center of N°:

α, ^ e ^ , Tr /̂F(2;) = -NE/F(a)
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z6E, TrE/F(z) =

For the general theory of cusp forms on HA, we refer the reader to [1].
We define a character ψ° of NF\NA by

II a

\0 0

We denote by L\(HA) the space consisting of the square-integrable cusp
forms on HA. For each gteLftHf), we put

Wf\h) = \ ψ(n)φ(nh)dn
jN0

F\Ne

A

and

Ψo(h) = \ φ(zh)dz .
JZF\Z°A

Then we have

9Ό(Λ)= Σ Wr\[ 1 \h\.

In particular, φ0 vanishes if and only if so does Wf\ Let

L\tlH2) = {φ e L^ίfi) I W*β = 0}

and let L\Λ{HA) be the orthogonal complement of L2

Q)0 in LJ. These spaces
are invariant under HA and independent of ψ. Clearly, we have an
orthogonal decomposition Ll(H2) = IAι0(H2)@Lltl(H2). We know from
[1] that the multiplicity one theorem holds for L2

0}1(H2).
In the same manner as in Section 3, let XF = (V (x) W)F be a vector

space over F with the symplectic form < , > = Re( , ) ΐ r ( , )F. We have a
dual reductive pair (H°, G)aSpu. Let (τ, Vτ) be an irreducible cuspidal
representation of HA- We denote by θ(τ, ψ) the Weil-lifting of τ with
respect to the Weil-representation ωψ of Sp^^p)". We give a complete
polarization of XF by X^ = Xx 0 X2, where Xx = e1 ® W + e2 (g) TΓ and
X2 = e3 (g) T7 + e4 (g) T7. Further, as a basis of Xx we take {ex ® w^,
iex (g) w_lf ex (g) t̂ o> iβi (g) ̂ o> ι β2 (g> wx, iβ2 (g) ̂ J and choose a basis of X2

in such a way that the symplectic form < , > is represented by the matrix

0 112

2
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As before, for each φ e Vτ and each Schwarz-Bruhat function Φ on XίtA,
we put

/?(flθ = 1 { Σ ωΨ(g-h)Φ(v)}φ(h)dh .
JH°F\H°A veXup

We identify X1 with WφW. Then, for Φ e S?(XUA) and « = %(α, b, x, y) e
C7̂ , the action of u on Φ is given by

(4.1) ωΨ{u)Φ{X, Y)

= ir(l/2{x(X, X)w + 2Re(6(X, Y)w) +y(Y, Y)W})Φ(X, aX + Y) ,

where X, Ye WA. Also for he HA, we have

(4.2) ωΨ(h)Φ(X, Y) = Φ(X h, Y h) .

First we consider the cuspidality of Θ(τ, ψ). We define the action of H£
on WφW by (X, Y) Λ. = (X Λ, Y h) for (X, Γ ) e ΐ 7 φ ΐ F and heHf.
Let Gr(X, Γ) be the Gram matrix of (X, Y), that is,

K γ γ\ ( γ y\

Gτ(X Y) = (
\(Γ,X^ (Γ, Y)w

For a, teF, we put

Gr(α, ί) = )(X, Γ) 6 W 0 TΓ| Gr(Jf, Γ) = / ° **

and Gr(α) = Gr(α, 0). Applying Witt's theorem, we can easily show the
following:

LEMMA 4.1. Gr(α, t) has the following Hβ-orbit decomposition.
(1) Gr(0) = {(0, 0)} U (wl9 0)ΉF° U (UaeE(awlf wj Hϊ).
(2) If ae NE/F(E*), we write a — a'a'. Then

Gr(α) = (0, a'w0) JBΓ; U (wlf a'wo)-H£ .

(3) If aί NE/F(E*) and a Φ 0, then

Gr(α) = (0, \βw_x + aw^-H^ .

