HYPERCUSPIDALITY OF AUTOMORPHIC CUSPIDAL REPRESENTATIONS OF THE UNITARY
 GROUP $U(2,2)$

Takao Watanabe

(Received April 22, 1986)

Introduction. In this paper, we study the hypercuspidality of automorphic cuspidal representations of the unitary group $U(2,2)$.

The hypercuspidality in the case of the symplectic group was introduced by Piatetski-Shapiro [6]. For $G=G S p_{4}$, a cusp form f on G_{A} is called hypercuspidal if the Whittaker function corresponding to f vanishes (cf. [7]).

Analogously, we define the hypercuspidality in the case of $U(2,2)$ by the vanishing of some Whittaker functions occuring in the Fourier expansion of the cusp form. More precisely, for a cusp form f on $U(2,2)$, we consider the Fourier expansion of f with respect to the center of the unipotent radical of the Borel subgroup. Then we obtain two Whittaker functions W_{f} and V_{f}, where W_{f} is the ordinary Whittaker function and V_{f} is as defined in Section 1. We note that in the case of $S p_{4}$, the function V_{f} did not appear in a similar Fourier expansion of a cusp form f. In terms of these functions, we say f is U-cuspidal (resp. N-cuspidal) if W_{f} (resp. V_{f}) vanishes. Further, if both of the functions W_{f} and V_{f} vanish, f is called hypercuspidal.

Next, using the notion of the dual reductive pair, we investigate cuspidal representations obtained from the Weil-lifting of cuspidal representations of $U(1,1)$ or $U(2,1)$. Symbolicically, $U(1,1), U(2,1), \cdots$, denote unitary groups over a global field of degree $2,3, \cdots$, with maximal index. Let τ be a cuspidal representation of $U(1,1)$ or $U(2,1)$ and $\Theta(\tau, \psi)$ a cuspidal representation of $U(2,2)$ obtained from the Weil-lifting of τ. For $\varphi \in \tau$, let f_{φ} be an element in $\Theta(\tau, \psi)$ corresponding to φ. By an explicit computation of the Fourier coefficients of f_{φ}, we have relations between Whittaker functions of φ and f_{φ} (Lemma (3.2), Theorem (4.3) and Proposition (4.4)). Using these relations, we prove the non-vanishing of $\Theta(\tau, \psi)$. Further, under an additional assumption, we obtain some results about the hypercuspidality of $\Theta(\tau, \varphi)$ (Theorem (3.1) and Corollary to Proposition (4.4)).

The author would like to express his gratitude to Professor I. Satake
for useful advice and encouragement and to Professor Y. Morita for many valuable comments.

1. Notation and preliminaries. Let F be a global field whose characteristic is different from 2. Let E be a quadratic extension of F, and denote its Galois involution by $x \rightarrow \bar{x}$. Let $\boldsymbol{A}_{\boldsymbol{F}}$ (resp. \boldsymbol{A}_{E}) be the adele ring of F (resp. E). We denote the trace and norm of E over F by $\operatorname{Tr}_{E / F}$ and $N_{E / F}$, respectively. We fix, once and for all, an element i in E^{*} such that $\operatorname{Tr}_{E / F}(i)=0$ and a non-trivial character ψ of \boldsymbol{A}_{F} / F.

Let (5) be an algebraic group defined over F. Then we denote by \mathscr{E}_{F} (resp. \mathbb{G}_{A}) the F-rational points (resp. \boldsymbol{A}_{F}-rational points) in (8). When (5) is reductive, let $\mathscr{A}\left(\mathscr{S}_{A}\right)$ (resp. $\mathscr{A}_{0}\left(\mathscr{S}_{A}\right)$) denote the space consisting of automorphic forms (resp. cusp forms) on $\mathbb{E S}_{A}$. Also, when A is a locally compact group, let \hat{A} be the group consisting of unitary characters on A.

Now, let V be a 4-dimensional vector space over E with a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, and (,) $)_{V}$ the skew-Hermitian form on V which is represented by the matrix

$$
\left(\begin{array}{rr}
0 & 1_{2} \\
-1_{2} & 0
\end{array}\right)
$$

with respect to $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Let

$$
G_{F}=\left\{g \in G L_{4}(E) \left\lvert\, g\left(\begin{array}{rr}
0 & 1_{2} \\
-1_{2} & 0
\end{array}\right)^{t} \bar{g}=\left(\begin{array}{rr}
0 & 1_{2} \\
-1_{2} & 0
\end{array}\right)\right.\right\}
$$

and

$$
H_{F}=\left\{h \in G L_{2}(E) \left\lvert\, h\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)^{t} \bar{h}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right.\right\}
$$

First, we construct representatives for proper F-parabolic subgroups of G.
(1) Let B_{F} be a Borel subgroup with the Levi-factor

$$
T_{F}=\left\{\left.\left(\begin{array}{llll}
a & & & \\
& b & & \\
& & \bar{a}^{-1} & \\
& & & \bar{b}^{-1}
\end{array}\right) \right\rvert\, a, b \in E^{*}\right\}
$$

and the unipotent radical

$$
U_{F}=\left\{\left(\begin{array}{cccc}
1 & a & x-\bar{a} b & b \\
0 & 1 & \bar{b}-\bar{a} y & y \\
& & 1 & 0 \\
0 & -\bar{a} & 1
\end{array}| | a, b \in E, x, y \in F\right\}\right.
$$

For simplicity, we put

$$
\begin{gathered}
u(a, b, x, y)=\left(\begin{array}{cccc}
1 & a & x-\bar{a} b & b \\
0 & 1 & \bar{b}-\bar{a} y & y \\
& 1 & 0 \\
0 & -\bar{a} & 1
\end{array}\right), \\
u(a)=u(a, 0,0,0) \text { and } z(x)=u(0,0, x, 0)
\end{gathered}
$$

for $a, b \in \boldsymbol{A}_{E}$ and $x, y \in \boldsymbol{A}_{F}$.
(2) Let P_{F} be the parabolic subgroup stabilizing the isotropic line $E e_{3}$, for which the Levi-factor and the unipotent radical are given by

$$
L_{F}=\left\{\left.\left(\begin{array}{cccc}
a^{\prime} & & & \\
& a & & b \\
& & \bar{a}^{\prime-1} & \\
& c & & d
\end{array}\right) \right\rvert\, a^{\prime} \in E^{*},\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in H_{F}\right\}
$$

and $N_{F}=\{u(a, b, x, 0) \mid a, b \in E, x \in F\}$, respectively.
(3) Let Q_{F} be the parabolic subgroup stabilizing the isotropic subspace $E e_{3}+E e_{4}$, for which the Levi-factor and the unipotent radical are given by

$$
M_{F}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & { }^{t} \bar{A}^{-1}
\end{array}\right) \right\rvert\, A \in G L_{2}(E)\right\}
$$

and $S_{F}=\{u(0, b, x, y) \mid b \in E, x, y \in F\}$, respectively.
Let Z_{F} be the center of U_{F}, that is, $Z_{F}=\{z(x) \mid x \in F\}$. We identify the group L_{F} and $E^{*} \times H_{F}$ by

$$
\iota: E^{*} \times H_{F} \xrightarrow{\sim} L_{F} \quad\left(a^{\prime},\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \mapsto\left(\begin{array}{cccc}
a^{\prime} & & & \\
& a & & b \\
& & \bar{a}^{\prime-1} & \\
& c & & d
\end{array}\right) .
$$

Further, for $a, b \in E$, we put $n(a, b)=u(a, b, 0,0) \bmod Z_{F}$. We also use the same notation in the adelic case. Then, P_{F} / Z_{F} is isomorphic to $\left(E^{*} \times H_{F}\right) \ltimes(E \oplus E)$ by the correspondence

$$
\left(a^{\prime}, h\right) \ltimes(a, b) \mapsto \iota\left(a^{\prime}, h\right) n(a, b),
$$

where $\left(a^{\prime}, h\right) \in E^{*} \times H_{F}$ and $(a, b) \in E \oplus E$. Also, we have

$$
\begin{equation*}
\iota\left(a^{\prime}, h\right)^{-1} n(a, b) \iota\left(a^{\prime}, h\right)=n\left(a^{\prime-1}(a, b) h\right) \tag{1.1}
\end{equation*}
$$

Next, we determine groups $\left(U_{F} \backslash U_{A}\right)^{\wedge},\left(N_{F} \backslash N_{A}\right)^{\wedge}$ and $\left(Z_{F} \backslash Z_{A}\right)^{\wedge}$ consisting of unitary characters of $U_{F} \backslash U_{A}, N_{F} \backslash N_{A}$ and Z_{F} / Z_{A}, respectively. For each $\xi, \zeta \in E$ and $t \in F$, we define characters $\psi_{(\xi, t)}, \psi_{(\xi, \zeta)}$ and ψ_{t} of $U_{F} \backslash U_{A}, N_{F} \backslash N_{A}$
and $Z_{F} \backslash Z_{A}$, respectively, by

$$
\begin{aligned}
& \psi_{(\xi, t)}(u(a, b, x, y))=\psi\left(\operatorname{Tr}_{E / F}(\xi a)+t y\right), \\
& \psi_{(\xi, 5)}(u(a, b, x, 0))=\psi\left(\operatorname{Tr}_{E / F}(\xi a+\zeta b)\right)
\end{aligned}
$$

and

$$
\psi_{t}(z(x))=\psi(t x),
$$

where $a, b \in A_{E} / E$ and $x, y \in \boldsymbol{A}_{F} / F$. Then we have

$$
\begin{aligned}
& \left(U_{F} \backslash U_{A}\right)^{\wedge}=\left\{\psi_{(\xi, t)} \mid \xi \in E, t \in F\right\}, \quad\left(N_{F} \backslash N_{A}\right)^{\wedge}=\left\{\psi_{(\xi, 5)} \mid \xi, \zeta \in E\right\}, \\
& \left(Z_{F} \backslash Z_{A}\right)^{\wedge}=\left\{\psi_{t} \mid t \in F\right\} .
\end{aligned}
$$

Finally, for a given automorphic form f on G_{A}, we define three Whittaker functions corresponding to f by

$$
\begin{aligned}
W_{f}^{\psi(\xi, t)}(g) & =\int_{U_{F} \backslash U_{A}} \overline{\psi_{(\xi, t)}(u)} f(u g) d u, \\
V_{f}^{\psi(\xi, 5)}(g) & =\int_{N_{F} \backslash N_{A}} \overline{\psi_{(\xi, 5)}(n)} f(n g) d n
\end{aligned}
$$

and

$$
J_{f}^{\psi_{t} t}(g)=\int_{Z_{F} \backslash Z_{A}} \overline{\psi_{t}(z)} f(z g) d z
$$

2. Fourier expansions and the hypercuspidality. In this section, we define the hypercuspidality for cusp forms on $U(2,2)$.

