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0. Introduction. In [Hz], Hirzebruch studied Hubert modular sur-
faces which are the compactifications of H2/SL2(έ?) determined by addition
of a finite number of points called "cusps", where H: = {z e C; Im z > 0}
is the upper half plane and έ? is the ring of integers in a real quadratic
field. He also constructed the minimal models of these surfaces by using
the method of toroidal embeddings [TE]. This method is local, that is,
this is performed only near each cusp. Tsuchihashi constructed in [Tl]
normal isolated singularities, sometimes called "Tsuchihashi cusps", analo-
gous to Hubert modular cusp singularities by using toroidal embeddings.
A Tsuchihashi cusp singularity (V, p) is of the form F\{p} = &/G9 where
3! is a tube domain and G is a subgroup of Aut(^).

Recall that a tube domain is called a Siegel domain of the first kind.
We construct in Section 1 a normal isolated singularity (V, p) such that
V\{p} is isomorphic to a quotient of a Siegel domain of the second kind.
We would like to call this singularity also a "cusp". It is natural to
extend the class of cusp singularities in this way, because the boundary
components of the Satake compactification of a quotient of a bounded
symmetric domain are also called cusps in a generalized sense.

EXAMPLE. Let F be a totally real algebraic number field of degree
v, Ff a totally imaginary quadratic extention of F, B a central division
algebra of degree d over F' with an involution of the second kind and
heMμ(B) a Hermitian matrix with Witt index one, i.e., h is conjugate to

"0 1
1 0

0

0

*

Set GQ := RF/Q(SU(h, BjF'jF)) with Weil's restriction functor RF/Q. Then
we get

GR = Π SU(pi9 qt) , pi + qt = μ , pt ^ qi ^ d .
ί=l

Let K be a maximal compact subgroup of GR. When qt = d, we get the
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Satake compactification of K\GR/GZ by adding a finite number of points,
which are called "cusps".

When v = 1, the homogeneous space K\GR is isomorphic to the
bounded symmetric domain Ip>q: = {ZeMp>q(Q; lq - ιZZ > 0} (p ^ q ^ 1).
The domain Ip>q can be represented as a Siegel domain of the second kind:

3f : = {(Z, u) e ^fq{C) (g)Λ Cx Mp_q>q(C); ImZ- ιΰu e ^q(C)},

where ^fq{C) := {ZeMq(C); *Z = Z) and ^q(C) := {Ze ^q(C); Z > 0}.
Here Z > 0 means that Z is positive definite.

REMARKS. 1. When q = 1, the domain JP)1 is the p-ball 5 P : = {(zt) e Cp;

2. When p = g, the domain 2f = §ίfq(<C) + i / - l ^ ( C ) is of tube
type.

From this model we derive data necessary for our construction in
Section 1.

We show in Section 2 that there exist isomorphisms Tγ ̂  H1(V\{p},
Θv) and H\U, θ^-log X)) ι^> H\V\{p), Θv) for some resolution (£7", X) of
a "cusp" singularity (F, p) of dimension greater than two. When (F, p)
is a Tsuchihashi cusp singularity, we showed in [0] the former isomor-
phism by using the method analogous to that in [Ft] and [FK]. In the
case of a Hubert modular cusp singularity (V, p) of dimension two,
dimc 2V was calculated by Behnke [Bl], [B2] and Nakamura [NK]. The
latter isomorphism shows that our generalized cusp singularities are
equisingular (cf. [W]).

The author would like to thank Professors I. Satake and T. Oda for
their useful advice and Professor I. Nakamura who pointed out the incom-
pleteness of the original proof of Proposition 3.2.

1. Construction of cusp singularities.

1.1. Siegel domains of the second kind. For integers r ^ 1, m ^ 0,
let us denote n:= r + m. Fix a free Z-module N of rankr. Let
CaNR:= N(g)zR be an open convex cone with CΠ(—C) = {0} and let
H: Cm x Cm —> Nc : = N (x)z C be a Hermitian form satisfying the following
conditions:

( i ) H{Xιuι + X2u2, v) = λi-ff(%i, v) + X2H(u2, v) for λ< e C, ui9 veCm

« = 1, 2).
(ii) H(u, v) — H(vf u)~, where " denotes the complex conjugation.
(iii) H(u, u) e C, where C is the closure of C in NR.
(iv) H(u, n) = 0 implies w = 0.