(4) If teF*, then for any aeF,

Gr(α, t) = (tiwlf w_γ -

For l e l f , let ,ffo(X) be the stabilizer of X in i/F°. In particular,
we put HZF = iϊo(l/2w_1 + aw,) for α e F * .

THEOREM 4.2. Let (τ, FΓ) 6β an irreducible cuspidal representation
of HA in JV&HΛ). Then Θ(τ, ψ) is cuspidal if and only if
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φ(kh)dk = 0

for all φeVτ, heH% and aeF*.

PROOF. By definition, for a given automorphic form / on GA, f is
cuspidal if and only if

( f(sg)ds = 0 and ( f(ng)dn = 0
JSF\SA JNF\NA

for all geGA. Thus, for / = f$ eθ(r, ψ), we compute these integrals.
First

I f(sg)ds = \ \ /(w(0, 6, x, y)g)dbdxdy
J SF\SA J {AF/F) 2 J AE/E

= \ \ Γ( A Σ ^(M-uJi-Wd-y))
JίΛpΛFjZ JAE/E LJH°F\HA (X,Y)eXlfF

x φ(h)dh \dbdxdy .

By (4.1), this equals

= ( β Γ Σ \\ Ψ (l/2x(X, X)w)dx}\\ ψ (Re(6(X, Y)w))db\

x \\ ψ(l/2y(Y, Y)w)dy\ωψ(g h)Φ(X, ]

= J^β ^β { ̂  Σ Q ωΨ(g h)Φ(X, Y)}φ(h)dh .

By Lemma 4.1, this equals

( % ( ^ WΦ(0,0)9(fe)Λ + ί { Σ ωψ(g*h)Φ((wlt0)Ί)}φ(h)dh
JHF\HA JHF\H°A reHβ(υ>ι)\HF

Σ \ . . { Σ ωψ(g'h)Φ((awlf wλ)-Ί)}φ(h)dh .
aeE JHF\HA ΐeH'iwiiMlF
Σ [
aeE JHF\H°A

Since φ is a cusp form, it follows from (4.2) that the first integral is
equal to zero. Also, since H°(wi) contains NF, the second integral is
equal to

S ωψ(g-h)Φ(wv 0)<p(h)dh

= \ ωψ(g-h)Φ(wv 0)4 \ <p(nh)dn\dh = 0 .
jH'(wi)NΆ\HA KJNF\NΆ )

For the same reason, the third term is equal to zero. Hence we have

\ f(sg)ds = 0
JSF\SA
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for all /eθ(τ,ψ).
Secondly, for / = /• e Θ(τ, ψ), put

/oo(flO = \ , , f(ug)du ,
3u'F\uΆ

where U' is the derived group of U. Then using the formula (4.1) and
Lemma 4.1, and making a calculation similar to that above, we have

/oo(ff) = Σ I ( ω+{g h)Φ(0, a'wQ)φ{h)dh
aeNE/F(E*) KJH°(WO)\HA

+ I ωψ(g*h)Φ(w19 a'wo)<p(h)dh\
JZ°F\H°A )

+ Σ \ ω+(g-h)Φ(0, l/2w^ + aw^(h)dh ,
aeF*-NEtF{E*) jHayF\H°aiA

where, for a e NE/F(E*), α' denotes an element of E* such that a =
NE/F(a'). Moreover, we have

\ f(ng)dn=\ fw(u(a)-g)da
JNF\NA JΛF/F

= Σ |( .ωψ(g-h)Φ(O,a'wo)φ(h)dh
a&NE/F{E*) UH°(WO)\HA

1
JZF\Ha

Λ

1 ψ a!wQ

JZF\Ha

Λ

Σ ( Q)ir(g h)Φ(Of l/2w_! + awx)φ{h)dh .
aeF*-NE/F(E*) dH°ayF\HA

For any α e AEjE, we put

(1 α -l/2αα\

0 1 -a \sNf\N2 .