Let $E^{1}=\left\{a \in E^{*} \mid N_{E / F}(a)=1\right\}$. Let [$\left.F^{*}\right]$ (resp. [$\left.E^{*}\right]$) be a complete set of representatives of $F^{*} / N_{E / F}\left(E^{*}\right)$ (resp. E^{*} / E^{1}). For a cusp form f on G_{A}, we consider the Fourier expansion of f along $Z_{F} \backslash Z_{A}$. Fix g in G_{A}. As a function on the compact abelian group $Z_{F} \backslash Z_{A}, f(z g)$ has a Fourier expansion of the form

$$
\begin{align*}
f(g) & =\int_{Z_{F} \backslash Z_{A}} f(z g) d z+\sum_{t \in F^{*}} J_{f}^{\gamma^{t}(g)} \tag{2.1}\\
& =\int_{Z_{F} \backslash Z_{A}} f(z g) d z+\sum_{t \in\left[F^{*}\right]} \sum_{a \in\left[E^{*}\right]} J_{f}^{\gamma^{t}}\left(\left(\begin{array}{llll}
a & & \\
& 1 & & \\
& & \bar{a}^{-1} & \\
& & & 1
\end{array}\right)\right) .
\end{align*}
$$

We put

$$
f_{0}(g)=\int_{z_{F} \backslash Z_{A}} f(z g) d z
$$

We shall express this function f_{0} by Whittaker functions W_{f} and V_{f}. In order to do so, we first describe the L_{F}-orbit decomposition of $\left(N_{F} \backslash N_{A}\right)^{\wedge}$.
L_{F} acts on $\left(N_{F} \backslash N_{A}\right)^{\wedge}$ by

$$
\psi_{(\xi, 5)}^{\ell}(n)=\psi_{(5,5)}\left(\ell^{-1} n \iota\right),
$$

where $\psi_{(6,5)} \in\left(N_{F} \backslash N_{A}\right)^{\wedge}$ and $l \in L_{F}$. Noting that Z_{A} is the derived group of N_{A}, we can deduce from $(1,1)$ that

$$
\psi_{(\xi, 6)}^{C\left(a^{\prime}, k\right)}=\psi_{a^{\prime}-1(\xi, 5) h}
$$

for $\left(a^{\prime}, h\right) \in E^{*} \times H_{F}$. Thus we obtain the following L_{F}-orbit decomposition:

$$
\begin{equation*}
\left(N_{F} \backslash N_{A}\right)^{\wedge}=\left\{\psi_{(0,0)}\right\} \cup \psi_{(1,0)}^{L_{F}} \cup\left(\bigcup_{t \in\left[F^{*}\right]} \psi_{(1, t i)}^{L_{F}}\right) . \tag{2.2}
\end{equation*}
$$

We denote the stabilizers of $\psi_{(1,0)}$ and $\psi_{(1, t i)}$ in L_{F} by $L(1,0)$ and $L(1, t i)$, respectively, and put

$$
R_{F}=\left\{\left.\left(\begin{array}{llll}
c & & & \\
& c & & c y \\
& & c & \\
& & & c
\end{array}\right) \right\rvert\, c \in E^{1}, y \in F\right\}
$$

Lemma 2.1. For any cusp form f on G_{A}, we have

$$
\begin{equation*}
f_{0}(g)=\sum_{t \in\left[F^{*}\right]}\left\{\sum_{\gamma \in R_{F} \backslash L_{F}} W_{f}^{\psi^{\prime}(1, t)}(\gamma g)+\sum_{\gamma \in L(1, t i) \backslash L_{F}} V_{f}^{\not(1, t i)}(\gamma g)\right\} . \tag{2.3}
\end{equation*}
$$

Proof. First we put

$$
\lambda(p)=\int_{Z_{F} \backslash Z_{A}} f(z p) d z \quad\left(p \in P_{A}\right)
$$

Then this is a function on $P_{F} Z_{A} \backslash P_{A}$. Note that this group is isomorphic to $\left(E^{*} \backslash \boldsymbol{A}_{E}^{*} \times H_{F} \backslash H_{A}\right) \ltimes\left(\boldsymbol{A}_{E} / E\right)^{2}$. Fix p in P_{A}. As a function on $\left(\boldsymbol{A}_{E} / E\right)^{2}$, $\lambda(n(a, b) p)$ has the Fourier expansion of the form

$$
\lambda(p)=\sum_{(\xi, b) \in E^{2}} \int_{\left(A_{E} / E\right)^{2}} \overline{\psi_{(\xi, 5)}(n(a, b))} \lambda(n(a, b) p) d a d b .
$$

From (2.2), we have

$$
\begin{aligned}
\lambda(p)= & \int_{\left(A_{E} / E\right)^{2}} \lambda(n(a, b) p) d a d b+\sum_{r \in L(1,0) \backslash L_{F}} \int_{\left(A_{E} / E\right)^{2}} \overline{\psi_{(1,0)}^{r-1}(n(a, b))} \lambda(n(a, b) p) d a d b \\
& +\sum_{t \in\left[F^{*}\right]} \sum_{r \in L(1, t i) \backslash L_{F}} \int_{\left(A_{E} / E\right) 2} \overline{\psi_{(1, t i)}^{r-1}(n(a, b))} \lambda(n(a, b) p) d a d b .
\end{aligned}
$$

Since f is a cusp form, the first integral vanishes. Further,

$$
\begin{aligned}
\int_{\left.\left(A_{E} / E\right)\right)^{2}} \overline{\psi \gamma_{(1, t i)}^{-1}(n(a, b))} \lambda(n(a, b) p) d a d b & =\int_{N_{F} \backslash N_{A}} \overline{\psi_{(1, t i)}\left(\gamma n \gamma^{-1}\right)} f(n p) d n \\
& =V_{f}^{\psi_{(1, t i)}(\gamma p)} .
\end{aligned}
$$

Similary,

$$
\int_{\left(A_{E} / E\right) 2} \overline{\psi_{(1,0)}^{\gamma-1}(n(a, b))} \lambda(n(a, b) p) d a d b=\int_{N_{F^{\prime N}}} \overline{\psi_{(1,0)}(n)} f(n \gamma p) d n .
$$

Put

$$
\lambda_{1}(p)=\int_{N_{F} \backslash N_{A}} \overline{\psi_{(1,0)}(n)} f(n p) d n
$$

Therefore we have

$$
\lambda(p)=\sum_{\gamma \in L(1,0) \backslash L_{F}} \lambda_{1}(\gamma p)+\sum_{t \in\left[F^{*}\right]} \sum_{\gamma \in L(1, t i) \backslash L_{F}} V_{f}^{\gamma(1, t i)}(\gamma p)
$$

Next let

$$
P_{1, F}=\left\{\left(\left.\left(1,\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right) \right\rvert\, y \in F\right\}\right.
$$

and

$$
D_{F}=\left\{\left.\varepsilon\left(a,\left(\begin{array}{ll}
a & 0 \\
0 & \bar{a}^{-1}
\end{array}\right)\right) \right\rvert\, a \in E^{*}\right\}
$$

Note that $L(1,0)=D_{F} \ltimes P_{1, F}$. For $t \in F$, we define a character ${ }_{t} \psi$ of $P_{1, F} \backslash P_{1, A}$ by

$$
{ }_{t} \psi\left(\ell\left(1,\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right)\right)=\psi(t y)
$$

Then, as before, D_{F} acts on $\left(P_{1, F} \backslash P_{1, A}\right)^{\wedge}$ and we have the D_{F}-orbit decomposition

$$
\left(P_{1, F} \backslash P_{1, A}\right)^{\wedge}=\{0 \psi\} \cup\left(\bigcup_{t \in\left[F^{*}\right]} t \psi^{D_{F}}\right)
$$

Let $D_{0, F}$ be a common stabilizer of ${ }_{t} \psi$ for $t \in\left[F^{*}\right]$ in D_{F}, that is, $D_{0, F}=$ $\left\{c 1_{4} \mid c \in E^{1}\right\}$. Now, viewing $p_{1} \mapsto \lambda_{1}\left(p_{1} p\right)$ as a function on $P_{1, F} \mid P_{1, A}$, we can express its Fourier expansion in the form

$$
\lambda_{1}(p)=\int_{P_{1}, F \backslash P_{1}, 4} \lambda_{1}\left(p_{1} p\right) d p_{1}+\sum_{t \in\left[F^{*}\right]} \sum_{\delta \in D_{0, F}{ }^{\backslash} D_{F}} \int_{P_{1, F} \backslash P_{1}, A} \overline{{ }_{t} \psi^{\delta^{-1}}\left(p_{1}\right)} \lambda_{1}\left(p_{1} p\right) d p_{1}
$$

