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Introduction. Let X be a nonsingular, complete curve of genus
g = 3 over C, the field of complex numbers and let J be the Jacobian of
X, the space of isomorphism classes of line bundles of degree 0 on X.
It is a complex torus of dimension g. If we denote by ¢ the Abel-Jacobi
mapping of X, the d-fold symmetric product of the curve, into J, Abel’s
theorem assures us that ¢ '(¢(D)) is nothing but the projective linear
system P(H°L,)), associated to the line bundle L, given by the effective
divisor De X, on X. When d lies between 0 and (g — 1), 4(X,) is a
proper subvariety of J. This subvariety ¢(X,) admits a natural filtration
by subvarieties

X)) =W Wit 2W; -

defined in terms of the dimension of the fibre of ¢. For example,
Wi = {¢(D)|dimension of ¢~(¢(D)) = r}. It is a classical problem to study
the structure of these special linear systems.

Formally, one may define an effective divisor D on X to be special if
HY(X, L,) # 0.

In 1874, A. Brill and M. Noether published their investigations on
special linear systems and conjectured that on a very general curve X,
the dimension of W} is given by p(r,d)=g—(r+1)(g—d +r). In
1980, Griffiths and Harris [G-H] settled this conjecture affirmatively.

Picking up the thread from here, we extend the notion of special
divisors to stable vector bundles on X. Indeed, a vector bundle V on X
is said to be stable, if for every subbundle W S V with W+ 0, w(W) =
(degree W)/(rank W) < p(V). Such a bundle with nonnegative degree is
said to be special 1f H'(X, V) # 0. Replacing J, the isomorphism classes
of line bundles of degree zero, by U,, the variety consisting of isomor-
phism classes of stable bundles of rank n and degree d we may define

W;=U;, U;={VeU,, h(X, V)=r+1}

where W7 is the Zariski closure of U; in M, , the “natural compacti-
fication” of U,,. (See Section 1.12.2, Chapter I).
In this article, we undertake investigations of
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(i) When is W} non-empty?

(ii) What is the dimension of W7 for a general curve?
(iii) Determine the cohomology class of Wj.

(iv) Describe the singular set (W3), of Wj.

We prove:

THEOREM 1.3.2. For 0 =d <n(g—1), a generic VeU,, has mo
section.

Following an argument of Kempf we observe:

THEOREM 1.4.1. For 0 < d £ n(g — 1), of W, is non-empty then the

dimension of W7 is at least p(r, d, n), where
or,d,m)=n(@g—1)+1—(@r+1)r+1—d—n+ng).

We define W; on a singular curve, in particular on curves whose
only singularities are ordinary double points, and prove:

THEOREM II.3.1. For 0 < d = n(g — 1), the dimension of W{ is given
by

00, d,n)=n(g—1)+1—(ng—n—d+1)

and it has a unique irreducible component of maximal dimension.

COROLLARY II.3.2. Let Wi(p) denote the unique irreducible component
of dimension p(0, d, n). Then a generic F'e Wi(p) is locally free, F' con-
tains a trivial line sub-bundle and h'(F) = 1.

THEOREM 11.4.2. For d an odd integer, with 2 = d < 29 — 2, there
exists U,,, a Zariski open set in U,, such that WiNn U, is non-empty
and the dimension of this subvariety in U, is p(1, d, 2) = (2d — 3).

Next, we tie up W; on smooth curves with W; on integral curves.

THEOREM II1.2.1. Let R,, S R:, be a Zariski open set satisfying
(i) Rout) = Ray(t) it t # s, in S.
(i) R, u(s0)N Wi(S) is monempty and
dim[Rn,d(so) n W:(S)] = P("‘, d’ n) + dim Gso -1,
where
WiS) = {geR: | B°(X, 10 Vaal@) = (r + 1)}
Then dim[W(S)] = (o(r, d, ») + dim S + dim G, — 1). In fact every com-
ponent 1is of dimension at least (o(r, d, n) + dim S + dim G, — 1). (See
page 203 for definitions of R: 4 V,4).

Combining the above with the theorems on singular curves, we
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obtain:

THEOREM II1.2.4. For 0 <d = n(g —1), WYX) is nonempty and
dim WY(X) = p(0, d, ») on any smooth curve X of genus g.

THEOREM III.2.5. For2=d < 2(g — 1), d an odd integer, W} < M,,
is nonempty and dim W; = o1, d, 2) = (2d — 3) on any smooth curve of
genus g.

In Chapter IV, an alternative proof of the existence of special bundles
with a section is given and some properties of W; are discussed. Here
again we suppose that X is smooth.

THEOREM IV.1.1. For g =(d/n)eN=1{1,2, -+, (g — 1)}, there exists
VeM,, such that V 1is stable and h'(V) # 0.

COROLLARY IV.1.8. For d=n(g—1), if g=(r + 1) r=1, then
there exists Ve M,, such that V is stable and R(V) = (r + 1); dim W; =
n(g—1)+1—(r+1)7

THEOREM IV.2.1. For 0<d =n(g —1), the variety W= M,, 1is
wrreducible and WIN\ Wi(1) is of codimension at least (n — 1) in WS where

) ={VeWilo <V, Vi is stable of degree d and rank (n — 1)}.

PROPOSITION IV.2.2. For g = d < 29 — 2, d an odd integer, W; < M, ,
18 1rreducible on a gemeral smooth curve of genus g = 3 and dim W} =
2d — 3); a generic Ve Wi contains 2, a trivial sheaf of rank 2.

ProPOSITION IV.3.1. For 0 < d < n(g — 1), the constructible set
i1, 1) ={VeWiD)|n(V) =1},
where Wi(1) is as in Theorem IV.2.1, is Zariski dense in W{ < M, ,.
Therefore, a generic V in W3 has exactly one section and it generates a

trivial line subbundle of V. Moreover, for d < (n—1)(g —1), the

singular set {WS}, of the reduced model of W¢ is of codimension at least
two.

Chapter V contains a discussion of open problems.
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CHAPTER 1. Bounded Families of Locally Free Sheaves. We recall
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a few facts about vector bundles over smooth, complete curves of genus
g and then define the notation of special bundle. We then construct a
Noetherian K-scheme of finite type parametrising vector bundles of
specific types to show that a generic stable vector bundle of degree d
and rank n with 0 £ d < n(g — 1) has no section. We then realise the
varieties of special bundles with prescribed numbers of sections as
preimages of Schubert varieties in suitable Grassmann bundles.

1. Notation and Preliminaries. 1.1. Most of the schemes considered
here are Noetherian and of finite type. Accordingly, these phrases may
often be omitted. We hope the context will make these points clear.
All our schemes, with a few exceptions, are defined over C, the field of
complex numbers. We hope the interchangable use of symbols C and K
will not cause the reader any confusion.

1.2. Let f: X— S be a morphism of schemes. For every S-scheme
T, we denote by X,, the base change X Xy T; the symbols p, and p,
stand for the natural projections of X x4 T— X and X Xy T— T, res-
pectively. If F is a sheaf of <7-modules on X, F, denotes F'Q., 7.
We call elements of Homg(T, X) T-valued points of X. Closed points of
a scheme are referred to as just points.

1.8. For seS, X, denotes the fibre over K(s), the residue field of
the local ring at s; F', denotes the restriction of a sheaf F' to the fibre X,.

1.4. By a sheaf, we mean a coherent sheaf. Let X be a projective
scheme and (1) a fixed ample invertible sheaf on X. Then F(m)
denotes F' ®,, @x(1)®". For a sheaf F, X(F) and h'(X, F) = h'(F') denote
the Euler-Poincaré characteristic and dimension of H X, F'), respectively.

1.5. When a K-scheme T parametrises a family of bundles on X,
we often denote the bundle represented by te€T on X by the same
letter.

1.6. K-Sch and Ens denote the category of Noetherian K-schemes
and the category of sets, respectively.

1.7. For any scheme X, the stalk at xe€ X of the structure-sheaf
O may be denoted by &%, or Z,.

1.8. Let X denote a projective, integral curve. A torsion-free sheaf
F of ©~y-modules is said to be stable (semistable) if for every subsheaf
G of F with G # 0, u(G) < W(F) (M(G) £ u(F')), where for example, the
symbol p(F) stands for (degree of F')/(rank of F'), the degree of F being
X(F)—n(l —g) and n, the rank of F, being the dimension of the
generic fibre of F' as a vector space over C.

1.9. Let X be smooth. If V is a semistable bundle of rank» and
degree d over X, then it admits a filtration by sub-bundles
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0=VvV,,cV,...cV,cV,=V

such that for 0 <+ < p, V,/V.. is stable and i(V,/V,,) = (V). We
refer to @?-, (E,/E,,,) as the associated graded sheaf and denote it by
Gr(V). It is independent of the choice of the filtration satisfying the
above conditions.

1.10. Let X be smooth. If V is a non-semistable bundle over X,
then it has a unique filtration by subbundles

0}=V,cV,..-CV,_,CcV,=V

such that for 1 <¢1<s—1, V,/V.., is a maximal semistable subbundle .
of V/V,_,. This unique filtration is called the Harder-Narasimhan filtra-
tion. It satisfies

Aa( Vl) > #( V2/V1) > e > #( Vs/ Vs—l) .

Let n, and d, be the rank and degree of V, respectively. We refer to
the data {(n, d,)}-, as HN type.

1.11. Let X be as in 1.10. For V, a semistable vector bundle,
H'(X,V)=0 if the degree of V=d > n(2g — 2), where n is the rank
of V. This follows from Serre Duality Theorem.

1.12. Let X be as in 1.10. Denote by Z, a set of isomorphism
classes of vector bundles on X.

DEFINITION 1.12.1. We say that a family of elements of Z is para-
metrised by a Noetherian K-scheme Y, if there exists a vector bundle V
on Y Xz X such that the isomorphism classes of {V,} are in Z, where {y}
is a closed point of Y and V, = V|{y}xx X, the restriction of V to
{y} xx X. We do not insist that different points of Y correspond to non-
isomorphic bundles V,.

Two families V, and V, of elements of Z are said to be equivalent
if there exists a line bundle L on Y such that V, = V, & p¥(L).

1.12.2. Moduli of stable bundles. Let S(n, d) and S’'(n, d) be, respec-
tively, the isomorphism classes of semistable and stable bundles on X of
rank » = 2 and degree d.

MAIN THEOREM. Let (n,d) be a pair of integers with n = 2. Then
there exists a coarse modult space for S'(n, d) whose underlying K-scheme
is smooth and quast projective, denoted by U, ;.