Then we set
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, C) := {(z, u)eNcxCm; Imz - H{u, u)eC}

and call it a Siegel domain of the second kind associated with H and C.
Note that the group N(&): = {(α, c)eNRxCm} acts on ^ by

(α, c) (z, w) = (z + α + 2v/:=TH'(w, c) + \/^ΪH(c, c), c + w) .

1.2. Lattice data. Let LaCm be a free Z-module of rank 2m with
the compact quotient Cm/L and ΓcAut(iV) a subgroup preserving C and
satisfying the following conditions:

(a) The induced action of Γ on D: = C/J£>0 is properly discontinuous
and fixed point free.

(b) The quotient D/Γ is compact.
(c) There exists a homomorphism of groups sending geΓ to ge

GL(m, C) so that gH(u, u) = H[gu, gu) and gL = L for all # e Γ, u e Cm.
(d) H(Z, Γ) - H(l', I) 6 i / - l JSΓ for all Z, Γ e L.

1.3. Construction. In the following, we use the notation as in [MO].
Let TN := N(g)zC* be an algebraic torus of dimension r. Regarding JV,
L as subgroups of N(&), construct the following diagram:

2f\N c TNxCm

I I
Here (TNxCm)/L is a TV-bundle over the Abelian variety A := Cm/L with
p: (TNxC)/L-^ A as the projection, and its transition function is

exp(2π(2iϊ(^, I) + H(l, I))) eTN for u e Cm , I e L ,

where exp: Nc^> TN = Nc/N. Now take a Γ-admissible rational partial
polyhedral decomposition (r.p.p. decomposition, for short) 3 of CU{0} with
Δ modulo Γ finite. Then construct a diagram

TV x Cm c T^ emb(J) x Cm

I 1
(TNxCm)/L c (TVemb(if)xCm)/L .

We also use the same notation p: (TNemb(Z)xCm)/L-> A.
In order to take the quotient with respect to the action of Γ, we

need to shrink (TV emb(J) x Cm)jL. A real analytic mapping sending (ί, u) e
(TNxCm) to ord(ί) — H(u, u) e NR extends to a mapping Φ:TVemb(J)x
Cm —> N.c(N, Δ), which is L-invariant and hence induces a mapping from
(TNemb(Δ)xCm)/L to Mc(iV, Δ). We also denote it by the same letter
Φ. We see that Φ is Γ-equivariant. Set
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U:= φ-^the interior of the closure of C in Mc(iV, Δ))

and

Ϋ:= U\Φ~1(C) ,

Γ acts on U and Ϋ properly discontinuously and without fixed points.
Therefore we can take the quotients:

U:= U/Γ and X:= Ϋ/Γ .

In order to contract X to a normal isolated singular point, we use
the kernel function of & (cf. [Sal] and [Ro]). For (z, u)e&, set

Ψ(z, u):=\ exp(-<Imz - H(u, u), t}) ά e t ^ d t ,

where C* := {yeN£; (x, y) > 0 for all αeC\{0}} is the dual cone of C,
the function φc* is the characteristic function of C* defined by Vinberg
[V] and M{t) e Mm(C) is defined for a fixed inner product ( , ) in Cm by

(H(u, v), t) = (M(t)u, v) for all u,veCm, te iVΛ* .

M(t) is Hermitian symmetric. Moreover, it is positive definite for t e C*.
The function Ψ is N- and L-invariant, and has positive values on ^ , and
its Hessian is positive definite. For geΓ, we have

Ψ{gz, gu) = \detg\-2\άetg\-ψ(z, u) .

Therefore Ψ induces a function on U\X, which we also denote by the
same letter Ψ. Set Ψ = 0 on X. Then the function Ψ is plurisubharmonic
on U and strictly plurisubharmonic on U\X. Thus we can contract X
to a point p (see [GR]):

π: (U, X) - (F, p) .