The first integral equals

$$
\begin{aligned}
& \int_{\left(A_{E} / E\right)^{2}} \overline{\psi_{(1,0)}(n(a, b))}\left\{\int_{P_{1, F} Z_{F^{\backslash} P_{1, A} Z_{A}}} f\left(z n(a, b) p_{1} p\right) d z d p_{1}\right\} d a d b \\
&=\int_{A_{F^{\prime} / E}} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)}\left\{\int_{S_{F} \backslash S_{A}} f(s u(a) p) d s\right\} d a=0
\end{aligned}
$$

Furthermore,

$$
\int_{P_{1, F} \backslash P_{1}, A} \overline{{ }_{t} \psi^{\delta^{-1}}\left(p_{1}\right)} \lambda_{1}\left(p_{1} p\right) d p_{1}=\int_{P_{1, F} \backslash P_{1}, A} \overline{{ }_{t} \psi\left(\delta p_{1} \delta^{-1}\right)}\left\{\int_{N_{F} \backslash N_{A}} \overline{\psi_{(1,0)}(n)} f\left(n p_{1} p\right) d n\right\} d p_{1}
$$

Here if we put

$$
p_{1}=\ell\left(1,\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right) \quad \text { and } \quad n=u(a, b, x, 0),
$$

this integral equals

$$
\begin{aligned}
\int_{A_{F^{\prime}} / F} \overline{\psi(t y)} & \left\{\int_{N_{F^{\prime N}}} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)} f\left(\left(\delta n \delta^{-1}\right) p_{1} \delta p\right) d n\right\} d y \\
& =\int_{A_{F^{\prime}} / F} \int_{N_{F^{\prime N}}} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)+t y\right)} f\left(n p_{1} \delta p\right) d n d y=W^{\psi(1, t)}(\delta p)
\end{aligned}
$$

Thus

$$
\lambda_{1}(p)=\sum_{t \in\left[F^{*}\right]} \sum_{\delta \in D_{0, F} \backslash D_{F}} W_{f}^{\psi(1, t)}(\delta p) .
$$

Hence

$$
\begin{aligned}
f_{0}(p) & =\lambda(p) \\
& =\sum_{r \in L(1,0) \backslash L_{F}} \lambda_{1}(\gamma p)+\sum_{t \in\left[F^{* *}\right]} \sum_{r \in L(1, t i) \backslash L_{F}} V_{f}^{\psi(1, t i)}(\gamma p) \\
& =\sum_{t \in\left[F^{*}\right]}\left\{\sum_{\gamma \in D_{F}} \sum_{P_{1, F} \backslash L_{F}} \sum_{\delta \in D_{0, F} \backslash D_{F}} W_{f}^{\psi(1, t)}(\delta \gamma p)+\sum_{\gamma \in L(1, t i) \backslash L_{F}} V_{f}^{\psi(1, t i)}(\gamma p)\right\} \\
& =\sum_{t \in\left[F^{*}\right]}\left\{\sum_{\gamma \in D_{0}, P^{P_{1}}, F^{\prime 2} L_{F}} W_{f}^{\psi(1, t)}(\gamma p)+\sum_{\gamma \in L(1, t i) \backslash L_{F}} V_{f}^{\psi(1, t i)}(\gamma p)\right\},
\end{aligned}
$$

where

$$
D_{0, F} P_{1, F}=\left\{\left.c\left(c,\left(\begin{array}{cc}
c & c y \\
0 & c
\end{array}\right)\right) \right\rvert\, c \in E^{1}, y \in F\right\}=R_{F}
$$

We have thus proved the relation (2.3) for $g \in P_{A}$.
On the other hand, since there exists a compact subgroup K in G_{A} such that $G_{A}=P_{A} K$, we obtain the assertion for all $g \in G_{A}$ by the right translation with respect to elements of K.
q.e.d.

From this Lemma and (2.1), we have

$$
\left.\left.\begin{array}{rl}
f(g)= & \sum_{t \in\left[F^{*}\right]}\left\{\sum_{r \in R_{F} \backslash L_{F}} W_{f}^{\gamma^{\prime}(1, t)}(\gamma g)+\sum_{r \in L(1, t i) \backslash L_{F}} V_{f}^{\gamma^{\prime}(1, t i)}(\gamma g)\right. \\
& +\sum_{a \in\left[E^{*}\right]} J_{f}^{\gamma_{t}}\left(\left(\begin{array}{llll}
& 1 & & \\
& 1 & & \\
& & \bar{a}^{-1} & \\
& & & 1
\end{array}\right) g\right.
\end{array}\right)\right\} .
$$

In view of this expansion, we put

$$
W(\psi)=\left\{\left(W_{f}^{\psi(1, t)}\right)_{t \in\left[F^{*}\right]} \mid f \in \mathscr{A}_{0}\left(G_{A}\right)\right\}
$$

and

$$
V(\psi)=\left\{\left(V_{f}^{\psi(1, t i)}\right)_{t \in[F, *} \mid f \in \mathscr{A}_{0}\left(G_{A}\right)\right\} .
$$

We define a linear map \mathscr{D} from $\mathscr{A}_{0}\left(G_{A}\right)$ to $W(\psi) \oplus V(\psi)$ by $\mathscr{D}(f)=$ $\left(\left(W_{f}^{\psi^{(1, t)}}\right)_{t},\left(V_{f}^{\psi(1, t i)}\right)_{t}\right)$. Noting that the mapping $f \mapsto\left(J_{f}^{\left.\psi_{t}\right)_{t \in\left[F^{*}\right]}}\right.$ is injective on $\mathscr{A}_{0}\left(G_{A}\right)$, we give the following definition.

Definition. Let f be a cusp form on G_{A}. We say f is N-cuspidal (resp. U-cuspidal) if f is contained in $\mathscr{D}^{-1}(W(\psi))$ (resp. $\mathscr{D}^{-1}(V(\psi))$). Further, we say f is hypercuspidal if f is contained in $\operatorname{Ker}(\mathscr{D})$.

Clearly, these subspaces are invariant under the action of the Hecke algebra of G_{A}, and are independent of a choice of a character ψ and a set of representatives $\left[F^{*}\right]$.

Example. Let F be an algebraic number field. We assume that F has a real place v which does not split in E. Let G_{v} be the group consisting of F_{v}-rational points in G. It is known that holomorphic discrete series representations of G_{v} do not have an ordinary Whittaker model for any non-degenerate characters of U_{v} (Hashizume [2]). Thus, if π is a cuspidal representation of G_{A} whose G_{v}-component is a holomorphic discrete series representation, then π is U-cuspidal. But, we do not know whether π is hypercuspidal or not.

In Sections 3 and 4, we will construct U-cusp forms and N-cusp forms by the Weil-lifting.
3. Lifting from $U(1,1)$ to $U(2,2)$. In this section, we consider the Weil-lifting $\Theta(\tau, \psi)$ of an irreducible automorphic cuspidal representation τ of H_{A} to G_{A}, and investigate the cuspidality of $\Theta(\tau, \psi)$.

Let W be a 2-dimensional vector space over E, (, $)_{W}$ the skewHermitian form on W which is represented by the matrix

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

with respect to a basis $\left\{w_{1}, w_{2}\right\}$. Let $X_{F}=(V \otimes W)_{F}$ be a vector space over F. We consider the symplectic space X_{F} obtained by taking the imaginary part of the Hermitian form $(,)_{W} \cdot(,)_{V}$. We have a dual reductive pair $(H, G) \subset S p_{18}$. Let $S p_{18}\left(\boldsymbol{A}_{F}\right)^{\sim}$ be the two-fold covering group of $S p_{18}\left(\boldsymbol{A}_{F}\right)$. Let ω_{ψ} be the Weil-representation of $S p_{18}\left(\boldsymbol{A}_{F}\right)^{\sim}$ associated to ψ. Then, in the same manner as in [1, Sections 6 and 8], ω_{ψ} gives an ordinary representation of $G_{A} H_{A}$. Let $X_{F}=X_{1} \oplus X_{2}$ be a complete
polarization of X_{F}, and $\mathscr{S}\left(X_{1, A}\right)$ the Schwarz-Bruhat space on $X_{1, A}$. Now, let (τ, V_{τ}) be an irreducible automorphic cuspidal representation of H_{A} in $\mathscr{A}_{0}\left(H_{A}\right)$. For each $\varphi \in V_{\tau}$ and $\Phi \in \mathscr{S}\left(X_{1, A}\right)$, we put

$$
f_{\varphi}^{\varphi}(g)=\int_{H_{F} \backslash H_{A}}\left\{\sum_{v \in X_{1, F}} \omega_{\psi}(g \cdot h) \Phi(v)\right\} \varphi(h) d h \quad\left(g \in G_{\boldsymbol{A}}\right)
$$

and

$$
\Theta(\tau, \psi)=\left\{f_{\varphi}^{\Phi} \mid \rho \in V_{\tau}, \Phi \in \mathscr{S}\left(X_{1, A}\right)\right\}
$$

It is well known that $\Theta(\tau, \psi)$ gives an automorphic representation of G_{A} in $\mathscr{A}\left(G_{A}\right)$. We call it the Weil-lifting of τ. The aim of this section is to prove the following:

Theorem 3.1. Let $\left(\tau, V_{\tau}\right)$ be an irreducible cuspidal representation of H_{A} in $\mathscr{A}_{0}\left(H_{A}\right)$. If τ is non-trivial, then $\Theta(\tau, \psi)$ is also non-trivial. Further, if $\Theta(\tau, \psi)$ is cuspidal, then it is U-cuspidal but not hypercuspidal.

