HORIZONTAL LIFTS OF SPACELIKE CURVES WITH NON-DIFFERENTIABLE ENDPOINTS

Steven G. Harris

(Received October 1, 1984)
Let $P(M, G)$ be a principal fiber bundle with structure group G over a manifold M; let $\sigma:[0, L] \rightarrow M$ be a continuous curve in M which is differentiable on the half-open interval $[0, L)$. For a given connection on P, does σ admit a horizontal lift into P defined over the entire closed interval $[0, L]$? If the connection is flat, it surely does. Here is an example where it does not: $M=\boldsymbol{R}^{2}, G=G L(2), P=$ bundle of linear frames in $\boldsymbol{R}^{2}, \quad L=1, \sigma(t)=(1-t)\left(\cos (1-t)^{-2}, \sin (1-t)^{-2}\right)$, and the connection is the Levi-Civita connection associated with the metric $\exp \left(-y^{2}\right) \cdot\left(d x^{2}+d y^{2}\right)$; a linear frame, parallel translated, in this metric, from $\sigma(0)$ to $\sigma(t)$, is rotated through an angle of $(1 / 4) \theta^{-1} \sin 2 \theta-(1 / 2) \ln \theta$, where $\theta=(1-t)^{-2}$, so it has no limit as $t \rightarrow 1$.

The purpose of this paper is to show that if M admits a Lorentz metric for which σ is a finite-length spacelike curve with timelike acceleration (when parametrized by arc-length), then σ does, indeed, admit a horizontal lift over the entire closed interval, i.e., the lift over the differentiable part has a limit as $t \rightarrow L$. This is done by first showing that the horizontal lift over [$0, L$] exists in the case that for some Riemannian metric on M, σ has finite length; since σ is compact, if this is the case for one Riemannian metric, so must it be for all Riemannian metrics. Next, it is shown that if σ has infinite Riemannian-length, then any scalar function F on M which, in the given Lorentz metric, has a timelike gradient which is (say) opposite-directed to $\nabla_{\dot{\dot{j}}} \dot{\sigma}$ with respect to future and past, must have $H_{F}(\dot{\sigma}, \dot{\sigma})$ unbounded below, where H_{F} is the Hessian of F. Finally, it is shown how to construct, in a neighborhood of any point in any Lorentz manifold, a function with a timelike gradient (either past- or future-directed) and a positive-definite Hessian. Since it is only the behavior of σ and the connection in a neighborhood of $\sigma(L)$ that is significant, this is sufficient for the problem at hand.

Theorem 1. Let M be a manifold with a Lorentz metric g, let P be a principal fiber bundle over M with structure group G, and let ω be a connection form on P. Let $\sigma:[0, L] \rightarrow M$ be a continuous curve in M which is differentiable on $[0, L)$. If σ, on $[0, L)$, is spacelike, is para-
metrized by arc-length, and has timelike acceleration-or, more generally, for some (continuous) unit-timelike vector-valued function N_{t} defined over σ and some $\kappa(t) \geqq 0, \nabla_{\dot{\sigma}} \dot{\sigma}=\kappa N$-then a horizontal lift $v:[0, L) \rightarrow P$ of σ has a limit as $t \rightarrow L$.

Proof. In the course of this proof, the following elementary result from analysis will be used: For any differentiable function $x(t)$ on a finite interval $[0, L)$, if $\int_{0}^{L} x(t) d t$ is finite but $\int_{0}^{L}|x(t)| d t=\infty$, then both x and x^{\prime} are unbounded both above and below on $[0, L)$.