2. Results. In this paper we consider a singularity (F, p) constructed
in Section 1 which satisfies an additional condition (C, Γ)e^0 in the sense
of Tsuchihashi [Tl], that is, there exists a duality between Γ-admissible
decompositions π and π* induced by the convex hulls of CΠiVand C*niV*,
respectively.

THEOREM 2.1. For the normal isolated singularity (V, p) constructed
in Section 1, we have isomorphisms

Rtπ*έ?u ^ H\X, έ?x) and R'π+tTui-X) = 0 for i ^ l .

REMARK. Theorem 2.1 implies that (F, p) is an isolated Du Bois
singularity (cf. [St]).

2.2. Infinitesimal deformations of (F, p). By a deformation of (F, p)
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we mean a pair of a flat morphism of complex analytic spaces / : (Y] v0) —>
(Γ, ί0) and an isomorphism (V, p) -^ (/"'(to), vQ). A first order infinitesimal
deformation of (V, p) is a deformation / : (3*7 vQ) -> (Γ, 0) of (F, p) with
T = Specan C[ε]/(ε2), We are interested in 2V := ExtJ^ίft, £?F), which
parametrizes the set of first order infinitesimal deformations of (F, p).
For this purpose the following theorem due to Schlessinger [Sc] is useful:

COMPARISON THEOREM (Schlessinger). Let (V, p) -> (C*, 0) be a closed
embedding. Then we have an exact sequence

0 - TF

ι -> H\V\{p}, Θv) -> H\V\{p), (θc*)\v) ,

where θv is the holomorphic tangent sheaf on V and (θc«ύlr is the restric-
tion to V of the holomorphic tangent sheaf on Cd.

We choose a nonsingular r.p.p. decomposition Δ of ClJ{0}. Then we
get a desingularization π: (17, X) -> (V, p). Let X = U* Xt be the decom-
position of X into irreducible components and NXi/u the normal sheaf of
Xt in ί7. Then we define the logarithmic tangent sheaf of (U, X) by

6W-log X):- Ker(ΘtΓ — 0 , iVx</ιΓ) .

THEOREM 2.2. T7&ew n ̂  3, we have isomorphisms

H\U, ΘΛ-log X)) ^ n ^ H\V\{pl Θv) .

THEOREM 2.3. When m = 0, ίfcαί is, (V, p) is α Tsuchihashi cusp
singularity, we have

HXΓ.Nc) for i ^ l ,

where the right hand side is the i-th group cohomology of the natural
action of ΓcAut(iV) on Nc.

REMARK. From the exact sequence

0 - H\θπ{-\og X)) - H\Θu) -> 0 , H\NXi/ϋ) ,

we see that i?1(ΘίΓ(—logX)) parametrizes the set of first order infinitesimal
deformations of U for which none of Xi vanish (cf. [W]). If there exists
a versal family of such deformations, Theorem 2.2 implies that (V, p) is
equisingular.

3. Proof of Theorems.

3.1. First we prove the following two propositions. Let F be a
finite dimensional complex vector space with a Γ-action. Set
Q.ΓΛF ®cέ?ΰ), where q:U->U= U/Γ is the natural projection.

PROPOSITION 3.1. H\X9 ^ ®<?u έ?x{-kX)) = 0 for i > 0 and k > 0.
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PROPOSITION 3.2. The local cohomology groups HZ(U, ^") vanish for
ί < n.

3.2. PROOF OF PROPOSITION 3.1. Let Q be the r.p.p. decomposition
of CU{0} induced by a natural Γ-invariant polyhedral decomposition of
the boundary of the convex hull of CΠN, that is, every member of g
is written in the form

= {rx e NR; x e α, r ̂  0}

with a polyhedron a appearing in the boundary of the convex hull of
Cf]N (see [TE] and [Tl]). Then we can get a nonsingular r.p.p. decom-
position Δ of CU{0} by subdividing g. Let (£7', Y7) be those constructed
as in Section 1 corresponding to g and U':= ϋ'/Γ, X':= Ϋ'/Γ. Then
we have the morphism τ: (U, X) —> (U'f X

f) induced by the subdivision Δ
of g, and have

V if i = 0 ,
if i > 1 ,

0 i f i ^ l .