We need a few lemmas for the proof. We give a complete polarization of X_{F} by $X_{1}=e_{1} \otimes W+V_{1} \otimes w_{1}$ and $X_{2}=e_{3} \otimes W+V_{1} \otimes w_{2}$, where $V_{1}=E e_{2}+E e_{4}$. As a basis of X_{1} we take $\left\{e_{1} \otimes w_{1}, i e_{1} \otimes w_{1}, e_{1} \otimes w_{2}, i e_{1} \otimes\right.$ $\left.w_{2}, e_{2} \otimes w_{1}, i e_{2} \otimes w_{1}, e_{4} \otimes w_{1}, i e_{4} \otimes w_{1}\right\}$ and choose a basis of X_{2} in such a way that the symplectic form $\operatorname{Im}(,)_{V} \cdot(,)_{W}$ is represented by the matrix

$$
\left(\begin{array}{cc}
0 & 1_{8} \\
-1_{8} & 0
\end{array}\right)
$$

Then we can use the Schroedinger realization of ω_{ψ} on $\mathscr{S}\left(X_{1, A}\right)$ (cf. [7], [9]). We identifiy X_{1} with $W \oplus V_{1}=\left\{a_{1} w_{1}+a_{2} w_{2}+a_{3} e_{2}+a_{4} e_{4} \mid a_{j} \in E, 1 \leqq\right.$ $j \leqq 4\}$, and we write a Schwarz-Bruhat function $\Phi(X)$ on $X_{1, A}$ as $\Phi(w, v)$ or $\Phi\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. Then for $\Phi \in \mathscr{S}\left(X_{1, A}\right)$ and $u=u(a, b, x, y) \in U_{A}$, the action of $\omega_{\psi}(u)$ on Φ is given by

$$
\begin{align*}
\omega_{\psi}(u) \Phi\left(a_{1}, a_{2}, a_{3}, a_{4}\right)= & \psi\left(\operatorname{Im}\left(a_{1} \bar{a}_{2}(x-\bar{a} b)+\bar{a}_{2} a_{3}(\bar{b}-\bar{a} y)+a_{2} \bar{a}_{4} a\right)\right. \tag{3.1}\\
& \times \Phi\left(a_{1}, a_{2}, a a_{1}+a_{3}, b a_{1}+y a_{3}+a_{4}\right) .
\end{align*}
$$

Also, when we put

$$
h(y)=\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) \in H_{A}
$$

the action of $\omega_{\psi}(h(y))$ on Φ is given by

$$
\begin{equation*}
\omega_{\psi}(h(y)) \Phi\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\psi\left(y \operatorname{Im}\left(a_{3} \bar{a}_{4}\right)\right) \Phi\left(a_{1}, y a_{1}+a_{2}, a_{3}, a_{4}\right) . \tag{3.2}
\end{equation*}
$$

By a calculation analogous to that in [7], for any $f=f_{\varphi}^{\varphi} \in \Theta(\tau, \psi)$, we obtain a formula

$$
\begin{align*}
f(g)= & \int_{H_{F} \backslash H_{A}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi(}(g \cdot h) \Phi(0, v)\right\} \varphi(h) d h \tag{3.3}\\
& +\sum_{y \in F} \int_{H_{y, F} \backslash H_{A}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi}(g \cdot h) \Phi\left(y i w_{1}+w_{2}, v\right)\right\} \varphi(h) d h,
\end{align*}
$$

where $H_{y, F}$ is the stabilizer of $y i w_{1}+w_{2}$ in H_{F}. For $y=0$, we have $H_{0, F}=\{h(y) \mid y \in F\}$. Let U^{\prime} be the derived group of U. For each automorphic form f on G_{A}, we put

$$
f_{00}(g)=\int_{U_{F}^{\prime} \backslash U_{A}^{\prime}} f(u g) d u
$$

Then, by (3.1), (3.2) and (3.3), after a simple calculation, we obtain the following formulas for $f=f_{\varphi}^{\ell}$ in $\Theta(\tau, \psi)$.

$$
\begin{align*}
f_{0}(g)= & \int_{H_{F} \backslash H_{A}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi}(g \cdot h) \Phi(0, v)\right\} \varphi(h) d h \tag{3.4}\\
& +\int_{H_{0}, F \backslash H_{A}}\left\{\sum_{v \in V_{1}, F} \omega_{\psi}(g \cdot h) \Phi\left(w_{2}, v\right)\right\} \varphi(h) d h
\end{align*}
$$

and

$$
\begin{equation*}
f_{00}(g)=\int_{H_{F} \backslash H_{A}}\left\{\sum_{v \in V_{1}, F} \omega_{\psi}(g \cdot h) \Phi(0, v)\right\} \varphi(h) d h . \tag{3.5}
\end{equation*}
$$

Using these formulas, we compute the Fourier coefficients W_{f}^{ψ} and V_{f}^{ψ} of f.

Lemma 3.2. For any $f=f_{\varphi}^{\varphi} \in \Theta(\tau, \psi)$ and a non-trivial character $\psi_{(\xi, 5)} \in\left(N_{F} \backslash N_{A}\right)^{\wedge}$, we have:
(1) If $\operatorname{Im}(\xi \bar{\zeta})=0$, then $V_{f}^{\psi(\xi, 5)} \equiv 0$,
(2) If $\operatorname{Im}(\xi \bar{\zeta}) \neq 0$, then $V_{f}^{\psi(\xi, \Sigma)}$ is equal to the integral

$$
\int_{H_{0}, A \backslash H_{A}} \omega_{\psi(}(g \cdot h) \Phi(0,1,-\bar{\zeta}, \bar{\xi}) W_{\varphi}^{\psi_{\operatorname{Im}(\xi \bar{\zeta})}(h) d h,}
$$

where

Proof. Clearly we have

$$
V_{f}^{\psi(\xi, 5)}(g)=\int_{N_{F} Z_{A}{ }^{N A} A} \overline{\psi_{(\xi, 5)}(n)} f_{0}(n g) d n
$$

By (3.4), the right hand side equals

$$
\begin{aligned}
& \int_{N_{F} Z_{A} \backslash N_{A}} \overline{\psi_{(\xi, 5)}(n)}\left[\int_{H_{F \backslash H_{A}}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi}(n g \cdot h) \Phi(0, v)\right\} \varphi(h) d h\right] d n \\
& \quad+\int_{N_{F} Z_{A} \backslash N_{A}} \overline{\psi_{(\xi, 5)}(n)}\left[\int_{H_{0, F} \backslash H_{A}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi}(n g \cdot h) \Phi\left(w_{2}, v\right)\right\} \varphi(h) d h\right] d n .
\end{aligned}
$$

By (3.1), the first term equals

$$
\left[\int_{N_{F} Z_{A} \backslash N_{A}} \overline{\psi_{(\xi, 5)}(n)} d n\right]\left[\int_{H_{F^{\prime} H_{A}}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi}(g \cdot h) \Phi(0, v)\right\} \varphi(h) d h\right]=0 .
$$

The second term equals

$$
\begin{aligned}
\int_{\left(A_{E^{\prime}} /\right)^{2}} & \overline{\psi_{(\xi, 5)}(n(a, b))}\left[\int_{H_{0, F} \backslash H_{A}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi}(n(a, b) g \cdot h) \Phi\left(w_{2}, v\right)\right\} \varphi(h) d h\right] d a d b \\
= & \int_{\left.H_{0, F}\right)^{H_{A}}}\left[\sum_{\left(a_{3}, a_{4}\right) \in E^{2}}\left\{\int_{A_{E^{\prime} / E}} \psi\left(\operatorname{Im}\left(\bar{b}\left(a_{3}+\bar{\zeta}\right)\right)\right) d b\right\}\right. \\
& \left.\times\left\{\int_{A_{E^{\prime} / E}} \psi\left(\operatorname{Im}\left(a\left(\bar{a}_{4}-\xi\right)\right)\right) d a\right\} \omega_{\psi}(g \cdot h) \Phi\left(0,1, a_{3}, a_{4}\right)\right] \rho(h) d h \\
= & \int_{H_{0, F^{\prime} \backslash \boldsymbol{H}}} \omega_{\psi}(g \cdot h) \Phi(0,1,-\bar{\zeta}, \bar{\xi}) \varphi(h) d h \\
= & \int_{H_{0, A} \backslash H_{A}} \omega_{\psi}(g \cdot h) \Phi(0,1,-\bar{\zeta}, \bar{\xi})\left\{\int_{A_{F} / F} \overline{\psi\left(y \operatorname{Im}\left(\xi^{\bar{\zeta}}\right)\right)} \varphi(h(y) \cdot h) d y\right\} d h .
\end{aligned}
$$

Since φ is a cusp form, if $\operatorname{Im}(\xi \bar{\zeta})=0$, the inner integral equals zero. This implies the assertion (1). On the other hand, if $\operatorname{Im}(\xi \bar{\zeta}) \neq 0$, the last integral is no more than the one in the assertion (2).
q.e.d.

Lemma 3.3. For any $f=f_{\varphi}^{\phi} \in \Theta(\tau, \psi), \xi \in E^{*}$ and $t \in F$, we have $W_{f}^{\psi(s, t)} \equiv 0$.