This variety possesses a natural compactification, denoted by M, .
The set of K-valued points of M, ; is isomorphic to the quotient of S(n, d)
under the equivalence relation: for every pair (E, F') of semistables on
X of rank » and degree d, E and F are equivalent if and only if Gr(E) =
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Gr(F'). (cf. Section 1.9). M, , is a normal projective variety of dimen-
sion n*g — 1) + 1.

The compactification M, ; possesses the following “universal property”:
for every family E of semistable vector bundles over X of rank r and
degree d parametrised by a Noetherian K-scheme T, there exists a unique
morphism

ffT—-M,,

such that for ¢ in T(K), the point f(¢) of M, , is Gr(E,).
We refer the reader to [Se 1] for proofs of the above.

2. Bounded families of locally free sheaves. X is assumed to be
smooth throughout the rest of this chapter.

PROPOSITION 2.1. Let U, and U, be reduced K-schemes parametrising
families of semistable bundles V, and V,, respectively. Then there exists
a reduced K-scheme Z parametrising PExt'(u, u,)), the projectivisation
of Ext'(u, u,) with (4, u,) € U, X ¢ U,.

PrOOF. Let p, and p, be the natural projections of U,x U,x X to
U, and U, respectively; V, and V} the pullbacks of V, and V¥, the dual
of V,, on UxU,xX. Set V=V, ® V¥. The bundle V satisfies

V(ul,uz) = u, Q@ us

over X.
Since all schemes under consideration are Noetherian and of finite

type, and p the natural projection of U,x U,xX to U,x U, is proper,
we conclude that R'p,(V) is a coherent sheaf on U,x U,. By the semi-
continuity theorem, there exists a finite stratification into locally closed
sets {U,} such that dim,,H'(X, V,) is constant on every U,. Since
U,x ¢ U, is reduced, we may suppose that U, is reduced for every a, by
taking the reduced subscheme. We note that U, is Noetherian. Each
U, may be expressed as a finite union of connected components. By
abuse of notation we denote them by the same symbol U,. Let 7, V,—
U,x X denote the restriction of V to U,x X.

Since p is flat, R'p, (V,) = R'p,(V)|U,, the restriction of R'p,V to
U,, is locally free; let Z, be the total space of the corresponding projec-
tive bundle. If we suppose, as we may, that U, is affine, then there
exists an extension of bundles on Z,x X with the required property (see,
for example, [Se 1, p. 200]). Now we may take Z to be the disjoint
union of the Z,. q.e.d.

Let U,,; be the moduli space of stable bundles of rank n and degree
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d on X. It is well-known that there exists a finite Zariski open cover
{U:} of U,, such that for every 14, there exists an algebraic variety V; ,
with V, - V¢, ;x X a vector bundle and an étale morphism @, Vi, — Ui,
which is surjective and satisfies the following condition: @,(v) e U; ;S U, .
is represented by the bundle V,|{v}x X for all ve V},. Let Z,, be the
disjoint union of {V:,}. Then Z,, parametrises stable bundles of degree
d and rankn on X.

It follows from 1.9 that every semistable bundle V on X determines
a (up to order) unique data {(m, d )}, such that > n,=n, n,>0,
d./n, = d/n for all 4, d and »n being the degree and rank of V.

Given {(n,, d>}_, such that X%, n, = n, n, >0, d;/n, = d/n for all i,
let Z=11t,Z,,, For (V, .-, Vy)eZ let E(V, -+, V,) be the space
of k-fold extensions, i.e.,

E<V19 ceey Vk) = {EIE = Wln Vl = Wu WieP(Eth(Vi’ Wi—l))r 2= 1 = k} .

A repeated application of Proposition 2.1 shows that there exists a
reduced scheme Z which is noetherian and of finite type parametrising
EV, .-+, V) with (V,, ---, V,)eZ. We note that every element of
E(V, ---, V,) is semistable.

LEMMA 2.2. Let V be a semistable of degree d =0 and rank n.
Then (V) =dim H(V) £ d + n.

PrROOF. Let TZ V be the subbundle generated by H(V). If
H(V) =+ 0, then T admits a filtration V, SV, < --- £ V, = T such that

V./V,._, is a line bundle of nonnegative degree. However, for a line bundle
L of deg L = d(L) = 0, h%L) £ d(L) + 1 and hence

(T = 2“, VIV, _)<degT+Ek<degV +n. q.e.d.

LEMMA 2.3. Let W and V be semistable vector bundles on X such
that p(W) < i(V). Then W* RV 1is semistable and dim Hom(W, V) <
deg(W*Q V) + rank(W* ® V), where W* is the dual of W.

PrROOF. We note that W* Q@ W and V*® V are semistable. If V,
and V, are semistable such that deg(V,) = deg(V,) =0, then V,Q YV, is
semistable. Hence W* @ WQ V*Q V is semistable. Let TC W*QV
be a subbundle. Then TRWRKV*CW*QWRXV*XRV. Hence
KMTRWR V) =uT)+mW)—-u(V)<0. That is p(T)=puV)-—
W) =p(W*QV). By Lemma 2.2, the second assertion follows. q.e.d.

By Lemma 2.3,
dim B(V, -+, V) S SV ®V) — k= 1) < Snmg — (b — 1)
<3 <J



182 N. SUNDARAM

Hence
— k
dimZ < dim Z + Snmg — (k= 1) < 3ini(g — 1) + S nmg + 1.
<J =1 <7
However
k
;ni(g—l) -i—;‘,ninjg—i-l =sng-1D)+1—-(n—-1)=dmZ,,—(n—1).
=1 <i
But Z,, is étale over U,,. Therefore dimZ,, = dim U,,. This shows
that
dimZ <£dimU,, — (n — 1).
By taking all possible {{(n, d,)}., such that 3% n,=mn, n, >0,
d./n, = d/n for all 7 and constructing Z as above and taking the disjoint
union of Z, , and all the Z mentioned above, we observe that, this union

b_eing finite, there exists a reduced Noetherian K-scheme of finite type

M, , parametrising all semistable bundles of rank n and degree d. We
note that

dim M, ;, = dim U, , = dim Z, ,
and
dim(M, ;\Z,,) < dimU,, — (n — 1) .
From now on M, , refers to the above variety.

We shall now parametrise non-semistable bundles of rank » and degree
d of fixed HN type

{ng dopYies s, 0<m << oo <mpy=m, 0<d,<d,<-+<d,=d
with
> > >m >0, =0, —d, )n —mn_), d,
Set Y=1I*M,,_,, ,d,—d,_,. For (V,---, VeV, let E(V, ---, V})
be the space of k-fold extensions
EV, -, Vo={E|E=W, V,= W, W,e PExt(V,, W,_)), 2= 1= k}.

As in the earlier case by repeated application of Proposition 2.1, we get
M,,..., a reduced Noetherian K-scheme of finite type parametrising
EWV, --., V) with (V,, ---, V) e Y.

By the same argument as above, we get

dimM, .., <dimU,,—(n—1).

=n,=0.

3. Special Vector Bundles.

DEFINITION 3.1. A stable vector bundle V of rank» and degree
d = 0 is said to be special if H'(X, V) has a nonzero element.
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This definition is in analogy with the definition of special divisor on
a curve. We define
Wi;=U;, Uj={VeU, ,|(V)zr+1},
where W) is the Zariski closure of U; in M, , the natural compactifica-
tion of U,, (see 1.12.2 for notation).
THEOREM 3.2. For 0 £d < n(g — 1), a generic Ve U, ,; has no section.

ProOF. We shall construct a Noetherian K-scheme Z, a dominant
morphism @: Z — W and show that the dimension of Z is strictly less
than the dimension of M,,. We may suppose that d > 0.

For Ve U,, with A(V) 0, let L &V be a sub-bundle generated
by a section. Then deg(L) = d(L) < d/n, and

0>L—>VLV/L—>0

For FF < V/L, a subsheaf of rank »(F'), let »*(F') be the pull-up. Then

O->Lop*(F)—F—0
and deg(y ™ (F)) < (»(F') + 1)(d/n). Hence

deg(F') = deg(n™(F')) — d(L) < (r(F') + 1)(d/n) — d(L) = d .

If V/L is non-semistable, then by the above observation the HN type of
it is {(ny, d, Y-, 0<d,, < -+ <dnk=d—d(l_4)and0<n1< e KMy =
n — 1, which is parametrised by the scheme M, ... Since 0 < d(L) <
(d/n) and 0=<d <n(g —1), only finitely many HN types need be
considered.

Set Y, =X;xM, .44, 0=d <(d/n), where X, is the d'-fold
symmetric product of the curve X. If d' =0, then X, = {7}, the trivial
line bundle. Let W, < Y, parametrise stable bundles where ¥, para-
metrises E(L, V)=PExt(V, L)) with (L,V) e Y,.. ForVe W,, let V denote
the corresponding stable bundle. Then for some (L, V)e Y,, we have

0-L->V—-V-0.
By the vanishing theorem for semi-stable bundles (see 1.11, Chapter I)
dim Ext(V, L) = deg( KQL*Q® V) + (n — 1)1 — g),
where K is the canonical line bundle on X.
Hence
dim W,y <dimY, +(n—1)1—g) +2n—-1)(g—1)
+d—d—-—(n—-1d -1

which in turn is less than or equal to
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m—1g—-D+m—-1)(g—1)+d

—(n—-1d'<n(9g—-1)+1=dimU,; =dimM,,.
Set Yy = Xo XM, ..... Let Wi, n S Yi 0 .n, Darametrize
stable bundles, where Y, , ... parametrises E(L, V) = P(Ext(V, L)) with
(L, V)e Yy ,,n,e By the same argument as before, we obtain

dim Wy pon, S (0 — (g — 1) + (n — 1)(g — 1)

+d—(n—1)d <dimM,,.

Denote by Z the disjoint union U, [WaU W s,....n,]. Evidently it is a
finite union. By the universal property (cf. 1.12.2 or [Se 1]) of the

moduli space, there exists a morphism @: Z— M, , and by the construc-
tion of Z, ® dominates WJ. q.e.d.

REMARK 3.3. Let Z' = Uuso[WoU Wiy ny,oon,] and 022" — M,, the
restriction of the morphism @ to Z’. Then

dimZ’ £(n—-1Dg—-1D+n—-1)g—-1)+d—(n—1)
and
Image @' 2 {Ve U,,|V has a nonzero section of positive degree} .