Let ?': U'->U' = ϋ'/Γ and ̂ r ' := q'*Γ(F(g)c &<!>)- Then τ * J ^ = ̂ " and
£T(X, ^ - (g) ̂ (-fcX)) = H\X', jr' (g) ̂ (-fcJΓ)) for i ̂  0. Hence we
may assume that 2 is the r.p.p. decomposition of CU{0} induced by the
convex hull of Cf]N and that π: (17, X) -»(F, p) is a partial resolution of
singularities corresponding to Δ.

First assume that the dual graph of X is orientable and fine in the
sense of Tsuchihashi [Tl], that is, {τeΓ; TαΠ/3 Φ 0} = {1} for a, βeΔ
with αΠ/3 =£ 0 . Let JO') := {σeJ; dimσ = j} and JO') := Δ(J)/Γ. For
each cone a e JO) let Xα be the toric subvariety orb(α)~ in TN emb(J)
corresponding to a and Xa := ̂ (Φ'^ord^))). Then we have an exact
sequence

0 — ^x -> 0 ^χα -> 0 ^ -> > 0 ^χω -> 0 .
αej(i) i9ej(2) H ωej(r)

The sequence we obtain from this by tensoring έ?ϋ{—kX)®ί?u^
r for a

nonnegative integer & is also exact. Hence we get a spectral sequence

= 0 H'(Xa,
ί )

Set Xα:=g~ ](XJ, which is the disjoint union of Yΐa := Φ~!(ord(Xrα) for
7 6 Γ. Since g: Xβ -> Xα is unramified and ̂ ^ (x)^ έ?Za(—kX) = q*{F ®c

Ϋ we have a spectral sequence
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(II) Eξ«(Γ, Jβr(-kX)) := H*(Γ, Hq(Xa, F®c^a{

We have an isomorphism Hq(Xa, F®cέ?χa(-kΫ)) = 0 r e r (F®c Hq(Yra,
έ?γ a(—kΫ))) as vector spaces and have a Leray spectral sequence

(III) Er(A, έ?A Ϋ Ϋ

For each point aeA,

vanishes for q > 0 and fc ^ 0, because Δ is convex (see, for instance,
[TE]). Hence we have H*(Ya, έ?Ya{-kΫ)) = HP(A, p*<?Ta(-kΫ)). Since
Ya and Yra are isomorphic for every 7 6 Γ, we have an isomorphism as
C[Γ]-modules

U Yra,
γeΓ

^ Homc a

Thus (see, for instance, [HS])

H*(Γ, H\Xa, F®cέ?χa{-kΫ)) - 0 f o r p>0.

On the other hand, for a positive integer k, the sheaf p*^V (—fcY") cor-
responds to the holomorphic vector bundle which is the direct sum of the
line bundles £f(m) associated to positive definite Hermitian forms 4<m,
H{ , )> for meJV*n&α*. Here α* is the cone in π* dual to a. Hence
Hq(A, p^ya(-kΫ)) = 0 for q > 0 and k > 0. Thus for a positive integer
k we have

E?>q{^{-kX)) = 0 if q > 0 ,
and

= 0 H°(Γ, Homc
J ( + l )

#°(Γ, Homc ( 0
mεiV*Πfeα*

For each meN*Γ\ka* there exists a unique /3 in Δ of the smallest dimen-
sion among cones /3 satisfying meN*P\kβ*. Thus we have an exact
sequence as in [Tl]

0 -> i^® c iϊ°(A, ^(m)) -> 0 .P7 (x)c iϊ
o(A

where z/(/5, j) := {a£J; a < β and dim α = j}. The complex

( 0
meN*f]ka*
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is the direct sum of the complexes

JΓ ' (m): = φ F 0c H%A,

Thus the E2-term of the spectral sequence (I), which on the one hand
satisfies Eto(jr(-kX)) = HP{X9 ^r ® &>x{-kX)), is the direct sum of the
p-th cohomology groups <%fp(H\Γ, Homc (C[Γ]f J%T\m)))) = <§e*p(jr'(m)),
which vanish for p > 0, because β is contractible.