Proof. From (3.5), we have

$$
\begin{aligned}
& W_{f}^{\psi(\xi, t)}(g)=\int_{U_{F^{\prime} U_{A}^{\prime}\left(U_{\boldsymbol{A}}\right.}} \overline{\psi_{(\xi, t)}(u)} f_{00}(u g) d u \\
& =\int_{V_{F^{U}} U_{A}^{\prime} \mid U_{A}} \overline{\psi_{(\xi, t)}(u)}\left[\int_{H_{F} \backslash H_{A}}\left\{\sum_{v \in V_{1}, F} \omega_{\psi}(u g \cdot h) \Phi(0, v)\right\} \varphi(h) d h\right] d u \\
& =\int_{A_{E^{\prime} E+A_{F^{\prime}} F}} \overline{\psi_{(\xi, t)}(u(a, 0,0, y))} \\
& \times\left[\int_{H_{F^{\backslash}} H_{A}}\left\{\sum_{v \in V_{1, F}} \omega_{\psi(}(u(a, 0,0, y) g \cdot h) \Phi(0, v)\right\} \varphi(h) d h\right] d a d y \\
& =\left\{\int_{A_{E^{\prime} / E}} \overline{\psi\left(\operatorname{Tr}_{E / F}(\xi a)\right)} d a\right\}\left\{\int_{A_{F^{\prime}} / F} \overline{\psi(t y)}\right. \\
& \left.\times\left[\int_{H_{F} \backslash H_{A}}\left\{\sum_{\left(a_{3}, a_{4}\right) \in E^{2}} \omega_{\psi}(g \cdot h) \Phi\left(0,0, a_{3}, y a_{3}+a_{4}\right)\right\} \varphi(h) d h\right] d y\right\}=0 . \\
& \text { q.e.d. }
\end{aligned}
$$

Note that Lemmas 3.2 and 3.3 remain true without the assumption of the cuspidality of $\Theta(\tau, \psi)$.

Proof of Theorem 3.1. Let $\left(\tau, V_{\tau}\right)$ be a non-trivial irreducible cuspidal representation of H_{A}. For any $\alpha \in F$, we define a character ψ_{α} of
$H_{0, F} \backslash H_{0, A}$ by $\psi_{\alpha}(h(y))=\psi(\alpha y)$. Then for each $\varphi \in V_{\tau}$, we have a Fourier expansion of the form

$$
\varphi(h)=\sum_{t \in\left[F^{*}\right]} \sum_{a \in\left[L^{*}\right]} W_{\psi^{\psi^{t}}}\left(\left(\begin{array}{ll}
a & \\
& \bar{a}^{-1}
\end{array}\right) h\right) .
$$

Thus, if we put $W\left(\tau, \psi_{t}\right)=\left\{W_{\varphi}^{\psi_{t}} \mid \varphi \in V_{\tau}\right\}$, then there exists at least one $t^{\prime} \in\left[F^{*}\right]$ such that $W\left(\tau, \psi_{t^{\prime}}\right) \neq\{0\}$. We choose elements $\xi, \zeta \in E^{*}$ such that $\operatorname{Im}(\xi \bar{\zeta})=t^{\prime}$. Then, from Lemma 3.2, for any $f=f_{\varphi} \in \Theta(\tau, \psi)$, we have

$$
V_{f}^{\psi_{(\xi, \zeta)}(1)}=\int_{H_{0, A}, H_{A}} \omega_{\psi}(h) \Phi(0,1,-\bar{\zeta}, \bar{\xi}) W_{\varphi}^{\psi^{\prime}}(h) d h .
$$

Since $W_{\varphi}^{\psi t^{\prime}} \neq 0$, this integral does not vanish at least for one $\Phi \in \mathscr{S}\left(X_{1,4}\right)$. Hence $\Theta(\tau, \psi)$ is non-trivial. The last assertion is obvious by Lemma 3.3.
q.e.d.

Finally, we state a result on the cuspidality of $\Theta(\tau, \psi)$. We define a theta-series of H_{A} with respect to ω_{ψ} by

$$
\Theta_{\Phi}(h)=\sum_{v \in V_{1, F}} \omega_{\psi}(h) \Phi(0, v)
$$

for $\Phi \in \mathscr{S}\left(X_{1, A}\right)$. Let χ be the central character of τ. We denote by $\Theta\left(\psi, \chi^{-1}\right)$ the space consisting of the theta-series of H_{A} which are transformed according to χ^{-1} under the center of H_{A}. We can easily show that $f \in \Theta(\tau, \psi)$ is cuspidal if and only if $f_{00} \equiv 0$. Therefore, by (3.5), $\Theta(\tau, \psi)$ is cuspidal if and only if V_{τ} is orthogonal to $\Theta\left(\psi, \chi^{-1}\right)$.
4. Lifting from $U(2,1)$ to $U(2,2)$. We use an argument similar to that in Section 3.

Let W be a 3 -dimensional vector spaces over E with a basis $\left\{w_{-1}, w_{0}, w_{1}\right\}$, and $(,)_{W}$ the Hermitian form which is represented by the matrix

$$
\left(\begin{array}{lll}
0 & & 1 \\
& 1 & \\
1 & & 0
\end{array}\right)
$$

with respect to $\left\{w_{-1}, w_{0}, w_{1}\right\}$. Let H° be the corresponding unitary group and N° the unipotent subgroup of H° :

$$
N_{F}^{\circ}=\left\{\left.\left(\begin{array}{rrr}
1 & a & z \\
0 & 1 & -\bar{a} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, \quad z \in E, \quad \operatorname{Tr}_{E / F}(z)=-N_{E / F}(a)\right\}
$$

Let Z° be the center of N° :

$$
Z_{F}^{\circ}=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, z \in E, \operatorname{Tr}_{E / F}(z)=0\right\}
$$

For the general theory of cusp forms on H_{i}°, we refer the reader to [1]. We define a character ψ° of $N_{F}^{\circ} \backslash N_{A}^{\circ}$ by

$$
\psi^{\circ}\left(\left(\begin{array}{rrr}
1 & a & z \\
0 & 1 & -\bar{a} \\
0 & 0 & 1
\end{array}\right)\right)=\psi\left(\operatorname{Tr}_{E / F}(a)\right)
$$

We denote by $L_{0}^{2}\left(H_{A}{ }^{\circ}\right)$ the space consisting of the square-integrable cusp forms on H_{A}°. For each $\varphi \in L_{0}^{2}\left(H_{A}^{\circ}\right)$, we put

$$
W_{\varphi}^{\psi^{\circ}}(h)=\int_{N_{F}^{\circ} \backslash N_{A}^{\circ}} \overline{\psi^{\circ}(n)} \varphi(n h) d n
$$

and

$$
\varphi_{0}(h)=\int_{z_{F}^{\circ} \backslash Z_{A}^{\circ}} \varphi(z h) d z
$$

Then we have

$$
\left.\varphi_{0}(h)=\sum_{a \leqslant E^{*}} W_{\varphi}^{\psi{ }^{\psi}}\left(\begin{array}{ccc}
a & & \\
& 1 & \\
& & \bar{a}^{-1}
\end{array}\right) h\right)
$$

In particular, φ_{0} vanishes if and only if so does $W_{\varphi}^{\psi^{\circ}}$. Let

$$
L_{0,0}^{2}\left(H_{\boldsymbol{A}}^{\circ}\right)=\left\{\varphi \in L_{0}^{2}\left(H_{\boldsymbol{A}}^{\circ}\right) \mid W_{\varphi}^{\psi \circ} \equiv 0\right\}
$$

and let $L_{0,1}^{2}\left(H_{A}^{\circ}\right)$ be the orthogonal complement of $L_{0,0}^{2}$ in L_{0}^{2}. These spaces are invariant under H_{i}° and independent of ψ. Clearly, we have an orthogonal decomposition $L_{0}^{2}\left(H_{A}^{\circ}\right)=L_{0,0}^{2}\left(H_{A}^{\circ}\right) \oplus L_{0,1}^{2}\left(H_{A}^{\circ}\right)$. We know from [1] that the multiplicity one theorem holds for $L_{0,1}^{2}\left(H_{A}^{\circ}\right)$.

In the same manner as in Section 3, let $X_{F}=(V \otimes W)_{F}$ be a vector space over F with the symplectic form $\langle\rangle=,\operatorname{Re}(,)_{W} \cdot(,)_{V}$. We have a dual reductive pair $\left(H^{\circ}, G\right) \subset S p_{24}$. Let $\left(\tau, V_{\tau}\right)$ be an irreducible cuspidal representation of H_{A}°. We denote by $\Theta(\tau, \psi)$ the Weil-lifting of τ with respect to the Weil-representation ω_{ψ} of $S p_{24}\left(\boldsymbol{A}_{F}\right)^{2}$. We give a complete polarization of X_{F} by $X_{F}=X_{1} \oplus X_{2}$, where $X_{1}=e_{1} \otimes W+e_{2} \otimes W$ and $X_{2}=e_{3} \otimes W+e_{4} \otimes W$. Further, as a basis of X_{1} we take $\left\{e_{1} \otimes w_{-1}\right.$, $\left.i e_{1} \otimes w_{-1}, e_{1} \otimes w_{0}, i e_{1} \otimes w_{0}, \cdots, e_{2} \otimes w_{1}, i e_{2} \otimes w_{1}\right\}$ and choose a basis of X_{2} in such a way that the symplectic form \langle,$\rangle is represented by the matrix$

$$
\left(\begin{array}{cc}
0 & 1_{12} \\
-1_{12} & 0
\end{array}\right)
$$

As before, for each $\varphi \in V_{\tau}$ and each Schwarz-Bruhat function Φ on $X_{1, A}$, we put

$$
f_{\varphi}^{\phi}(g)=\int_{H_{F}^{\circ} \backslash H_{\boldsymbol{A}}^{\circ}}\left\{\sum_{v \in X_{1, F}} \omega_{\psi}(g \cdot h) \Phi(v)\right\} \varphi(h) d h .
$$