Denote by Z” the union {Ve W,|(V/¢®) is nonstable}U{W,,,,....,} and
90":Z" — M, , the restriction of @ to Z"”. Then

dmZ"£sn—-1g-1D)+n-D@g—-1)+d—-(n—-1)

for dim(M,;\ Z,,) < dim(U,,) — (n—1) and dim Mnh...,nk <dimU,,; —
(m — 1), where Z, ; is the parametrisation of all stables bundles of rankn
and degree d (ef. Section 2, Chapter I). Moreover

Image @" 2{VeU,,;,|0 > 2 >V —(V/Z)—0, (V/]) is non-stable} .
REMARK 8.4. WehavedimW =< (n —1%9g—1)+ (n — 1)(g—1) + d.

4. An argument of Kempf. We follow an argument of Kempf (cf.
[K-L]) to prove:

THEOREM 4.1. For 0 <d £ n(g — 1), if W; is non-empty, then the
dimension of W; is at least p(r, d, n), where

or,d, m) =dimU, ; — kX(V) - (V)
with Ve U satisfying h(V) = r» + 1. Hence
or,d,m)=n@g—-—1)+1—-(@+r+1—-d—n+mng).

For rank 1, we see that o(r, d, n) reduces to the classical Brill-Noether
number g — (r + 1)(g — d + 7).



SPECIAL DIVISORS AND VECTOR BUNDLES 185

PROOF. Let d =¢n + d,, where ¢ = [d/n]. Let V, —» XxZ,, para-
metrise the stable bundles of rank n and degree d, as in Section 2 (so that
dimZ,, = dimU,,). Denote by p: XxZ,, —»Z,, and q¢: XxZ,, - X
the natural projections, so that p is proper and flat. Let p, ---, p,, be
fixed points of X; we also write P for p,. For D,=p, + -+ + p, and
D,= D, + P, we have a bundle morphism (—P)— (D,), where (—P) and
(D,) are the line bundles corresponding to the divisors —P and D,. Thus
we obtain on XxZ,, a short exact sequence

0—q*(—P)—q¢*(D) = ¢*&p,— 0.
Tensoring by V, and writing for convenience
V(=P):=V,, Q¢ (—P), V(D):=V;,Qq*D), V5=V, Q" 7,,
we obtain another short exact sequence
0—>V(=P)—-V(D,)—V,—0

We now consider the direct image of this exact sequence under p.
Since the support of V,, is the disjoint union of ¢ + 1 copies of Z, ;, we
see that p,V,, is the direct sum of ¢+ 1 bundles of rankm, while
R'p,V,,=0. Moreover, V(—P),xx is a stable bundle of degree d, — n <0;
s0 p,(V(—P)) = 0 and Q = R'p,(V(—P)) is vector bundle of rank n(g —1) —
(d, — n) = ng — d,. Thus we obtain an exact sequence

0 — po(V(DY) — Dy Vi, > Q — Rp(V(D)) — 0 .

We now apply this to the case D, = D| = p, + +++ + Py, D, = D; + P.
The bundle V(D)),.x is stable of degree = n(2¢g — 1); so R'p,(V(D))) = 0,
and the exact sequence becomes

0 — D, (VD)) = pu Vi, > @ >0 .

Since p, Vp, is a bundle of rank 2ng and @ is a bundle of rankng —d,,
this sequence defines a section « of the Grassmann bundle B =
Grassna+d1(p* VDé) on Zn,dl'

The natural morphism (D,) — (D)) induces a diagram

0 — Py (V(D)) —> Py Vi, —— Q — R'p,(V(D) — 0

0 — Dy (V(D)) — 9, Vi, — @ — 0 .

Note that p, V), is a subbundle of p, V), so we can define a subvariety
0,,, of B by the condition
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0,.:NB, = {4€B,; iim(AN (P, Vp,).) Z r + 1} .
Moreover, the codimension of ¢,., in B is
r+)ng—d—m—n+r+1)=@C+1)r+1—-d—n+ng),

since this is the codimension of ¢,.,NB, in B, (this uses the assumption
that d = m + d, < n(g — 1) in the form n(¢ + 1) £ ng — d,).
Now, for any ue€Z,,, a(u) = ker(e,); so

a(u) N (P« Viu = Pu(V(D))u = H(V(D,))uxx) -

Thus R(V(D))uxx) =7 + 1 if and only if a(u)€o,.,. In other words,
if ¢:Z,4 — U,, is the natural morphism, we have

P W) = 97X Wz’;z+d1) = a N (0p41) -
The result follows, since U, , is irreducible and @ is étale. q.e.d.

REMARK 4.2. If W; is non-empty, then every component of it has
dimension at least o(r, d, n).

REMARK 4.3. The same argument shows that, in any family of stable
bundles parametrized by an irreducible variety (or by a connected complex
manifold), the subvariety of the parameter space defined by the condition
(V) =z r + 1, if non-empty, has codimension atmost o(r, d, n).

CHAPTER II. Stable Sheaves on Nodal Curves. We describe stable
torsion free sheaves on a Castelnuovo curve in terms of descent data on
the normalisation of it, which is P!, and carry over the definition of W}
on smooth curves defined in the previous chapter, to stable sheaves on
nodal curves and compute their dimensions in some special cases.

1. Some Facts. X is a projective integral curve of genus g. Let
S € X be the locus of singular points of X.

1.1. We quote [N, Chapter 5, Section 7]. There exists a quasi pro-
jective K-scheme U,, which is a coarse moduli space for stable torsion
free sheaves over X of rank n and degree d. Moreover,

(i) U,q has a natural compactification to a projective K-scheme M, ,,

(ii) the points of M, , are in a natural bijective correspondence with
the classes of semistable torsion free sheaves over X under the relation~
given by

if and only if
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(Gr F is defined analogously to Gr V for a torsion free sheaf V on smooth
curves).

DEFINITION 1.2. A singular point xe€S is said to be an ordinary
double point if the completion of the local ring <7, is isomorphic to
K[y, t1l/(y - t).

_ Let X be the normal model of X in the function field of X and =:
X — X, the normalisation morphism.

1.3. Let ﬁ, be the normalisation of #7,, for x€S. Denote by 4§, the
dimension of (ﬁ;/ﬁ,) over (&,/m,), the residue field of ~7,. Then we have

dim HY(X, &) = dim H(X, ~3) + 6

where 6 = 3,50, [D'S, Chapter I, 2.5].
1.4. For xzeS, if 2 is an ordinary ~d0uble point, then §,=1 and
7' (x) consists of two distinet points in X.

DEFINITION 1.5. A Castelnuovo curve X is a singular curve of genus
g with g ordinary double points.

BLANKET ASSUMPTION. Throughout this chapter, X will denote a
Castelnuovo curve, z: P' — X, the normalisation morphism and {p,, ¢.}{-,,
g distinct pairs of points on P! corresponding to the g nodes of X, xn(p,) =
n(g;) for all 7. In this case, the moduli scheme M,, is an irreducible
variety of dimension n*(g — 1) + 1 (see [R]).

1.6. Let F be a torsion free, stable sheaf of rank n and degree d
on X. Then for d > n(2g — 2 + 2n) the following hold:

(A) F is generated by its sections.

(B) HYX, F)=0.

[N, Chapter 5, Section T7].

2. Description of Stable Sheaves on a Castelnuovo Curve. Let V
be a vector bundle of rank » on P' and V, the fibre of V over pe P'.
Let N,, & V,,, N, S V,, be vector subspaces with dim N,, = dim N,, for
all 4 and A;: (V, /N, — (V,/N,) be vector space isomorphisms for all 4.
Define V, an ¢ module as V(U) = {sex,V|U|A(s(p) + N,,) = s(q,) +
N,, for all ¢ such that n(p)e U}. Then V is an ©x-module with stalk
at 7(p,), the i-th node, isomorphic to (n,,)-m @ (n — n,,) % where n,, =
dim N,, = dim N, = n,,, (n,,)-m and (n — p,); are the =, -fold direct
sum of m and the (n — p,)-fold direct sum of 7, respectively, m being
the maximal ideal at z(p,). We note that if N, = N, = (0) for all 4,
then V is locally free. We shall refer to {N,, N,, A}/, as descent data
for V. The data {N,, N,, A}, and {N;, Ng, Ai}{-, give rise to isomorphic
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sheaves if and only if there exists e Aut(V) such that o(N,)= N;,
o(N,,) = N,, and

( Vpi/Npi) _'_’ ( ti/Nq,)

[CO ¢
(V,/NL) =25 (V, /N2

is commutative for all . Thus P(Aut V), the projectivised group of auto-
morphisms of V act on the descent data in a natural way.

LEMMA 2.1. Let R be the completion of the local ring at a mode of
X. Then R = K[|z, y]l/(xy) where K[[z, y]] is the ring of formal power
series in two variables x and y. Denote by m the maximal ideal. Then
Tor,(R/m, R) = K, where R = K[[t]], the ring of formal power series in
t and h: R — R is the ring homomorphism such that h(x) =0, h(y) =1t
making R an R-module.

PrOOF. We have the following exact resolution of R/m over R:

(**) ..._,RZ Rz R2—>R—>R/m—>0

where 4,(1, 0) = z, A,(0,1) = y with respect to the standard basis in R®.
Tensoring (**) by R, we get

Az®Id A1®Id

R2®R R2®R R@R—»R/m@}_%—m.

Therefore, Tor,(R/m, R) = Ker(4, ® 1d)/Im(4, ® Id).  Identifying the
modules R ®; R with B and R*®, R with R?, we see that Ker(4,®1d) = R
and Im(4, ® Id) = (¢), where (¢) is the ideal generated by ¢ in B. Hence

Tor,(R/m, R) = K. g.e.d.

LEMMA 2.2. Let V be a vector bundle of rank n and degree d on
P' and V a torsion free sheaf on X obtained from V with the descent
data {N,, N,, AY., as per the description above. Then degV =d +
S My, My, = dim N,

PROOF. It can be easily seen that if V is locally free, i.e., when
N,, =N, =0 and A;: V, —V,, are isomorphisms for all 4, then deg V=
deg V. Suppose V is not locally free. We may define B;: V, — Vo
vector space isomorphisms, such that B, induces A, on (V,,/N,)— (V,/N,,)
for all 7. Let V, denote the locally free sheaf obtained with the descent
data {B},. Clearly V,c ¥V and V/V,is a torsion module of <, supported
at the g nodes of total length 3, n,. Hence the degree of V is degV, +
.. n,, which is the same as d + 3, n,,. q.e.d.
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LEMMA 2.3. Let F be a torsion free sheaf of rank n and degree d
over X and (F)ep,y = Ny, m B (0 — n,,)Tx. Then there exists V, a locally
free sheaf on X of rank n and degree (d + -, n,,) such that F < V is
an embedding.