In the general case, we take a normal subgroup Γ' of finite index
in Γ so that for the pair ({/', X') constructed as in Section 1 for Γ' the
dual graph of Xf is orientable and fine. Then we have

H\X, jr^^-lcX)) = H\X', ^-®#ΌI &A-kX'))Γ/Γ' = 0

for ί > 0 and k > 0. Thus we finish the proof of Proposition 3.1.

For k = 0, we also have

- φ H\Γ, Homc
aeΔ(p+l)

COROLLARY. When dim A = 0, i.e., m = 0, we have

H'(X, j r %*Ό <?x) = H'(Γ, F) for p ^ 0 .

By the comparison theorm in [BS], we have for i > 0

= proj Mm. H\U,

= projlim,H\U,

The exact sequences

0 -* <?Λ-kX) — <?π/<!?π(-(Jc + 1)X) -• tfvl&vi-kX) -> 0 ,

0 -• ̂ χ(-A X) ^ ^ σ (-X)/^(-(Λ + 1)X) -» ̂ (-X)/<^(-A;Z) -» 0 ,

tensored with ^ remain exact. Applying Proposition 3.1 and the above
comparison theorem, we have

= H\X, Jir <S> έ?x) and Wπ^i-X) = 0 for i > 0 .

This proves Theorem 2.1.

Since π(U) = V is a Stein space, we also have

H\U, ^r) = H\V, IPiCtSn = H\X, ̂ r 0 &>χ) and
H\U, jr(-χ)) = 0 for i > 0 .

This, combined with the corollary, proves Theorem 2.3 because in that
case ΘD(-\ogX) s qr*(N<g>z έ?ύ) holds.
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3.3. PROOF OF PROPOSITION 3.2. We use the following lemma:

LEMMA ([BS]). Let Z be a topological space and K a compact subset
with a countable fundamental system of neighborhoods. Then for a sheaf
& of abelian groups on Z, we have a surjective mapping

(*) Hq(Z \K, Sf) -> proj lim^jc Hq(Z \W, 5?) for q ^ 0 .

Moreover, (*) is an isomorphism if for every member W of a fundamental
system of neighborhoods of K the mapping induced by restriction

Hq~\Z, Sf) -> Hq~\Z \W, ϊ?)

is surjective.

In our situation, choose a fundamental system of neighborhoods of
X consisting of relatively compact and holomorphically convex neighbor-
hoods Uv (v — 1, 2, •) with ΌV~D Uv+1. Consider the commutative diagram
of long exact sequences

m(U, ^Π > H\U, JΓ) > Hi(U\X, &Ί * H?\U,

I I 1 I
Ή(UV, ^r) > H\U, ^r) > Ht(U\ Uv, ^) > Hi+\U»

The cohomology group Hi(JJv1 ^) with compact support is the algebraic
dual of Hn-\UV1 Jtry ®Ωn

Ό).

LEMMA. Hn-\UV, jr^ ® Ωn

v) = 0 for i < n.

PROOF. First assume that ΓaSL(N). Then we have Ωn

σ ^
and hence

for i < n by Proposition 3.1, because F v : = π(UJ) is a Stein space. Next,
for a general Γ we take a normal subgroup Γf of finite index in Γ so that
Γ'aSL(N). Let (LΓ, Xr) be the pair constructed as in Section 1 for Γ\
Then Ωn

υ, = <!?„>(—X'), and hence for i < n

Hn-\UU, ^ " v (g) Ωl) = Hn-\U:, ^ry (g) ̂ (-Xf))Γ/Π = 0 . q.e.d.

Applying the lemmas, we see that the mapping Hi(U\X, ^~) —>
proj limv WQJ \ Uu, ^~) is isomorphic for i < n — 1 and surjective for
i = n - 1, and hence that H\U, J^)->H\U\X, ^r) is isomorphic for
i < n — 1 and injective for i = n — 1. This implies that Hz(U, &~) — 0
for i < n.

3.4. PROOF OF THEOREM 2.2. The logarithmic tangent sheaf
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Θu(—\ogX) splits as

0 -> qΓΛN®z £?&) - Θui-log X) - qΓΛH\K, ΘA) ®c <?ΰ) -> 0 .