0 0 1 /
Then

S I α>^(ίy h)Φ(wlf a'w0 + a
AE/E JZ°F\HΛ

— 1 \ α)̂ (gf m(-δ;""1α)Λ)Φ(«;1, a'wo)φ(h)dhda
JAE/E JZ°F\HA

= \ \ ωφ(g h)Φ(wlf a'wo)φ(m(a)h)dhda
}AE/E JZF\HA

= \ ^ ( ^ -h)Φ(w19 a'wo)\\ \ <p(m(ά)zh)dzda\dh
JZA\H°A UAE/E JZ°F\ZA )

= \ (*>ψ(g h)Φ{wlt afwM\ φ(nh)dn\dh
JZ°ΛH°j KjN°jp\No

A )

- 0 .
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Note that for aeNE/F(E*), we have

(0, a'wQ) m = (0, l/2w_λ + aw,) H£ .

Consequently, we obtain

\ f(ng)dn = Σ ί &ir(9 ' h)Φ(0, l/2w^ + aw^(h)dh
JNF\NA ceeF* jH^tF\H°A

for each / = /*eΘ(τ, ψ). Hence Θ(τ, ψ̂ ) is cuspidal if and only if

Σ ( (Oir(g Λ)Φ(0, 1/2W.! + awjφ(h)dh = 0

for all Φ e ̂ (-Xifi<) and 9 e F r .

For Φe£S(XltA), we put Φ^Γ) = Φ(0, Γ). The correspondence Φκ>
is surjective. Since we have

Λ)Φ(0, l/2w_! + αwj = (α)̂ (flr)Φ)i((l/2w_1 + awλ)

Θ(τ, ψθ is cuspidal if and only if

Σ ( ΦMfiw^ + aw,) h)φ(h)dh = 0
aeF* jH^fF\H°A

for all ^ e ^ W Λ and φ e F Γ . For α e F * , we put WA(a) = {weWA\
(w, w)w = a}. Since WA(a) is a closed subset in WΛ, when we choose an
element w' e W^(α), there exists a function Φa>w, e *^(ΐ7^) such that ΦatW>(wf) =
1 and that Φa,w>\wA{β) = 0 iί β Φ a. Thus for a fixed ^ e Vr,

Σ ( Φi((l/2w_! + αwO h)φ{h)dh
F )°

Σ
aeF*

= Σ \ Φί((l/2w_1 +awJ fyW φ(kh)dk\dh

= 0

for all Φ, eS^(WA) if and only if

for all α e F * and heHA. q.e.d.

In particular, if we put

T£ = c \ ceE1 ,

\θ 1/

then TF is contained in H£tF for any α e ί 1 * . Therefore we obtain the
following:
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COROLLARY. If Vτ satisfies the condition

(#) ( φ(th)dt = 0
iτF\τA

for all <psVT and heHZ, then Θ(τ, ψ) is cuspidal.

Unfortunately, we do not know yet any example of the cuspidal
representations satisfying the condition (#).

Next, we compute the Fourier coefficient Wf. We choose a complete
set of representatives [F*] of F*/NE/F(E*) which contains 1. For the
sake of convenience, we use {ί/21t e [F*]} instead of [F*]. It is enough
to compute Wfw* for ίe [F*] .

THEOREM 4.3. Let (τ, Vτ) be an irreducible cuspidal representation
of HA- For f = fφ 6Θ{τ, ψ), we have the following:

(1) // V7<ZLI>0(HA°), then Wp"'*> = 0 for all t e [F*].