ProOF. We may suppose that F' descends from W, a rank n bundle
on P' with the descent data {N,, N,, A}{-,. We can construct a bundle
Von P'and @: W — V a bundle morphism with the following properties:
(let @,: W, — V, denote the induced maps of @ at the fibres over pc P')
0, W,—V, is an isomorphism for all p, »¢{p, ¢}, Ker®, = N,,
Ker @, = N,, for all 5. Let A;:V, —V, be vector space isomorphisms
such that there is a commutative diagram

Vpi - :A_i_) ti
Ul Ul
Q?i( Wpi) — @qi( qu)

for all 4. Let V be the locally free sheaf on X with the descent data
(A)-,. Clearly F=V and by Lemma 2.2, d =degW + 3¢ 7, and
degV=degV=degW+23%,m,,. q.e.d.

LEMMA 2.4. Let F be a torsion free sheaf of rank n and degree d as
in Lemma 2.3. Let TS F Q,, Op be the torsion part of the Tp-module
F®s, On. Then deg(F Qo On|T) =d — 3. n,, and the length of T
18 2 D0 My,

PrOOF. By Lemma 2.3 we can embed F in V, a locally free sheaf
of rank » and degree d + >/-,n, on X. We have

0->-F—->V—-V/F-0.

The sheaf V/F is supported at the nodes 7(p,) and locally isomorphic to
the m,-fold direct sum of &x/m at wn(p,) for all 7. Therefore tensoring
the sequence by &m, we get

O_')Torl(V/F, ﬂpl)HF®ﬁpl“’V®ﬁp1—>V/F®ﬁpl—)0
ox °x °x

and appealing to Lemma 2.1 we see that the length of T = Tor,(V/F, Om)
is V-, 2n,, supported at {p,, 0} and the length of V/F Ry Op is
S, 2m,,. Since degV = deg(V®,, Prm) =d + Xi,m,, we have
deg(F Qo On|T) = d — X1y, q.e.d.

PROPOSITION 2.5. For 0 <k < n, let
U, «(G) = {VeM,,|V is stable, locally free and z*V=V = V,@V, on P}
where V, and V, are k-fold and (n — k)-fold direct sums of (1) and &,
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the structure sheaf of P!, respectively. Then U, (G) is a mnon-empty
Zariskt open set in M, ,. (See Section 1 for motation).

PrRoOOF. Given a vector bundle W of rank », r <=, and degree d
on P! with d/r = k/n and admitting an embedding in V as a sub-bundle,
we define

E(W, V)= {oceHom(W, V)|oc embeds W as a sub-bundle in V}
G(l, V,) = Grassmannian of ! planes in the fibre V, of V over pec P*
Iso(V,,, V,,) = Set of vector space isomorphisms of V,, on V,, .

Since dimHW*@QV)=dk+ n +k)r—d) and dimEW, V)=
dim H(W*Q V), we have dim E(W, V) =dk + (n + k)(r — d). For

(*) 0O<L=r, OKL=r, d=@-0L—-C—-Llr=kn
let Z,(r, d, 1, I,) be
{(A,, Ay Ay Ay Ay Ay) € I;X G| Af(A) = Ay Ay(4;) = 4, and for some
o e E(W, V), o(W,) 2 4y, a(W,) 2 4, 6(W,,;) 2 4y o(W,;) 2 A},

where I; = Iso(V,, V,,)xIso(V,,, V,) and G, denotes the variety
G, V,)xG(, V,)xG{y, V,)xG(y V,;). Let Wir,d, 1, 1) S I,; be the
image of Z,i(r, d, l,, l,) under the natural projection. Then the dimension
of Z,r, d, 1, 1,) is at most

[{n* — Ln — 1D} + {n, — l(n — L)} + 2lL,(r — 1)) + 20(r — 1,)] + dim E(W, V)
and dimension of W, (r, d, 1, l,) is at most

[(n* = L(n — L)} + (0 — L(n — L)} + L(r — 1) + L(r — L)]
+ [dim E(W, V) — dim Aut W],

where Aut W is the group of bundle automorphisms of W and its dimen-
sion is at least 7. Therefore the above expression is strictly less than
2n* which is the dimension of I;. Hence

dim W(r, d, 1, I,) < dim I,; = 2n* .
This shows that
dim W,; < 2n?
where
W.; = Zariski closure of [132 Wi(r, d, 1, L)|1, I, satisfy ()]
in I;.
Define NS(4, j) = Uiwier Wy, where I is the set of isomorphism classes of
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subbundles W of V with (deg W/rank W) = (k/n). We note that this is
actually a finite union. Hence S(%, j) = I,;\ NS(3, j) is a non-empty
Zariski open set.

Let V(4,, -+, A,) be a vector bundle on X given by the discent data
{A}-, on V such that for at least two s, say 14, %,(4,, 4,) €S, 1,).
Then V(A,, ---, 4,) is stable, for let FF < V(4,, --+, A,) be a subsheaf of
rank », r <n and degree d such that (d/r) = (k/n). We may assume
without loss of generality that F|[(X\{z(p,)}!-,) is a subbundle of
V(A,, -+, A) (XN A{z(p)}i=). Suppose (F)ep,y =n,m® (r—mn,) 7. Then
by Lemma 2.4, degW = d — 3\{_, n,, where W = (F Q,, Opn/Torsion). The
inclusion morphism j: F —-V(4,, -+, 4,) on X induces a bundle morphism
j*: W —V on P! such that rank of j* at p, equals rank of j* at ¢, which
is at most (r — n,,), for all 4, j*: W, ,—V,, being the map induced by j*.
Let W’ be the subbundle generated by j*(W)Z V. Wehavedeg W =d' =
d+ X m,, + 20, 2s, where n,, + s; is the dimension of Ker j* at W, ;
we note that =,, +s, <, for, if n,, +s, = r then d'/r = (k/n) + 1; since
d’ < min(r, k) for any sub-bundle of V, this would be a contradiction.
At 4 and 4, AW, = 5 (W), A G*(W,) = §%(W,,) and
dim j*(W, ) =L=7r—mn, —s,>0, dimj*(W,)=L=7r—mn,, —s, >0
and [d' — (r = 1) — (r = ))/r = d/r = k/n. Hence (4,, A,) € NS(3, 1,), a
contradiction.

Let S(¢, 5) = S(%, 3) X I, Iso(V,,, V), 1 €{%, 5} and U, «(G) = U‘,-,JjS('i, )8
Since U, ,(G) is Zariski open in the space ¢, Iso( Voo Vo), dim U, .(G) =
n'g. By our identification of the descent data, U, ,(G)/P(Aut V) = U, (G)
and dim U, ,(G) = dim M, ,. q.e.d.

REMARK 2.6. When d = n, let L be a line bundle on X of degree
[d/n], [d/n] being the integral part of d/n, d = [d/n]-n + k. Then
Un,d(G) = {L ® VI|I71 € Un,k(G)}
={VeM,,|V is stable, locally free and z*V = V@ V, on P}
where V| and V; are k-fold and (» — k)-fold direct sums of ~(d/n] + 1)
and Z([d/n]), respectively, is Zariski open in M, ,.
3. Stable Sheaves with Sections. Analogously to the definition of
W; on smooth curves, we define
W;=0U;, Ui={FeU,hF)zr+1}

where W} is the Zariski closure of U; in M, ; on the singular curve X.
We recall U,, = {FeM,,|F in stable over X}.

THEOREM 3.1. For 0 < d = n(g — 1), the dimension of W is given by
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00, d,n)=n(g~-1)+1—-mg—n—-d+1)
and it has a unique irreducible component of maximal dimension.
PrOOF. We define
Ujvee ={VeU,,|V is locally free on X},
Uyi;) = {F e U,,|F is locally free on X {n(p;;)};=i}
and
Ufa) ={VeU;ree|lx* V=)D - D ()},

where (a) = (ay, -, a,)€Z" with Sa;=d and a2 a,= - = a,,
(%) = (& *++, 1) € Z', Z being the ring of integers. Then

U,i= UsvecU (%J.) Ui(i) = [(9) Ud(a)]u[(tg) Ui(ip)] .

We shall show that

dim[ Win Uye)] < dim[ W2 N U(B)]
for all (), (a) # (B) where 8 = (8, --+, B,) satisfies

dinl]+1, 7=k

B,-={{d/n}, ;>n. d=[dn]-n+k.

and

dim[ W3an U(i,)] < dim[ Wan Uy(R)]
for all (¢;), and that

dim[ W30 U B)] = 00, d, n) .
Parametrisation of WiN Uy «a): Let V(a) denote the vector bundle
Aa) D -+ P Ha,) on P'. Define
Wi@) = (4y -+ 4,), 8) € [ Hom(V, (@), V(@) x B(V(@)|

A(s(p)) = s(g), forall 4, 1=1i= g}
where V, (a) is the fibre of V(a) over p e P!, and
— g
Ula) = {(4, --+, A,) eiI=Il Iso(V, (@), Vy(a)|(4y --+5 4))
is a descent datum for a stable bundle on X} .
Then it follows easily that

Ue)/P(Aut V() =Uie) , [Toe) N p(Wy(a))/P(Aut V(a) = Ua) N W
Note that P(Aut V(a)) acts freely on U,(«) because of the stability con-
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dition. Here p and ¢ are the natural projections of []{-, Hom(V, (a),
V() x H(V(a)) to Ili{-, Hom(V, (a), V,(a)) and H°(V(a)), respectively
and P(Aut V(a)) is the projectivised group of bundle automorphisms of
Via).

Dimension of Wia). We stratify H(V(a)) as follows: let Q = {1, 2,
«++, g}, 2° the power set of Q, 4, =[{i, ---,1}€2° with 1<k <g.
Define

k
St = V@) Q@ P(~ 20y +0))  for {in - ideds

Set
Te= U 8&..., Te=H(V().

{ig, 0003t e dy

Then
HWVe)=T:r2Tt2---2T=0.