We identify X_{1} with $W \oplus W$. Then, for $\Phi \in \mathscr{S}\left(X_{1, A}\right)$ and $u=u(a, b, x, y) \in$ U_{A}, the action of u on Φ is given by

$$
\begin{align*}
& \omega_{\psi}(u) \Phi(X, Y) \tag{4.1}\\
& \quad=\psi\left(1 / 2\left\{x(X, X)_{W}+2 \operatorname{Re}\left(b(X, Y)_{W}\right)+y(Y, Y)_{W}\right\}\right) \Phi(X, a X+Y)
\end{align*}
$$

where $X, Y \in W_{A}$. Also for $h \in H_{A}^{\circ}$, we have

$$
\begin{equation*}
\omega_{\psi}(h) \Phi(X, Y)=\Phi(X \cdot h, Y \cdot h) \tag{4.2}
\end{equation*}
$$

First we consider the cuspidality of $\Theta(\tau, \psi)$. We define the action of H_{F}° on $W \oplus W$ by $(X, Y) \cdot h=(X \cdot h, Y \cdot h)$ for $(X, Y) \in W \oplus W$ and $h \in H_{F}^{\circ}$. Let $\operatorname{Gr}(X, Y)$ be the Gram matrix of (X, Y), that is,

$$
\operatorname{Gr}(X, Y)=\left(\begin{array}{ll}
(X, X)_{W} & (X, Y)_{W} \\
(Y, X)_{W} & (Y, Y)_{W}
\end{array}\right)
$$

For $\alpha, t \in F$, we put

$$
\operatorname{Gr}(\alpha, t)=\left\{(X, Y) \in W \oplus W \left\lvert\, \operatorname{Gr}(X, Y)=\left(\begin{array}{cc}
0 & t i \\
-t i & \alpha
\end{array}\right)\right.\right\}
$$

and $\operatorname{Gr}(\alpha)=\operatorname{Gr}(\alpha, 0)$. Applying Witt's theorem, we can easily show the following:

Lemma 4.1. $\operatorname{Gr}(\alpha, t)$ has the following H_{F}°-orbit decomposition.
(1) $\operatorname{Gr}(0)=\{(0,0)\} \cup\left(w_{1}, 0\right) \cdot H_{F}^{\circ} \cup\left(\cup_{a \in E}\left(a w_{1}, w_{1}\right) \cdot H_{F}^{\circ}\right)$.
(2) If $\alpha \in N_{E / F}\left(E^{*}\right)$, we write $\alpha=\alpha^{\prime} \bar{\alpha}^{\prime}$. Then

$$
\operatorname{Gr}(\alpha)=\left(0, \alpha^{\prime} w_{0}\right) \cdot H_{F}^{\circ} \cup\left(w_{1}, \alpha^{\prime} w_{0}\right) \cdot H_{F}^{\circ}
$$

(3) If $\alpha \notin N_{E / F}\left(E^{*}\right)$ and $\alpha \neq 0$, then

$$
\operatorname{Gr}(\alpha)=\left(0,1 / 2 w_{-1}+\alpha w_{1}\right) \cdot H_{F}^{\circ}
$$

(4) If $t \in F^{*}$, then for any $\alpha \in F$,

$$
\operatorname{Gr}(\alpha, t)=\left(t i w_{1}, w_{-1}+1 / 2 \alpha w_{1}\right) \cdot H_{F}^{\circ}
$$

For $X \in W$, let $H^{\circ}(X)$ be the stabilizer of X in H_{F}°. In particular, we put $H_{\alpha, F}^{\circ}=H^{\circ}\left(1 / 2 w_{-1}+\alpha w_{1}\right)$ for $\alpha \in F^{*}$.

Theorem 4.2. Let $\left(\tau, V_{\tau}\right)$ be an irreducible cuspidal representation of H_{A}° in $\mathscr{A}_{0}\left(H_{A}^{\circ}\right)$. Then $\Theta(\tau, \psi)$ is cuspidal if and only if

$$
\int_{H_{\grave{\alpha}, F, F^{+}, \dot{\alpha}}} \varphi(k h) d k=0
$$

for all $\varphi \in V_{\tau}, h \in H_{A}^{\circ}$ and $\alpha \in F^{*}$.
Proof. By definition, for a given automorphic form f on G_{A}, f is cuspidal if and only if

$$
\int_{S_{F} \backslash S_{A}} f(s g) d s=0 \quad \text { and } \quad \int_{N_{F} \backslash N_{A}} f(n g) d n=0
$$

for all $g \in G_{A}$. Thus, for $f=f_{\varphi}^{\varrho} \in \Theta(\tau, \psi)$, we compute these integrals. First

$$
\begin{aligned}
\int_{S_{F} \backslash S A} f(s g) d s= & \int_{\left(A_{F^{\prime}} /\right)^{2}} \int_{A_{E^{\prime}}} f(u(0, b, x, y) g) d b d x d y \\
= & \int_{\left(A_{\left.F^{\prime} / F\right)^{2}}\right.} \int_{A_{E^{\prime}} / E}\left[\int_{H_{F}^{\circ} \backslash H_{A}^{\circ}}\left\{\sum_{(x, Y) \in X_{1, F}} \omega_{\psi(}(u(0, b, x, y) g \cdot h) \Phi(X, Y)\right\}\right. \\
& \times \varphi(h) d h] d b d x d y
\end{aligned}
$$

By (4.1), this equals

$$
\begin{aligned}
= & \int_{H_{F}^{\circ} \backslash H_{A}^{\circ}}\left[\sum_{(X, Y) \in X_{1, F}}\left\{\int_{A_{F^{\prime}} / F} \psi\left(1 / 2 x(X, X)_{W}\right) d x\right\}\left\{\int_{A_{E^{\prime} / E}} \psi\left(\operatorname{Re}\left(b(X, Y)_{W}\right)\right) d b\right\}\right. \\
& \left.\times\left\{\int_{A_{F^{\prime}} / E} \psi\left(1 / 2 y(Y, Y)_{W}\right) d y\right\} \omega_{\psi}(g \cdot h) \Phi(X, Y)\right] \varphi(h) d h \\
= & \int_{H_{F}^{\circ} \backslash H_{A}^{\dot{A}}}\left\{\sum_{(X, Y) \in G_{r}(0)} \omega_{\psi}(g \cdot h) \Phi(X, Y)\right\} \varphi(h) d h
\end{aligned}
$$

By Lemma 4.1, this equals

$$
\begin{gathered}
\int_{H_{F}^{\circ} \backslash H_{\boldsymbol{A}}^{\circ}} \omega_{\psi}(g \cdot h) \Phi(0,0) \varphi(h) d h+\int_{H_{F}^{\circ} \backslash H_{\boldsymbol{A}}^{\circ}}\left\{\sum_{\gamma \in H^{\circ}\left(w_{1} \backslash H_{F}^{\circ}\right.} \omega_{\psi}(g \cdot h) \Phi\left(\left(w_{1}, 0\right) \cdot \gamma\right)\right\} \varphi(h) d h \\
\quad+\sum_{a \in E} \int_{H_{F}^{\circ} \backslash H_{A}^{\circ}}\left\{\sum_{\gamma \in H^{\circ}\left(w_{1}\right) \backslash H_{\boldsymbol{F}}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(\left(a w_{1}, w_{1}\right) \cdot \gamma\right)\right\} \varphi(h) d h
\end{gathered}
$$

Since φ is a cusp form, it follows from (4.2) that the first integral is equal to zero. Also, since $H^{\circ}\left(w_{1}\right)$ contains N_{F}°, the second integral is equal to

$$
\begin{aligned}
\int_{H^{\bullet}\left(w_{1}\right) \backslash H_{A}^{\circ}} & \omega_{\psi(}(g \cdot h) \Phi\left(w_{1}, 0\right) \varphi(h) d h \\
& =\int_{H^{\circ}\left(w_{1}\right) N_{A}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi(}(g \cdot h) \Phi\left(w_{1}, 0\right)\left\{\int_{N_{F}^{\circ} \backslash N_{A}^{\circ}} \varphi(n h) d n\right\} d h=0 .
\end{aligned}
$$

For the same reason, the third term is equal to zero. Hence we have

$$
\int_{s_{F} \backslash S_{A}} f(s g) d s=0
$$

for all $f \in \Theta(\tau, \psi)$.
Secondly, for $f=f_{\varphi}^{\phi} \in \Theta(\tau, \psi)$, put

$$
f_{00}(g)=\int_{U_{F}^{\prime} \backslash U_{A}^{\prime}} f(u g) d u
$$

where U^{\prime} is the derived group of U. Then using the formula (4.1) and Lemma 4.1, and making a calculation similar to that above, we have

$$
\begin{aligned}
f_{00}(g)= & \sum_{\alpha \in N_{E^{\prime}\left(F^{*}\right)}}\left\{\int_{H^{\circ}\left(w_{0}\right) \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(0, \alpha^{\prime} w_{0}\right) \varphi(h) d h\right. \\
& \left.+\int_{z_{F}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, \alpha^{\prime} w_{0}\right) \varphi(h) d h\right\} \\
& +\sum_{\alpha \in F^{*}-N_{E}, F^{\left(E^{*}\right)}} \int_{H_{\alpha}^{\circ}, F \backslash H_{\alpha}^{\circ}, A} \omega_{\psi(}(g \cdot h) \Phi\left(0,1 / 2 w_{-1}+\alpha w_{1}\right) \varphi(h) d h
\end{aligned}
$$

where, for $\alpha \in N_{E / F}\left(E^{*}\right), \alpha^{\prime}$ denotes an element of E^{*} such that $\alpha=$ $N_{E / F}\left(\alpha^{\prime}\right)$. Moreover, we have

$$
\begin{aligned}
\int_{N_{F} \backslash N_{A}} f(n g) d n= & \int_{A_{F^{\prime}} / F} f_{00}(u(a) \cdot g) d a \\
= & \sum_{\alpha \in N_{E^{\prime} / F^{\left(E^{*}\right)}}}\left\{\int_{H^{\circ}\left(w_{0}\right) \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(0, \alpha^{\prime} w_{0}\right) \varphi(h) d h\right. \\
& \left.+\int_{A_{E^{\prime}} / E} \int_{Z_{F}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, \alpha^{\prime} w_{0}+a w_{1}\right) \varphi(h) d h d a\right\} \\
& +\sum_{\alpha \in F^{*}-N_{E^{\prime}}\left(F^{\left(E^{*}\right)}\right.} \int_{H_{\alpha, F^{\circ} \backslash H_{A}^{\circ}}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(0,1 / 2 w_{-1}+\alpha w_{1}\right) \varphi(h) d h
\end{aligned}
$$