(2) If VvaLltl(H2), then for te[F*] we have

0 if t Φ 1

/ (1-ί/2)(^) = j ^ ( f f β Λ)Φ(Wl, w0) TΓ/#(Λ)dΛ if t = 1

/or αW g£GΛ-

PROOF. For ί e [ F * ] , we compute the integral
r

Tjfa>t/2)(g) = \ ψ{11
JSF\SA

By (4.1), this equals

= I \ ^(i,i/2)(w(0, 6, x, y))f(u(0, bf xy y)g)dbdxdy
J (AF/F)^ J Aj?/E

= I [ Σ ί( φ((l/2)x(X, X)w)dx\
JHF\H°A (I,F)eI 1 ( J , \JAF/F J

x\\ f(Έte(b(X, Y)w))db}\\ ψ(Q./2Mt-(Y, Y)w))dy\
\JAE/E ) \JAF/F )

xωψ(g-h)Φ(X, Y)]φ(h)dh

= \ { Σ ω+(g A)Φ(2Γ, Y)}φ(h)dh
JHF\HO

A (X,Y)eGHt)

L β VH ωψ^9 " Λ ) Φ ( 0 > ^ 1 ^ w - 1 + t w ^ ^ d h iί t Φ l

\\ (*)ψ(9 ' h)Φ(0y wo)φ(h)dh + 1 α)̂ (5f h)Φ(w19 wo)φ(h)dh
°{wo)\HA

if t = 1 .
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If t Φ 1, we have

\
JΛE/E

\
AE/E

On the other hand, if t = 1, we have

= \\ Ψ(TrE/F(a))da\ Uf«.«»(g) = 0 .
UAE/E )

ΛE/E

^(TrΛ / F(α))j ( ωψ(u(a)g Λ)Φ(0, wo)φ(h)dh
AE/E ljH0(iίo)W^

+ I (ϋir(u(a)g h)Φ{w19 wo)φ(k)dh\da

= I ί t(Tr^(α))ώαl ί ( ω+(g λ)Φ(Of

+ I ψ(!TτE/F(a))\\ ωψ(g h)Φ(wv awx + wo)φ(h)dh\da
JAE/E (JZF\HA )

= \ ψdTγE/F(a))\\ ωψ(g h)Φ(wlf awx + wo)φo(h)dh\da .
JAE/E KJZA\HA ))AEIE KJZA\HA

If φeL\tJJI2), then φ0 Ξ= 0. Thus W/<l»l/a> ΞΞ 0. This proves the asser-
tion (1).'

On the other hand, if φeL*tl(HA). then we have

= \ φ(!ϊτE/F(a))\\ ωψ(g m(-a)h)Φ(wίf wo)φQ(h)dh\da
JAE/E \JZ0

A\HA )

S (C \

β a)f{g h)Φ(wv w0)11 ψ(ΎγE/F(a))φQ(m(a)h)daγdh

JZ°j\H°jJZA\HA

This proves the assertion (2). q.e.d.

Note that this theorem remains true without the assumption of the
cuspidality of Θ(τ, ψ).

By the verification similar to that for Theorem 3.1, we can show the
following:

COROLLARY. Suppose VTCZLI)1(HA). If τ is non-trivial, then Θ(τ, ψ)
is also non-trivial.

Finally, we compute the Fourier coefficient Vf^>ti/2\ For each α e F
and Ψ^S/^HA), we put
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A

\'lo

0

1

0

xi

0 \dx.

Then, by Lemma 4.1. (4) and a simple calculation we can deduce the
following:

PROPOSITION 4.4. Let (τ, Vτ) be an irreducible cuspidal representation
of H°Λ. For any / = /£ e θ(τ, ψ) and t e [F*] we have

Vfiutit2)(g) = t ί ω+(g h)Φ(tiw19 w_, + xw^Jf-
JAF JT°F\HA

Further, if Vτ satisfies the condition (#), then F/(1>ίί/2) vanishes for all
t 6 [F*].

Combining this proposition with Theorem 4.3, we obtain the following:

COROLLARY. We assume that there exists a non-trivial irreducible
cuspidal representation (τ, Vτ) of HA satisfying the condition (#) in
Corollary to Theorem 4.2. Then we have:

(1) If VTCLIA(HA), then θ(τ, ψ) is N-cuspidal but not hyper cuspidal.
(2) If VV(ZL\^{HA)J then Θ(τ, ψ) is hyper cuspidal.
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