Since U,(c) is assumed to be non-empty, T¢ = 0 follows from the stability
condition. If T # 0 then

k
dim(TEN T) = (V@) @ 2 (£ 2y + 04))
which in turn equals [(d — 2kn) + n + K (V(a) ® & (—2k))]; moreover, the
morphism
q: ¢ N(TEN Te) N Wolar) — TN T,

is a fibration and the dimension of the fibre is [#n*k + (n* — n)(g — k)]
Hence

dim[p{g(Te\ Te.) N Ug@)}/P(Aut V()] < pof

where 0§ = 'k + (n* — n)(g — k) + dim(T¢ \ T¢,,) — dim H(End V(a)). For
() = (B), HYEnd V(a)) #+ 0 and if T¢ = 0, then a; = 2k for some 7, 1 <

1 = n. Hence p§ < p(0, d, ») for all k£ and for all (@) # (B8). For (a) = (B)
and for £ >0

dim W, (B) Ng (TN TE) = n'k + (nt — n)(g — k) + K(V(B) @ &(—2k)) ,
which in turn equals
n'k+ (n —n)g — k) +d— 2kn + n = p0, d, n) + h°(End V(B)) — kn ;
and for k=0
dim W.(B8) N g (TN T?) = p(0, d, n) + h°(End V(B)) .
We note that T/\ Tf is a non-empty Zariski open subset of H°(V(R))
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and is therefore irreducible. Moreover, for any se T\ T¢, the fibre
a7(8)N W4(B) is a non-empty Zariski open subset of an affine space of
dimension (n* — m)g. Therefore, ¢ (T!\T/)NWiB) has exactly one
component of maximal dimension (n* — n)g + d + n. It follows from the
estimates above that the same is true of W,(B). But, since W Q) is
defined by ng equations, every component has dimension = (n* — n)g +
d + m; hence W, (B) is irreducible.

Dimension of fibres of p. We shall now take a look at the fibres of
the projection morphism p: Wi(B) — IIi- Iso(V,,(8), V. (B). If V is a
vector bundle on P' and (4, ---, 4,) a descent datum on V, we shall
denote by V(A, --:, A,) the bundle on X given by (4,, -+, 4,). Let
V(g) = LB V', where

Lo {ﬁ([d/n] +1) if [d/n] < d/n
~edd/n) if [d/n]=d/n.

Then 0<degL<(¢9—1) and 0=<[degV'/(n —1)]< (g —1). Hence
there exists (4;, ---, 4,) a descent datum on V'’ such that V'(4;, ---, 4))
has no section. Let (\, :-+,),) be a descent datum on L such that
L(\y, +++, \,) has exactly one section. (This is possible because the degree
of L is bounded by 0 and (g —1)). Then for any descent datum
(4 +++, 4,) on V(B) inducing (A, -+, \,) on L and the datum (4], - -+, 4;)
on V', V(B)XA, -+, A,) has exactly one section. Hence the dimension
of the generic fibre of p is one and

dim(p(Wu(B)) S Iso(V,,(8), V,(8)) is p(0, d, n) + k*(End V(8)) — 1.

Since a generic se H°(V(B)) generates a trivial line sub-bundle, we note
that for a generic (4, - -+, 4,) e p(W4(B)), V(B)(A,, -+, A,) has exactly one
section and it generates a trivial line sub-bundle in V(B) (4, -+, A4)).

Existence of a stable bundle on X with a section. We shall adopt
the notation of Propsition 2.5. It is enough to show that the set of
nonstable bundles with one section generating a trivial line subbundle on
X is properly contained in p(W,(B)). If V is a stable bundle on X with
h(V)+# 0, L a line bundle with A°(L) # 0, then AL Q@ V) %= 0. So we
may restrict ourselves to 0 <d < n, ie.,, d=37,8, < n.

Let W be a vector bundle of rank », with 2 < » < » — 1 and degree
d, on P' admitting an embedding in V(g).

ForOo<l=r,t=1, 4,9, [d — 3L, (r = 1))r =d/n, let Z(r, d, 1,
-+, 1) denote

{0, o 4, (@, ) e T 150(V,,(8), V., (8)x 2| A = 4,
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o(W,) 2 4y o(W,) 2 4, As(p) = s(q) for all i},

where @ = [Tt Gy V,,(8) X Gl V4 (8)) X E(W, V) x H(V(8), 1) and
H(V(B), 1) = {se H(V(B))|s generates a trivial line sub-bundle}. We
stratify Q as follows:

2, ={((4, 4), (0,8)eR|se¢ H'(@(W))}, 2,=2\2,.
Stratify 2, and 2, further by
s(p) € A, 8(g;) € A if 1€ty -+, )
8(p) € Ay s(g) e 4; if 1€ (5, -, ik>}

o

1

PARENS 72 = ((Ai’ A;)y (0" S)) e-Qj

and
Q3 = {((4,, A7), (g, 8)) € 2;]8(p,) & A, 8(q,) & A; for all 7}
where je {1, 2}, {4, 4 -+, 4}€2", N=1{1,2, ---, g}.

Let
By = {(A), 4y £, (0, 9) € 20, Ay 1y -+, 1)
m[n Iso(V,,(8), ti(B))]x %)
and

7 = {((4), Uy ), @, 9) & Zr, dy Ly +++, 1) 0] T Ts0(V,,8), Vi () | x 23}

and Wi ..., Wj be the images under natural projection to [I{,Iso(V, (8),
V. (B) of Zi .., and Zi, respectively, for je({l,2}. Set

O =3, [n —ln —1) — z" l,.,] — n(g — k)

3 -0 -Fo-1)],
and
Oy = g[nz —l(n — li):] —ng + g, lLir—1).
Then

dim Wi .. ., = @, ..., + B(W) + dim[Im H(V)NH(VIW & (—2k))]
+ dim E(W, V) — dim Aut W

which in turn is strictly less than (n’¢ — ng +d + n — 1) = dim p(W,(B)).
Here Im H°(V) is the image of H°(V) given by the sequence
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0-W->V->V/W—-0
for some fixed embedding of W in V; dim E(W, V) = nr — nd, + dr and
dim Aut W=+ ®(W*Q W).
dim W ..., =[Oy, + B(W) + dim E(W, V)
— dim Aut W] < dim p(W,(B)) -
Next we observe

dim W <[, + d + n + dim E(W, V) — dim Aut W] < dim p(W«(8))
and

dim W2 < [, + kY(W) + dim E(W, V) — dim Aut W] < dim p(W,(R)) -

By an argument similar to the one given in Proposition 2.5 of the
previous section, we conclude the existence of a stable bundle with a
section. Since p(W,(B)) is irreducible and the set p(W.(8)NT.,B) is
non-empty, p(Wi(B))N Uy B) is irreducible and has dimension (0, d, n) +

h°(End V(B)) — 1. Hence WIN U,B) is irreducible and has dimension
0(0, d, n) as required.

Parametrisation of Win Uy(i;). We stratify U,(i;) as U ., Ud((3y), (k5),
where (k;) = {k, ---, k;} and

Uu((23), (k7)) = {Fe Ud(ii)l(F)x(pij) = km® (n — k)Ox} .

We stratify U,((¢;), (k;)) further as U g ez Us((3), (k;), (@), where (a) =
(ay +++, a,) and

Ui((3y), (ky), (@) = {F e Uy@y), k)| F
descends from V(a) = (o) B -+ @ Fa,) on P'}.

We note that the union over (a) is actually a finite union because
stability implies that a; < 2g for all j. Hence

Win Uy = y [Wan Uy(Gy), (k)] = uu [W20 Uy((3y), (), ()] -
Parametrisation of WiN U,((3;), (k;), (). By Lemma 2.2, deg V() =

raa;=d— >} k;. For notational convenience, we may take (i;) to
be () = (1,2, ---,1). We denote by W.((9), (ky, (@) the set

{(By Bl +++, By, By Ay, -+ +, A,), 8) € Mx Nx H(V(@)) | Ais(p,)
=38(g),l+1=<i1=9g;Bs(p;)) =Bsl@g;),1=j=},
where

M= ]f[ Hom(V,,(@), C**) x Hom(V,(a), C"49)]
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and

N= fI [Hom(V, (), V,,(@)],

t=l+1

V() being_ﬁbre of V(a) over pe P
Define Uy ((9), (kj), (@) as

[(Bv B;y ft Yy Bh B;r Al+1’ % Ap) € Mx N| {Ai}1‘1’=l+1 U {Ker Bj’ Ker B;, B;_lgj}

is a descent datum for a stable torsion _free sheaf on X, where the
morphisms Bj: (V,(@)/Ker B;) — C*™* and B;™: C** — (V,(a)/Ker B;) are
induced by B; and Bj] ~
where M = {(B,, B}, -+, B, B)) € M|rank B; = (n — k;) and rank B} = (n — k)
for all j},_and N = [l Iso(V, (@), V, (). The group G = ]i., GL(C™*7)
acts on U, (j), (k;), (@) as follows: for (X, ---, X)) e@G

((Xu ] Xl)y (Bv Bi» ] Bb BZ’ Al+1’ ) Ag))

— (X,°B, X.,oBj, -+, XoB, X;°B, Ay ooy Ag) .

Hence

U(5), (k3), (@) = [To((9), (1), (@))/G]/P(Aut V()
and

win U,((9), (k;), () 1is realised as

[T (), (@) NDW (3, (ky), (@))/G/P(Aut V(e)) ,
where p and q are the natural projections of Mx Nx H (V(a)) to Mx N
and H°(V(a)), respectively.

Dimension of Wi((4), (k;), (a)): Stratify H°(V(a)) as follows: for Q =
{t+1,---,9} and {p, ¢.;}{-, we construct T3 as was done for W,(a); for
a,, b, and ¢, in Z with a, + b, + ¢, = [, let T(a,, b, ¢,) be the set

$(eQ[sp;) #0,3(g;) # 0) = a,
se H(V(a)) |$(j e Q' |s(p;) # 0 or s(g;) # 0) = b,
$(GeQ|s(p) =0,8(g;) =0)=c,
where @ =11, 2, ---, I}.

Then {T(w, a,, b,, ¢,) = T(a,, b,, ¢.) N T2} is the required stratification. We
have

q¢: Y(w, a,, b, ¢,) > T(w, a, b, c.),
where

Y, a, by, ¢.) = [a7(T(w, a., b,y e)IN Wal(), (k) (@)
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Set
Z(w, a,, b, ¢.) = [D(Y(w, a,, by, ¢.)) N T(5), (ky), (@)/G)/P(Aut V(a)) .