For any $a \in A_{E} / E$, we put

$$
m(a)=\left(\begin{array}{ccc}
1 & a & -1 / 2 a \bar{a} \\
0 & 1 & -\bar{a} \\
0 & 0 & 1
\end{array}\right) \in N_{F}^{\circ} \backslash N_{A}^{\circ}
$$

Then

$$
\begin{aligned}
& \int_{\boldsymbol{A}_{E^{\prime} / E}} \int_{Z_{F^{\circ} \backslash H_{A}^{\circ}}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, \alpha^{\prime} w_{0}+a w_{1}\right) \varphi(h) d h d a \\
& =\int_{\boldsymbol{A}_{E^{\prime} E}} \int_{Z_{\boldsymbol{F}^{\circ} \backslash H_{A}^{\circ}}} \omega_{\psi}\left(g \cdot m\left(-\bar{\alpha}^{\prime-1} \bar{a}\right) h\right) \Phi\left(w_{1}, \alpha^{\prime} w_{0}\right) \varphi(h) d h d a \\
& =\int_{A_{E^{\prime}} / E} \int_{Z_{F^{\circ} \backslash H_{A}^{\circ}}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, \alpha^{\prime} w_{0}\right) \varphi(m(a) h) d h d a \\
& =\int_{Z_{\boldsymbol{A}^{\circ} \backslash H_{\boldsymbol{A}}^{\circ}}} \omega_{\psi(}(g \cdot h) \Phi\left(w_{1}, \alpha^{\prime} w_{0}\right)\left\{\int_{\boldsymbol{A}_{E^{\prime} / E}} \int_{Z_{\boldsymbol{F}}^{\circ} \backslash Z_{\boldsymbol{A}}^{\circ}} \varphi(m(a) z h) d z d a\right\} d h \\
& =\int_{Z_{\boldsymbol{A}}^{\circ} \backslash \boldsymbol{H}_{\boldsymbol{A}}^{0}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, \alpha^{\prime} w_{0}\right)\left\{\int_{N_{\boldsymbol{F}}^{0} \backslash N_{\boldsymbol{A}}^{0}} \varphi(n h) d n\right\} d h \\
& =0 \text {. }
\end{aligned}
$$

Note that for $\alpha \in N_{E / F}\left(E^{*}\right)$, we have

$$
\left(0, \alpha^{\prime} w_{0}\right) \cdot H_{F}^{\circ}=\left(0,1 / 2 w_{-1}+\alpha w_{1}\right) \cdot H_{F}^{\circ}
$$

Consequently, we obtain

$$
\int_{N_{F} \backslash N A} f(n g) d n=\sum_{\alpha \in F^{*}} \int_{H_{\alpha}^{\odot}, F \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(0,1 / 2 w_{-1}+\alpha w_{1}\right) \varphi(h) d h
$$

for each $f=f_{\varphi}^{\oplus} \in \Theta(\tau, \psi)$. Hence $\Theta(\tau, \psi)$ is cuspidal if and only if

$$
\sum_{\alpha \in F^{*}} \int_{H_{\alpha}^{\circ}, F \backslash H_{A}^{\circ}} \omega_{\psi(}(g \cdot h) \Phi\left(0,1 / 2 w_{-1}+\alpha w_{1}\right) \varphi(h) d h=0
$$

for all $\Phi \in \mathscr{S}\left(X_{1,4}\right)$ and $\varphi \in V_{\tau}$.
For $\Phi \in \mathscr{S}\left(X_{1,4}\right)$, we put $\Phi_{1}(Y)=\Phi(0, Y)$. The correspondence $\Phi \mapsto$ $\Phi_{1} \in \mathscr{S}\left(W_{A}\right)$ is surjective. Since we have

$$
\omega_{\psi}(g \cdot h) \Phi\left(0,1 / 2 w_{-1}+\alpha w_{1}\right)=\left(\omega_{\psi}(g) \Phi\right)_{1}\left(\left(1 / 2 w_{-1}+\alpha w_{1}\right) \cdot h\right),
$$

$\Theta(\tau, \psi)$ is cuspidal if and only if

$$
\sum_{\alpha \in F^{*}} \int_{H_{\alpha, F}^{\stackrel{\alpha}{\alpha} \backslash H_{A}^{\circ}}} \Phi_{1}\left(\left(1 / 2 w_{-1}+\alpha w_{1}\right) \cdot h\right) \varphi(h) d h=0
$$

for all $\Phi_{1} \in \mathscr{S}\left(W_{A}\right)$ and $\varphi \in V_{\tau}$. For $\alpha \in F^{*}$, we put $W_{A}(\alpha)=\left\{w \in W_{A} \mid\right.$ $\left.(w, w)_{W}=\alpha\right\}$. Since $W_{A}(\alpha)$ is a closed subset in W_{A}, when we choose an element $w^{\prime} \in W_{A}(\alpha)$, there exists a function $\Phi_{\alpha, w^{\prime}} \in \mathscr{S}\left(W_{A}\right)$ such that $\Phi_{\alpha, w^{\prime}}\left(w^{\prime}\right)=$ 1 and that $\left.\Phi_{\alpha, w^{\prime}}\right|_{W_{A}(\beta)}=0$ if $\beta \neq \alpha$. Thus for a fixed $\varphi \in V_{\tau}$,

$$
\begin{aligned}
& \sum_{\alpha \in F^{*}} \int_{H_{\alpha, F \vdash^{\circ} \backslash H_{A}^{\circ}}} \Phi_{1}\left(\left(1 / 2 w_{-1}+\alpha w_{1}\right) \cdot h\right) \varphi(h) d h \\
& \quad=\sum_{\alpha \in F^{*}} \int_{H_{\alpha, A \backslash H_{A}^{\circ}}^{\circ}} \Phi_{1}\left(\left(1 / 2 w_{-1}+\alpha w_{1}\right) \cdot h\right)\left\{\int_{\left.H_{\alpha, F F^{\circ} \backslash H_{\alpha, A}^{\circ}} \varphi(k h) d k\right\} d h} \quad=0\right.
\end{aligned}
$$

for all $\Phi_{1} \in \mathscr{S}\left(W_{A}\right)$ if and only if

$$
\int_{H_{\alpha, F}^{\circ} \backslash H_{\alpha, A}^{\circ}} \varphi(k h) d k=0
$$

for all $\alpha \in F^{*}$ and $h \in H_{A}^{\circ}$.
q.e.d.

In particular, if we put

$$
T_{F}^{\circ}=\left\{\left.\left(\begin{array}{cc}
1 & \\
& c \\
& c \\
0 & \\
1
\end{array}\right) \right\rvert\, c \in E^{1}\right\}
$$

then T_{F}° is contained in $H_{\alpha, F}^{\circ}$ for any $\alpha \in F^{*}$. Therefore we obtain the following:

Corollary. If V_{τ} satisfies the condition

$$
\int_{T_{F}^{\circ} \backslash T_{A}^{o}} \varphi(t h) d t=0
$$

for all $\varphi \in V_{\tau}$ and $h \in H_{A}^{\circ}$, then $\Theta(\tau, \psi)$ is cuspidal.
Unfortunately, we do not know yet any example of the cuspidal representations satisfying the condition (\#).

Next, we compute the Fourier coefficient W_{f}^{ψ}. We choose a complete set of representatives $\left[F^{*}\right]$ of $F^{*} / N_{E / F}\left(E^{*}\right)$ which contains 1 . For the sake of convenience, we use $\left\{t / 2 \mid t \in\left[F^{*}\right]\right\}$ instead of $\left[F^{*}\right]$. It is enough to compute $W_{f}^{\psi(1, t / 2)}$ for $t \in\left[F^{*}\right]$.