Applying Propositions 3.1 and 3.2 to this we have

H\X, Θjji-log X) (x) <?z(-kX)) = 0 for i > 0 and k > 0 ,

m(U, Θπ{-\ogX)) = 0 for i<n.

Thus we have for n ^ 3

^ H\U\X, Θu)

In order to prove Theorem 2.2 it is sufficient to show that the isomor-
phism H\Θu{-log X)) ^H\V\{p}9 Θv) factors through 7^. This follows
from the following proposition applied to S = SpecanC[ε]/(ε2):

PROPOSITION 3.4. For a germ (S, s0) of complex analytic spaces which
need not be reduced, let ω: (^ , u0) —> (S, s0) 6e α deformation ofU =
^ o : = ω'^So) /or which none of Xi disappear, that is, there exists a sub-
variety J2f of <?/ such that, after possible shrinking of S, the restriction
ωf : = ω\^\ (<%?, xQ) —> (S, sQ) is a deformation of X:=\Ji Xt. We assume
that H\U, έ?u(-X)) = 0. Then there exist neighborhoods ^/f of <^J : =
ω'^fβo) in <2S and S' of s0 in S so that in the canonical reduction diagram
of ω' over Sf in the sense of Riemenschneider [R2]

S'

τ is a proper morphism and p: (3̂ 7 v0) —> (S'f s0) is a deformation of (V, p).

PROOF. By shrinking <ϊf and S if necessary, we may assume that ω
is a 1-convex holomorphic mapping with an exhaustion function ψ and a
convexity bound c* and that S is a Stein space [R2]. Then ω can be
factored as follows:

XI'
S .

In this diagram τ is proper and biholomorphic outside the union <%? of
all maximal compact analytic subsets ^ c ^ 8 for seS, p is a Stein
morphism and ρ\τ(£f) is finite. Further ^ is holomorphically convex
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and <JΓ is the Remmert quotient of ^ i.e., £7^ = τ*<̂ W. Now we have
an exact sequence

Since ^ and && are ω-flat, so is £?W(—<^). Let ωβ : = α>|{9<β}, c e i ϊ .
Since i Γ ( ^ 0 , ^ 0 ( - j r ) ) = fP(E7, ^ ( - X ) ) = 0, the canonical restriction
mapping

( ω β * ^ r ) i 0 -> (α) β J | c ^- o ). o

is surjective for every c > c*. From the semi-continuity of dimc H
1

seS, and the vanishing of H\ff0, £ V 0 ( - ^ ) ) , we have

0 > ( ω c * ^ ( - J T ) ) 8 0 > ( ω c * ^ ) 8 0 > ( ω c * ^ ) 8 0 > 0

0 > ( ω c * ^ V 0 ( - ^ ) ) 8 0 > (α>c*^W<o > (ωe^0)8Q > 0

In the above diagram, two horizontal rows are exact, and the left and
right vertical arrows are both surjective. Hence the middle arrow is
surjective. From this and [Rl, Theorem 1] we see that the fiber %>\ —
p~\80) is the Remmert quotient of Ό̂> i e., (5^, vQ) is isomorphic to (F, p)
as germs of complex spaces.

Next we need to show that ^ is ^o-flat. Since p is a Stein morphism
and the p-flatness of g?r is equivalent to the flatness of p+έ?r over έ?s

(cf. [Hn, Theorem 1.3]), it is enough to prove that p+tfr is flat over #8.
Since ^ = X is reduced and connected, the natural morphism ^ / 8 0 —>
(ft>*^r).o is a n isomorphism. In particular, ω^^ is flat over &8 at s0.
By shrinking W and S if necessary, we may assume that ω*έ?#> is flat
over &s because of the openness of the flat locus ([Fs]). From the
vanishing of H\Wv έ?*0(—<&ό))t we can show that τ*&?,(—<%f) is /O-flat
as in the proof of [R2, Theorem 2]. Hence we see that p*τ*έ?κ(--<%?) =
(0*#*r( — £?) is flat over g?8. Consider the exact sequence

0 -> ω+£?*{-£f) -> ω*&v -> (*)*&#> -> 0 .

Since ω^^{—^f) and ω*έ?#r are both flat over &s, so is ω^^ =
P*τ*έ?* = p+<Pyr. q.e.d.
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