The dimension of Z(w, a,, b,, ¢,) is given by the expression
l

(*) 0+nw+ m—n)g—10l—w)—Dm—F):

i=1

+ B(V(e) ® &(—2w — 2¢,)) — K°(End V(a)) ,

where @ is given by
(;:‘; [2nn — k) — (n — k,,)]) + (;:‘_1. [2n(n — k) — (n — kbi)])
+ 3 2n(n — k,) -

Since ' (V(a) ® (—2w — 2¢,)) < h'(End V(a)) when T(w, a,, b,, ¢,) # 0, we
have

dim Z(w, a,, b,, ¢,) < 00, d, n) .
q.e.d.

COROLLARY 3.2. Let Wj(p) denote the unique irreducible component
of dimension o0, d, n). Then a generic F'€ Wi(p) is locally free, F con-
tains a trivial line subbundle and h'(F) = 1.

4. Rank Two Sheaves.

LEMMA 4.1. Let {A}-, be a descent datum on V=oQ1)P & over
P! such that V(4,, -+, A,) is a bundle on X. If for some i, A(ZQ1)),, #
(@), then V(A,, -+, A,) is stable on X.

ProOF. Let ¢: FF=V(4A,, -+, A,) be a subsheaf of rank 1 and degree
d > 0. Then by lemma 2.4 of this chapter, the degree of (z*F/Torsion)
is (d — k), where k is the number of nodes at which F is not locally
free. We assume without loss of generality that F), is ¢, for p smooth
in X. Hence

2*: (z*F/Torsion) = &(d — k) > 1) P 7,
the induced morphism on P!, vanishes at the 2k points on which F is

not locally free. Therefore k¥ = 0 and F' is locally free with z*F = 2 (1)
and A,(21)),, = 2Q),, for all i, a contradiction. q.e.d.

THEOREM 4.2. For d an odd integer, with 2 < d < 29 — 2, there
exists Uy, a Zariski open set in U,,, such that Win U,, is non-empty
and the dimension of this subvariety in U, , is 0(1, d, 2) = (2d — 8).
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PrROOF. By Remark 2.6 we know that the set

U, G) =[VeM,,|V is stable, locally free and
=V = 7(d/2] + 1) B o (d/2]) = V(d)]
is Zariski open in M,,;. By hypothesis [d/2] = 1; let {s, s;} & H(Z[d/2]),
s, € H(7[d/2] + 1) satisfying the following:
s, vanishes at p, € P!, and does not vanish at ¢, .
s, does not vanish at any {p, ¢,}{-, < P'.

s, does not vanish at any {p,, ¢;}{-, & P*.

Let V(d)(A, ---, A,) be the bundle on X, given by the descent datum
{A)e_, satisfying A;s(p,) = s(q,), 48’ (p;,) = §'(q,) for all 7, where s = (s, 8,) €
H(~[d)2]) @ H(~(d/2] + 1)) which is the same as H°(V(d)), and s’ =
(s, 0) e H(V(d)). Let {B}{., be the descent datum on ~1)P <~ = V(1)
such that V()(B, -+, B,) = L Q V(d)(4,, -+, A,), where L < V(d)(4,,
.+, A,), is the line bundle given by s'; note that z*L = #([d/2]) and by
construction B(2(1)),, # ((1)),,. Hence, by Lemma 4.1, the stability
of V(d)(A, ---, 4,) follows. Let

Z = {(sy, 8y) € H(V(d)) x H(V(d))|s, and s, are linearly independent} .
Set
_ d
Wi={(A, --+, A,), 8, 8,) € ¢1=11 Hom(V,,(d), V,,(d))x Z|
Asi(p) = s;(g;) for 5 =1,2 and all 4}

and
0,46 = [(Ay -+, 4) e L Iso(V, (@), Ve @) AN,
is a descent datum for a stable bundle on X].
Then
[0.,«(G)/P(Aut V(d))] = U,q(G)
and

[0..4(G) N p(WH)/P(Aut V(d)) = U, (G)N Wi,

where p: [T{-, Hom(V, (d), V,,(d)) x Z — [I{-, Hom(V, (d), V,(d)) is the
natural projection.
We denote by Z’ the set

[(su 8)€Z

the dimension of linear span of {s,(p,), s;(p,)>
is at most one for at least one 1.
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Then Z' is a closed subset of Z.
Defining

WiS) = {((Al, e  A), 81 8) € E Hom(V,(d), Vi,(d)) % Z'|
Asip) =8{¢), =121t = g} .

We observe that [Cl p(Wi\ Wi(S)) NI Iso(V,,(d), V,,(d)] is an irreduci-
ble variety, where Cl p(W;\ Wi(S)) is the Zariski closure of p(W3i\ Wi(S)).
By construction, p(Wi\ WiS))N U, «G) is non-empty. By the theory of
special divisors (cf. [G-H]) there exist descent data denoted by (\,){,,
(r)i-, on 2(d/2]) and 2 ([d/2] + 1), respectively, such that the cor-
responding line bundles have exactly one section and they do not vanish
on any of the nodes of X. This shows the existence of a destent datum
(4,, -+, A) € U, s(G) N p(Wi\ Wi(S)) such that the bundle V(d)(4,, ---, 4,)
has exactly two linearly independent sections over X. Since p(W3i(S))
is a closed subvariety of p(W3}), the theorem follows from Remark 2.2
to Theorem 2.1 of Chapter III. q.e.d.

CHAPTER 1III. Existence of Special Bundles. In this chapter, we
adopt the well-known technique of degeneration of smooth curves to
singular curves and reduce the problem of existence of W; on a smooth
curve to one on a singular curve. Then using results on singular curves
proved in the previous chapter, we conclude the existence of W;’s in
some cases and compute their dimensions.

1. Specialisation of Quot Scheme. We suppose that ¢: X— S is a
flat projective morphism over C of a smooth surface X onto a smooth
affine curve S with geometrically integral fibres. In addition, we assume
that the generic fibre is a smooth curve of genus g and the special fibre
X,, over s, €S is singular with g ordinary double points as its only sin-
gularities. We fix H, a relatively ample sheaf on X.

According to Grothendieck [FGA], for & a coherent sheaf on X, the
quotients of & flat over S and having a fixed Hilbert polynomial P for
all se S form a projective algebraic scheme over S denoted by

0:Q=Q(F/P)—S.

Moreover, there exists U, a coherent sheaf over @ x ¢ X and a surjective
homomorphism p} & — U such that U is flat over @ and has the obvious
universal property for flat families of quotients of . with Hilbert poly-
nomial P.

We take for &, ©7f, the free sheaf of rank N over X and P(m) =
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d + n(mh — g +1) = N + nmh, the Hilbert polynomial over S, where
h = deg(H|X,), s€S.
We shall denote by R, ,, R,, and R,, the following sets:

e = (@ € Q(@ZZ|P)|U, is locally free on X,,}
nd ={ge R, | H' (X, U, = 0}

and

the canonical map H(~Y ,)— H(U,)

is an isomorphism.

’

Rn,d = {q € R:L,d

where U, is the sheaf U restricted to the fibre over ¢ of the morphism
Qxs X— Q.

ProrosITION 1.2. (i) R),; R,, and R,; are open subschemes of
Q(¥|P) stable under G = Aut(<¥/S), the group of automorphisms of
oF over S.

(ii) The schemes R, ; and R, ; are smooth.

(iii) If R, is mom-empty then

dimR,; =79 —1)+1+dimS + dimG, — 1
where G, = Aut(7y)), the group of automorphisms of <%, over the curve
X..

Before we proceed with the proof we state

LEMMA 1.1. Let A and B be Noetherian local rings, with m the
maximal ideal of A, ¢: A — B a local homomorphism, and E a finite B-

module which is flat over A. Then E is free over B if and only if
E/mE is free over B/mB.

Proor. (cf.[N], Chapter 5, Lemma 5.4). It follows from Nakayama’s
lemma.

PROOF OF PROPOSITION 1.2.

XxsQ 25 X

(i

The above diagram is commutative. We know that U is flat over Q.
By the above lemma, Q\ R;, is the projection of the set of points of
Xxs@Q at which U is not locally free. Since p is proper, this set is
closed; so R;, is open. Applying semicontinuity theorem openness of
R, ; follows.
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We shall denote (by abuse of notation) by U, the vector bundle on
R ;xsX given by U. For gqeR,, let H, be the vector bundle defined
by the exact sequence

0—H,— o}, —-U,—0.

on X, = {g}xs X.
Then we have the exact sequence

0— Ut — (O2)* - Hf -0,

where for example U} is the dual of U, on X,. Tensoring this by U,
and writing the cohomology exact sequence, we get

0-HUFQU,) —» H'(@%)* ®U,) — H'H; ®U,)
-~ HU;QU,) - H(@x)*®U,) - H(H; Q U,)
- H(U; QU,) .

We observe that H*U}Q®U, =0, since X, is a curve. Further
H(()*®U,) =0, for (Z¥)*®U, is a direct sum of U,. Hence
H'H ®U,) =0. By results of Grothendieck (cf. [EGA, Chapter IV]) ¢
is smooth at ¢q. By the above observation, it follows that ¢ is smooth
atallge R, ;over S. Since S is smooth, the smoothness of R, , follows.

In view of the semicontinuity theorem and the above fact that R, ,
is smooth, it follows that the sheaves p.(p¥(¥)) and p,U are locally
free on R, ;. For g€ R, ,; the natural homomorphism of the locally free
sheaves p, (p¥(Z%))|R, , and p,U|R; , on R, ; induces an isomorphism of the
fibres of these sheaves at g by the definition of R, ;. Hence there exists
an open neighbourhood R of ¢ in R, ; such that the natural homomorphism
induces an isomorphism of the fibres of these sheaves at every point
q in R. This proves that R, , is open in R, , and hence in Q(Z¥/P).

We have shown that ¢|R,, is smooth. Hence ¢|R,; is smooth.
Therefore R,,; is smooth and dim R, ; = dim S + dim(fibre of ¢|R,,) if
it is non-empty.

For s,€8, let X, be the fibre over s, of ¢: X —S. Let @, be the
fibre of 0:Q = Q(Z¥/P)—S. It is clear that Q, = Q(¥, /P). Hence
the dimension of the fibre of ¢ is dim @, = n’(g — 1) +1 4+ dimG,, — 1
(cf. [Se 2, Chapter II]). q.e.d.

REMARK 1.3. We note that two elements ¢, and g, in R, ,(s,) = fibre
of R,,; over s, @, are isomorphic if and only if they are in the same
orbit of G, = Aut(7¥,) (cf. [N, Theorem 5.8 and 5.3']).