Theorem 4.3. Let $\left(\tau, V_{\tau}\right)$ be an irreducible cuspidal representation of H_{A}°. For $f=f_{\varphi}^{\phi} \in \Theta(\tau, \psi)$, we have the following:
(1) If $V_{\tau} \subset L_{0,0}^{2}\left(H_{A}^{\circ}\right)$, then $W_{f}^{\psi(1, t / 2)} \equiv 0$ for all $t \in\left[F^{*}\right]$.
(2) If $V_{\tau} \subset L_{0,1}^{2}\left(H_{A}^{\circ}\right)$, then for $t \in\left[F^{*}\right]$ we have

$$
W_{f}^{\psi(1, t / 2)}(g)=\left\{\begin{array}{l}
0 \quad \text { if } \quad t \neq 1 \\
\int_{z_{\boldsymbol{A}}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, w_{0}\right) W_{\varphi}^{\psi \circ}(h) d h \quad \text { if } t=1
\end{array}\right.
$$

for all $g \in G_{A}$.
Proof. For $t \in\left[F^{*}\right]$, we compute the integral

$$
U_{f}^{\psi_{(1, t / 2)}}(g)=\int_{S_{F} \backslash S_{A}} \overline{\psi_{(1, t / 2)}(s)} f(s g) d s
$$

By (4.1), this equals

$$
\begin{aligned}
& =\int_{\left(A_{\left.F^{\prime} / F\right)^{2}}\right.} \int_{A_{E^{\prime}} / E} \overline{\psi_{(1, t / 2)}(u(0, b, x, y))} f(u(0, b, x, y) g) d b d x d y \\
& =\int_{H_{F}^{\dot{F}} \backslash \mathcal{H}_{A}^{\circ}}\left[\sum_{(X, Y) \in X_{1, F}}\left\{\int_{A_{F^{\prime}} F} \psi\left((1 / 2) x(X, X)_{W}\right) d x\right\}\right. \\
& \times\left\{\int_{A_{E^{\prime}} / E} \psi\left(\operatorname{Re}\left(b(X, Y)_{W}\right)\right) d b\right\}\left\{\int_{A_{F^{\prime}} F} \overline{\psi\left((1 / 2) y\left(t-(Y, Y)_{W}\right)\right)} d y\right\} \\
& \left.\times \omega_{\psi}(g \cdot h) \Phi(X, Y)\right] \varphi(h) d h \\
& =\int_{H_{\boldsymbol{F}}^{\circ} \backslash \boldsymbol{H}_{\boldsymbol{A}}^{\circ}}\left\{\sum_{(X, Y) \in G r(t)} \omega_{\psi}(g \cdot h) \Phi(X, Y)\right\} \varphi(h) d h \\
& =\left\{\begin{array}{l}
\int_{H_{t, F^{\top}}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi(}(g \cdot h) \Phi\left(0,(1 / 2) w_{-1}+t w_{1}\right) \varphi(h) d h \\
\int_{H^{\circ}\left(w_{0}\right) \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(0, w_{0}\right) \varphi(h) d h+\int_{z_{F}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, w_{0}\right) \varphi(h) d h \\
\text { if } t=1 .
\end{array}\right.
\end{aligned}
$$

If $t \neq 1$, we have

$$
\begin{aligned}
W_{f}^{\psi(1, t / 2)}(g) & =\int_{\mathcal{A}_{E^{\prime}}} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)} U_{f}^{\psi}(1, t / 2)(u(a) g) d a \\
& =\left\{\int_{\mathcal{A}_{E} / E} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)} d a\right\} U_{f(1, t / 2)}(g)=0 .
\end{aligned}
$$

On the other hand, if $t=1$, we have

$$
\begin{aligned}
& W_{f}^{\psi^{(1,1 / 2)}(g)}=\int_{\boldsymbol{A}_{E} / E} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)} U_{f}^{\psi(1,1 / 2)}(u(a) g) d a \\
& =\int_{\boldsymbol{A}_{E^{\prime} E}} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)}\left\{\int_{H^{\circ}\left(w_{0}\right) \backslash H_{A}^{\circ}} \omega_{\psi}(u(a) g \cdot h) \Phi\left(0, w_{0}\right) \varphi(h) d h\right. \\
& \left.+\int_{Z_{\mathcal{F}}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(u(a) g \cdot h) \Phi\left(w_{1}, w_{0}\right) \varphi(h) d h\right\} d a \\
& =\left\{\int_{\boldsymbol{A}_{E^{\prime}}} \overline{\psi\left(\operatorname{Tr}_{E^{\prime} / F}(a)\right)} d a\right\}\left\{\int_{H^{\circ}\left(w_{0}\right) \backslash H_{A}^{*}} \omega_{\psi}(g \cdot h) \Phi\left(0, w_{0}\right) \varphi(h) d h\right\} \\
& +\int_{\boldsymbol{A}_{E} / E} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right.}\left\{\int_{Z_{F}^{\circ} \backslash H_{A}^{\bullet}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, a w_{1}+w_{0}\right) \varphi(h) d h\right\} d a \\
& =\int_{\mathcal{A}_{E} / E} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)}\left\{\int_{Z_{A}^{\circ} \backslash B_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, a w_{1}+w_{0}\right) \varphi_{0}(h) d h\right\} d a .
\end{aligned}
$$

If $\varphi \in L_{0,0}^{2}\left(H_{A}^{\circ}\right)$, then $\varphi_{0} \equiv 0$. Thus $W_{f}^{\psi(1,1 / 2)} \equiv 0$. This proves the assertion (1).

On the other hand, if $\varphi \in L_{0,1}^{2}\left(H_{A}^{\circ}\right)$. then we have

$$
\begin{aligned}
& W_{f}^{\psi(1,1 / 2)}(g) \\
& \quad=\int_{\boldsymbol{A}_{E^{\prime} / E}} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)}\left\{\int_{Z_{\boldsymbol{A}}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot m(-\bar{a}) h) \Phi\left(w_{1}, w_{0}\right) \varphi_{0}(h) d h\right\} d a \\
& \quad=\int_{Z_{\boldsymbol{A}}^{\prime} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(w_{1}, w_{0}\right)\left\{\int_{\boldsymbol{A}_{E^{\prime}} / E} \overline{\psi\left(\operatorname{Tr}_{E / F}(a)\right)} \varphi_{0}(m(a) h) d a\right\} d h \\
& \quad=\int_{Z_{\boldsymbol{A}}^{\circ} \backslash H_{\boldsymbol{A}}^{\circ}} w_{\psi}(g \cdot h) \Phi\left(w_{1}, w_{0}\right) W_{\varphi}^{\psi \odot}(h) d h .
\end{aligned}
$$

This proves the assertion (2).
q.e.d.

Note that this theorem remains true without the assumption of the cuspidality of $\Theta(\tau, \psi)$.

By the verification similar to that for Theorem 3.1, we can show the following:

Corollary. Suppose $V_{\tau} \subset L_{0,1}^{2}\left(H_{A}^{\circ}\right)$. If τ is non-trivial, then $\Theta(\tau, \psi)$ is also non-trivial.

Finally, we compute the Fourier coefficient $V_{f}^{\psi(1, t i / 2)}$. For each $\alpha \in F$ and $\varphi \in \mathscr{A}_{0}\left(H_{A}^{\circ}\right)$, we put

$$
J_{\varphi}^{\psi} \alpha(h)=\int_{A_{F^{\prime}}} \overline{\psi(\alpha x)} \varphi\left(\left(\begin{array}{ccc}
1 & 0 & x i \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) h\right) d x
$$

Then, by Lemma 4.1. (4) and a simple calculation we can deduce the following:

Proposition 4.4. Let $\left(\tau, V_{\tau}\right)$ be an irreducible cuspidal representation of H_{A}°. For any $f=f_{\varphi}^{\Phi} \in \Theta(\tau, \psi)$ and $t \in\left[F^{*}\right]$ we have

$$
V_{f}^{\psi(1, t i / 2)}(g)=\int_{\mathcal{A}_{F}} \int_{T_{F}^{\circ} \backslash H_{A}^{\circ}} \omega_{\psi}(g \cdot h) \Phi\left(t i w_{1}, w_{-1}+x w_{1}\right) J_{\varphi}^{\psi-2 t^{-1}(h) d h d x .}
$$

Further, if V_{τ} satisfies the condition (\#), then $V_{f}^{\psi_{(1, t i / 2)}}$ vanishes for all $t \in\left[F^{*}\right]$.

Combining this proposition with Theorem 4.3, we obtain the following:
Corollary. We assume that there exists a non-trivial irreducible cuspidal representation $\left(\tau, V_{\tau}\right)$ of H_{A}° satisfying the condition (\#) in Corollary to Theorem 4.2. Then we have:
(1) If $V_{\tau} \subset L_{0,1}^{2}\left(H_{A}^{\circ}\right)$, then $\Theta\left(\tau, \psi^{\prime}\right)$ is N-cuspidal but not hypercuspidal.
(2) If $V_{\tau} \subset L_{0,0}^{2}\left(H_{A}^{\circ}\right)$, then $\Theta(\tau, \psi)$ is hypercuspidal.

References

[1] S. Gelbart and I. I. Piatetski-Shapiro, Automorphic forms and L-functions for the unitary group, Lecture Notes in Math. 1041, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
[2] M. Hashizume, Whittaker models for representations with highest weights, Lec. in Math. Kyoto Univ. No. 14, Lectures on Harmonic Analysis on Lie Groups and Related Topics. (1982), 51-73.
[3] R. Howe and I. I. Piatetski-Shapiro, Some example of automorphic forms on $S p_{4}$, Duke Math. J. 50 (1983), 55-106.
[4] H. Jacquet and R. P. Langlands, Automorphic forms on $G L(2)$, Lecture Notes in Math. 114, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
[5] D. Kazhdan, Some applications of the Weil representations, J. Analyse Math. 32 (1977), 235-248.
[6] I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Sympos. Pure Math., vol. 33 part 1, Amer. Math. Soc. (1979), 185-188.
[7] I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983), 309-338.
[8] I. I. Piatetski-Shapiro and D. Soudry, Automorphic forms on the symplectic group of order four, preprint.
[9] S. Rallis, Langland's functoriality and the Weil representation, Amer. J. Math. 104 (1982), 469-515.
[10] S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), 333-399.
[11] F. Rodier, Modéles de Whittaker de representations admissibles des groupes réductifs p-adiques quasi-déployés, preprint.
[12] J. A. Shalika, The multiplicity one theorem for $G L_{n}$, Ann. of Math. 100 (2) (1974), 171-193.
[13] G. Shimura, Arithmetic of unitary groups, Ann. of Math. 79 (2) (1964), 369-409.
[14] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.
Mathematical Institute
Tôhoku University
Sendai 980
Japan