We now suppose that ¢: X — S has a section which avoids the singular
points of the special fibre X,. Let L be the line bundle on X given by
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the divisor. Then L|X, is a line bundle of degree 1. In view of 1.6 of
Chapter II and the fact that deg(V ® L*) equals deg V + rank (V) k-
deg(L), we observe that for any rank » and degree d, we can construct
R, ,;, with the following property: there exists V,, a vector bundle on
R, ;X5 X and integers N and k such that

for N=d +nl—9g), d=d+nk>n29—2+ 2n)
and Pm)=N+nhm, R,,=R,.

where R, ; is the open subscheme of Q(<7¥/P) as constructed in Proposi-
tion 1.2; R, ; is non-empty, hence has dimension [n*(g — 1) + 1 + dim S +
dim G, — 1] where G, = Aut(Z%,). Moreover U=V, ,Q p*L*, where
U— R, s %Xs X is the bundle described in Proposition 1.2.

Throughout this chapter, R,; with a universal bundle V,, over
R, ;xs X will refer to the space constructed as above and G and G, to
the corresponding Aut(<77/S) and Aut(cy)).

The following was proved by Maruyama [M].

PROPOSITION 1.38. Define R, as
{geR, |V,  restricted to X,, s stable} .
Then R;,; s open in R, ;.
2. Existence of Special Bundles. We shall assume that ¢: X — S

admits 2g sections s, ---, s,, (fixed throughout this section) away from
the singular locus of the special fibre X, .

THEOREM 2.1. Let R,, < R:, be a Zariski open set satisfying
(i) R, ) =Ri,@) if t#s, in S,
(i) R, a(8)NWi(S) is mon-empty and

dim[R, ,(s) N Wi(9)] = o(r, d, n) + dim G,, — 1,

where Wi(S) = {g e R: 4 |W( Xy Vaa@) = (r + 1)} Then dim[W3(S)] =
(o(r, d, n) + dim S + dim G, — 1). In fact every component of Wi(S)NR,
18 of dimension at least p(r, d, n) + dim G, — 1 + dim S.

ProOF. Wehavern: V,,— R;,; X4 X, a vector bundle. Let P, ---, P,

be the divisors on X given by the sections s, -++,s, of : X—S. In
this setting we carry over the argument of Theorem 4.1 of Chapter I
verbatim. g.e.d.

REMARK 2.2. We note that the above proof can be adapted to show
that if Wi(X,)N R (s,) is non-empty, then every component of it has
dimension at least o(r, d, n) + dim G,, — 1.
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REMARK 2.3. We observe that X, can be replaced by any integral
curve in the above theorem (cf. [N] or [Se 1] for generalised moduli).

Now we state:

THEOREM 2.4. For 0<d < n(g—1), AX) 1s mon-empty and
dim W)(X) = p(0, d, ») on any smooth curve X of genus g.

Proor. Combining Theorem 3.1 of Chapter II with the fact that there
is a smooth curve X of genus ¢ and a one-parameter family of curves
{X,} with X,, a Castelnuovo curve and for some s, # s, the curve X, is
X, satisfying the hypothesis of Theorem 2.1 and the fact that the moduli
space of curves of genus g is irreducible along with Remark 3.4 of
Chapter I that dim W) < o(0, d, n) and Remark 4.2 of Chapter I, we
observe that for a generic smooth curve X of genus ¢, the above theorem
is true.

To complete the proof for all curves, we make the following additional
observation:

For a smooth curve X, let

Si(X) ={FeM,.\U,)|0Gr F) 2 r + 1}
(Gr F denotes the associated graded sheaf for the semi-stable sheaf F).
When r = 0,
(*) dim S}(X) < 0(0, d, m) .
This can be seen quite easily by using Remark 3.4 of Chapter I that
dim W3 < (0, d, n) ,

for lower ranks.

Given any smooth curve X, let X, be a one parameter family of
smooth curves specialising to X such that for a generic X,, the above
theorem is valid. Then combining (x) with the fact that [W}(X,)USy(X)]
specialises to [Wi(X)USi(X)]. (This follows from D’Souza’s Thesis
verbatim. See [D’s], p. 69), we conclude the theorem for all curves.

THEOREM 2.5. For2=<d =<2(g—1), d an odd integer, Wi < M, , is
non-empty and dim Wi = o1, d, 2) =2d — 3 on any smooth curve of
genus g.

ProOF. This follows from Theorem 4.2 of Chapter II and Theorem 2.1.

CHAPTER 1V. Properties of Special Bundles With Sections. We
give an alternative proof of the existence of Wj, when the degree d is
divisible by the rank. While many arguments of this article may be
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adapted to arbitrary fields, the argument given in this chapter for the
existence of W} is valid only for C.

Throughout this chapter, we shall deal only with smooth curves X.

1. Ecxistence of Wj;-a special case.

THEOREM 1.1. For s = (d/n)eN=1{1,2, ---,(g — 1)}, there exists
VeM,, such that V s stable and h°(V) = 0 (see 1.12.2 Chapter I for
notation).

Before we proceed to prove the theorem we observe

LEMMA 1.2. Let VeExt(V, L) where V2V @ L, V is stable of rank
n — 1, L a line bundle, h'(V) =0, k(L) = 1, (V) = (L) = e N. Then
V is simple. (Theorem 3.2, Chapter I grants the existence of such a V).

PrOOF. The bundle V is semi-stable and by choice nonsplit in
Ext'(V, L). Since any occEndV is of constant rank and the associated
graded for V is unique, it is indecomposable. Hence any ¢ € End V is of
the form A Idy + N,, where v eC, Idy is the identity endomorphism and
N, a nilpotent endomorphism. Since A°(V) =0, N, (L) S L, hence N,(L) =0
and the induced morphism N, =0, N;: V/L—-V/L=V by virtue of
the stability of V. Hence ImN, < L, ie., N;:V—L. However,
R(V*Q® L) = 0. Therefore N, = 0. q.e.d.

PROOF OF THE THEOREM. Let V be as in the lemma above. Then
dim HY(V) = BA(V) = 1. It is well-known (cf. [Se 1]) that there exists a
complex analytic variety Y of dimension n*(g —1) +1 and a vector
bundle E on Yx X and a point y,€ Y such that E, = V and E, & E, for
x#9y in Y. Let EMW(L) ={ye Y| (E, = h'(L)}. By Remark 4.3 of
Chapter I,

dim E(R(L) = n*(g — 1) + 1 — B(L)R L) —d — n + ng) .
Since V is semi-stable we may suppose that E, is semi-stable for all
yeY. Let EMW(L),S) ={yec Y|h(E,) = h(L), E, is non-stable}. Then
E@ (L), S) < E(h(L)).
By the universal property of the moduli space, there exists ¢: Y —

M, ;, a morphism such that &(y) € M, , is the associated graded of E,, if
E, is nonstable. Let

0. ={VeM,,|V is stable or the associated graded of V is of type

L @V, L, a line bundle, V, a stable bundle such
that »%(V) = 0}.

It is easy to see that M, M, , is Zariski open and ®(V)e M?,. Hence
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we may suppose that &(y) e M}, for all ye Y. Let @: E(h°(L)) — M, be
the restriction of @. Then
O(E(R(L), S)) & S,q(k(L)) ,
where
S,.a(L) = {Ve(Ma o\ U, )|V =LV, (L) Z k(L) k'(V)) = 0} .

Set X = X, x U,_, ,, where X, is the d-fold symmetric product of the
curve X parametrising line bundles L, h%(L) =1, U, .4, S M,_1,4, d, =
(@/n—1) = @nm) = peN.

Let X, = X,U X, where X, and X, parametrise

{(L, V)e X, PExt(V, L))} and {(L, V)e X, P(Ext'(L, V))}, respectively .
Then

dimX, <[ —1%g —1) +d, + (n — 1)(g — 1)]
<[n—-1%g—-1)+d+ (n—-1g-1]=dimEQ).

Since dim 07%(S, ,(1)) < dim X,,, (EQ)\E(1, 8)) is non-empty. That is,
there exists y € Y such that E, is stable and r°(E,) = 1. q.e.d.

For d=n(g—-1), d=(@-1), d=0-1)Fg-1) lt W,=
{Led,,|h(L) = r + 1} where J,_, is the set of isomorphism classes of
line bundles of degree g —1 on X. By the theory of special divisors
(cf. [G-H]) W, is non-empty on any curve X if g = (r + 1)’

Let X=W,xU,_,., X,=X,UX, where X, and X, parametrise
{(L, V)e X, Ext(V, L)} and {(L, V)e X, Ext(L, V)}, respectively. For
rz1, dimW, < (g — 2) on any curve X. Therefore

dmX, <[ —1%g—1) +(n—1g-1) + (g —2)]
<[n@-1D+1-@r+1)]=dmEr+1).
Since dim 07%(S, ,(r + 1)) < dim X,,, (E(r + )N E(r + 1, S)) is non-empty.

That is, there exists y € Y such that E, is stable and 2(E,) = r + 1 and
combining with Theorem 4.1 of Chapter I, we have:

COROLLARY 1.3. For d=n(g —1), if g = (r + 1)}, r =1 ,then there
exists VeM,, such that V s stable and h°(V) = (r +1); moreover,
dim(W}) = [n*(g —1) + 1 — (» + 1)%].

2. Irreducibility of W3.

THEOREM 2.1. For 0 <d < n(9g — 1), the subvariety W3 of the com-
pactified moduli space M, ; over X is irreducible. Moreover, (W3 \ Wi(l))
is of codimension at least n — 1 in W], where
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1) ={(VeWi|z SV, (V|/©) is stable} .

ProOOF. Indeed, we merely collect the various remarks made earlier
to see the proof.
(i) Theorem 2.4 of Chapter III shows the non-emptiness of WQ.
(ii) Remark 4.2 to Theorem 4.1 of Chapter I shows that all com-
ponents of W) are of dimension at least p(0, d, n).
(iii) Remark 3.3 to Theorem 3.2 of Chapter I.
We add one more observation to these, namely

¢: R:‘—l,d - Un—lyd

is a geometric quotient by a suitable PGL(N) (See Chapter III for such
details; here the family consists of just one smooth curve X). In addition

o Vn—l,d - R:n—1,d Xk X

is the universal quotient sheaf.

Noting that dim H(V*) = (n — 1)(g — 1) + d is of constant dimension
for Ve R, _,,, we may construct a vector bundle V on R:_,,

6: V- R:z-—l,d ’

where the fibre of V over Ve R:_,, is H'(V*) and a vector bundle V on
Xxx T, T being the total space of V such that

ViXx{ty=1t,

where 7 is the bundle on X given by te T as an extension of @(t) by a
trivial line bundle (see [Se 1], p. 199).

Denote by T* the set {te T|(V|Xx({t}) is stable}. Note that the
non-emptiness of T* follows from (iii) and (i). By the openness of the
stability property, T° is Zariski open in T. Since R;_,, is a smooth
variety, 7T° is irreducible. By construction, T° dominates Wi(1). Now
the irreducibility of W follows. q.e.d.

By the theory of special divisors, (cf. [G-H]), the number of linearly
independent g;’s on a general smooth curve of genus g is given by

ol,d,1)=9g—2(g—d, +1).
Therefore
dimWiS) =g +d —4,
where
WiS) ={Ve Wi< M,,|V 2L, a line bundle such that (L) = 2} .
Since dim ExtY(T, #*) = 2d, where T is a torsion sheaf of length d, com-
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bining with Theorem 2.5 of Chapter III, we observe

PROPOSITION 2.2. For g <d < (29 — 2), d an odd integer, Wi S M, ,
18 irreducible on a gemeral smooth curve of genus g = 3 and dim W} =
(2d — 3); moreover, a generic Ve W} contains o, the trivial sheaf of
rank 2.

3. Generic element of W). We retain the notation of the previous
section.

V- Xx =T
induces a morphism,
T -U,,.

If we denote by P(T), the total space of the projectivised bundle of &:
V- R;_ ; we see that ¥ factors through P(T*), the image of 7" in P(T).
o P(T)—-U,,.

Evidently
dimP(T*)=(n—1)(g—1)+d+ (n —1)(g — 1) + dim ¢
= dim W} + dim ¢,
where dim ¢ is the dimension of the fibre of
¢: Ry i— U, yg -

If d £ (n—1)(g — 1), then by Theorem 8.2 of Chapter I, R (V) =10
for a generic Ve U,_, 4 hence in R;_, ; and the codimension of SXU.a) N
P(T*) is at least 1+ (n —1)(g—1)—d in P(T*) where Ul_,,=
{VeR:, ,,K(V)=1}. We note that for Ve P(T")\ (P(T*)Ng¢~(T2,.)),
dim H(V)=1. If d> (n —1)(g — 1) then a generic Ve U,_,,; has at
most (g — 1) sections; i.e., %(V) < g — 1 and hence for a generic Ve R;_, ,,
V)= —-1).

For a generic Ve R,_,, and VeExt(V, #) = H'(V*) we have a long
exact sequence

0 = HY(P) — H(T7) — H(V) 55 H(Z) = -+

associated to

02 —->V-V—-0.
Let
7: H(V)Xx H(V*) > HY (), 7(s, V) = 77(8)
and
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n: H(V*) - H(2), 7(V) =1, V)
For s = 0 in H°(V), the dual morphism %} is given by
PH(K)—>HEQV), 78w =s5Q@®
and hence it is injective. Therefore 7, is surjective for all non-zero s in
H(V). We define
S= U Kery < H(V*.
scHO(V)
8£0

Since Ker 7, is of codimension g in H( V*) and dim H'(V) < (g — 1), by
dimension count HY(V*) \ S is a non-empty, Zariski open set. Therefore
there exists VeExt(V, ) = H(V*) such that

77 H(V) —» H(2)
is injeg;ive; hence 1°(V) = 1. We have thus shown that for some 12 in T,
V.= V| XX {t} has exactly one section. Since for every ¢, h%(V,) =1,
by the semicontinuity theorem

T, = {te T|h(V, = 1}
is a non-empty, Zariski open set, and so is T,NT°*. We denote by
P(T,NT*) the image of T'NT* in P(T). The morphism

+ P(T\NT*)—U,,
satisfies the following property:

¥([t) = ¥([t'D for [¢] and [t'] in P(T,N T
implies
$t) =4, :V—Ri_4

for any ¢t and ¢’ lying above [t] and [_t'] in T, the total space of V. This
follows easily from the fact that V, has exactly one section for every
te T,NT*. Therefore the dimension of the fibre of  is the same as the

dimension of the fibre of &.
The above discussion proves:

PROPOSITION 3.1. For 0 < d = n(g — 1), the constructible set
W1, 1) = {Ve Wi1)|R(V) =1},

where W) is as in Theorem 2.1 of the previous section, is Zariski
dense in Wi M,, Therefore, a generic V in W] has exactly one
section and it gemerates a trivial line sub-bundle of V. Moreover, for
d<(n—1)(g—1), the singular set {Wj}, of the reduced model of W} is of
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codimension at least two.

CHAPTER V. Open Problems. Indeed, in this article, we have
merely scratched the tip of an ice berg. Most of the questions that we
raised in the introduction remain unanswered. We believe the reductions
that follow, may throw some light on these problems.

For notational convenience, we shall stick to the case of rank 2
bundles.

1. Problem of nonemptiness. By Theorem 2.1 of Chapter III, it is
enough to produce a Zariski open set W in U, ...(X;), the smooth open
subset consisting of all locally free sheaves of the generalised moduli
space of stable torsion free sheaves of rank 2 and degree d over X, a
Castelnuovo curve (more generally, any integral curve) and a stable bundle
Ve W such that (V) = (r + 1) and dim W = p(r, d, 2) to claim the non-
emptiness of Wi;cC M, ,.

We offer the following candidate for W; We shall stick to the nota-
tion of Section 3, Chapter II. We require W to be contained in Uy(B),
where

Ud(B) = {VG Ud,vecln*vg V(B) = ﬁ(Bl)@ &)(Bz)} ’ 61 =+ Ba =d.
We recall (3):
[di21+1, 7=k

Bj:{[d/z] ik d=1[d2]-2+F
and
U8) = {(Ay Ay +++, 4) € [T T50(V,,(8), Vo8 (Ay -+, A)
is a descent datum for a stable bundle on XO} .
Given m = 0, an integer, we may take {1,¢ ---,t"} as a basis of the

vector space H(#?(m)) on P'. Thus given any s€ H%((m))
st) = gait‘ for some {a)r, S C.

For (s, 8;) € HY(Z(B) @ H((B,)) to be a section of V(B)(A4, ---, A,
the bundle on X, associated to the descent datum (4,, 4;, -+, 4,) € U,B),
it should satisfy

a:8,(p;) + bs,(p) = 8,(q,)

csi(P:) + disy(p)) = 8,(¢0)
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a, b,
A =
‘ (ci di)
(Note that we have trivialised the bundle V(8) on (P'\{c}) and assumed

that {p, g}i-; S P\ {co}).
We may rewrite the equation as

70(0'1 - 1) + 71(aipi - qi) +oeee+ 7m(aipi" - q;n) + biao + b151Qt F oo+ bﬁﬂ? =0
cYo+CT D+ 00+ cﬁmp? + 60(d1: - 1) + Bl(dipi - Qi) i o ap(dtp? - q;') =0 ’

where

for all 7, 1 £ 1 < g; here

31(t)=i=207iti’ 32(t):i=208itiy m=p0, n=p.

One can interpret
[(@, — 1), (ap; — q:), + s (@07 — am), by « -, b7l

and

[ci’ CDy cip?! (dz - 1)7 (d;pt - Qi)r ct (dipy - Q:)]
as homogeneous coordinates of points in the span of

[11 DPis pﬁ, ] p?r 0! tt Yy 0] ’ [17 q; qu ) (Ii", 0’ ct 0]

[Oy M) 01 1y D ""p::l] ’ [0! Y 0! 19 iy ** Ql’]
in Pn+m+1 —_ Pd“.

Let V = (H(&(m)) @ H(Z(n)))*, the dual of H(Z(m)) ® H (< (n)),
which can be identified with [H(?(m))]* D [H(<(n))]*, and the curves ¢,
and ¢, in P(V) to be

c: PP—P(V)S P(V), V,=[H(@m)]*, t—[1t ---,t"0, .-, 0]

c:PP—P(V)<S P(V), V,=[H(@n)]*, t—][0,---,0,11¢ ---,¢].
We denote by E, the linear span of {c,(p,), ¢.(q,), ¢.(py), ¢(q,)} in P(V). 1t
has affine dimension 4.

We may parametrise the bundles V(B)(4,, -+, 4,) with » + 1 linearly
independent sections in the following way:

Wi = {((A), 85+ 8,41 € (B X H(V(B) X - - - x HAV(B)) | Ass,(wy)

=s;(q)Vi, 1219, Vi, 1=j=7r+1}.

Let p and ¢ denote
p: 0.8 x 1L H(V(®) - Tu(8)
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¢: U0 x TL H (V@) - TT H(V(®)

the natural projections, where [[;™ H°(V(R)) is the (r + 1)-fold Cartesian
product of H°(V(R)). There is a natural map

q:'fjH%V(s))—»Gr(d +2—r—1,d+2)

which sends (s, «--, 8,,,) to the (d + 2 — r — 1)-plane in the dual V of
H(V(B)) determined by {s,};*!.
Let
o' ={AeGrd+2—-r—1,d + 2)|dim(ANE,)

=1in P(V), 4 = PA) S P(V)}.
Each ¢' is a Shubert variety of type ¢ .y—s +ny-. and of codimension
2[((r +1) — 2] in Gr(d +2 —r — 1, d + 2) (cf. [G-H-P]). We have

@ =qoq: W;—>Grd+2—r—1,d+2).
Denote by ¢ S N{-, 0%, the open set

g g g
o= {xe N o'|dim ¢;*(x) is minimal for q,: q;‘(ﬂ oi> - N a’} .
i=1 i=1
Define W < W7, and W < U,(8) as
W = q:'(0)
W = U, 8)\p(W;\g'(0)) .

QUESTIONS. (i) Does W have a bundle with » + 1 sections?
(i) Is NY,o* a generically transversal intersection?

2. Problem of dimension. If N{., ¢’ is transversal, then one may
hope to find a component of W; of dimension p(r, d, 2). We believe W;
is not equidimensional even on a general curve.

When the rank and degree are not coprime, there is an additional
problem of determining whether, given a one-parameter family {X,} of
smooth curves specialising to a Castelnuovo (more generally, any integral)
curve, the Wi(X,) specialises to W3(X,). What is true is that [W3(X,)U
Si(X,)] specialises to [Wi(X,)USi(Xy)], where Si(X)= {Fe M, \U,,)l
K (Gr F) = r + 1} (Gr F denotes the associated graded sheaf for the semi-
stable sheaf F).
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