Let \mathscr{U} be a neighborhood of $\sigma(L)$ over which P is trivial; it does no harm to assume that σ is contained in \mathscr{U}. Let $u: \mathscr{U} \rightarrow P$ be a crosssection; then a lift $v_{t}=u_{\sigma(t)} a_{t}$ of σ, with $a:[0, L) \rightarrow G$, is horizontal if and only if $\dot{a}_{t} a_{t}^{-1}=-\omega\left[(d / d t) u_{\sigma(t)}\right] \quad\left(\dot{v}=\dot{u} a+u \dot{a}, \dot{v} a^{-1}=\dot{u}+u \dot{a} a^{-1}, \omega\left(\dot{v} a^{-1}\right)=\right.$ $\operatorname{ad}(a) \omega(\dot{v})=\omega(\dot{u})+\omega\left(u \dot{\alpha} \alpha^{-1}\right)=\omega(\dot{u})+\dot{a} \alpha^{-1}$; therefore, $\omega(\dot{v})=0$ iff $\dot{a} \alpha^{-1}=-\omega(\dot{u})$; see, e.g., [4], p. 69). Define $\alpha=-u^{*} \omega$. Let M have an arbitrary Riemannian metric, and let G have an arbitrary right-invariant Riemannian metric, both denoted by $\|-\|$; then at each x in $\mathscr{U}, \alpha_{x}: T_{x} M \rightarrow \mathrm{~g}$ has a norm $\left\|\alpha_{x}\right\|$ as a linear transformation, and $\|\alpha\|$ is bounded in a (possibly smaller) neighborhood of $\sigma(L)$. The equation $\dot{\alpha}_{t} a_{t}^{-1}=\alpha\left(\dot{\sigma}_{t}\right)$ has a solution for $0 \leqq t<L$. As a curve in G, its length $L(a)=\int_{0}^{L}\left\|\dot{a}_{t}\right\|=\int_{0}^{L}\left\|\dot{a}_{t} a_{t}^{-1}\right\|=$ $\int_{0}^{L}\left\|\alpha\left(\dot{\sigma}_{t}\right)\right\| \leqq \int_{0}^{L}\|\alpha\|\left\|\dot{\sigma}_{t}\right\|$. Therefore, if $\int_{0}^{L}\|\dot{\sigma}\|$ is finite, so is $L(a)$. Being homogeneous, G is complete, so if $L(a)$ is finite, a_{t} has a limit as $t \rightarrow L$. Therefore, if σ has finite Riemannian-length, the horizontal lift $u_{\sigma(t)} a_{t}$ has a limit $u_{\sigma(L)} a_{L}$.

Let U be any (non-vanishing) timelike vector field on M; let U^{\perp} be its perpendicular space; and let $P_{U}: T_{x} M \rightarrow U_{x}^{\perp}$ be projection. Then $(X, Y) \mapsto\left\langle P_{U}(X), P_{U}(Y)\right\rangle+\langle X, U\rangle\langle Y, U\rangle$ is a Riemannian metric on M $(\langle-,-\rangle$ denotes g, as will $|-|)$. Thus, if σ has infinite Riemannian-length, $\int_{0}^{L}\left(\left|P_{U}(\dot{\sigma})\right|^{2}+\langle\dot{\sigma}, U\rangle^{2}\right)^{1 / 2}=\infty$. Since σ is of unit-speed and spacelike,

$$
\langle\dot{\sigma}, \dot{\sigma}\rangle=\left|P_{U}(\dot{\sigma})\right|^{2}-\langle\dot{\sigma}, U\rangle^{2} /|U|^{2}=1
$$

so

$$
\left|P_{U}(\dot{\sigma})\right|^{2}+\langle\dot{\sigma}, U\rangle^{2}=1+\left(1+1 /|U|^{2}\right)\langle\dot{\sigma}, U\rangle^{2} .
$$

In a neighborhood of $\sigma(L),|U|$ is bounded; therefore σ has infinite Riemannian-length if and only if $\int_{0}^{L}|\langle\dot{\sigma}, U\rangle|=\infty$.

Now consider any scalar function $F: M \rightarrow \boldsymbol{R}$ with ∇F timelike; σ has infinite Riemannian-length if and only if $\int_{0}^{L}|\dot{\sigma} F|=\infty$. However, $\int_{0}^{L} \dot{\sigma} F=$ $\int_{0}^{L}(d / d t) F(\sigma(t))=F(\sigma(L))-F(\sigma(0))$, which is finite. Thus, by the remark
made at the beginning of this proof, if σ has infinite Riemannian-length, then $(d / d t)(\dot{\sigma} F)=\dot{\sigma}\langle\dot{\sigma}, \nabla F\rangle=\left\langle\nabla_{\dot{j}} \dot{\sigma}, \nabla F\right\rangle+\left\langle\dot{\sigma}, \nabla_{\dot{j}} \nabla F\right\rangle=\left\langle\nabla_{\dot{j}} \dot{\sigma}, \nabla F\right\rangle+H_{F}(\dot{\sigma}, \dot{\sigma})$ is unbounded both above and below. But since $\nabla_{\dot{j}} \dot{\sigma}$ and ∇F are both timelike (or each a non-negative multiple of a timelike vector field), $\left\langle\nabla_{\dot{j}} \dot{\sigma}, \nabla F\right\rangle$ has constant sign. Thus, for example, if $\nabla_{\dot{j}} \dot{\sigma}$ and ∇F lie in opposite time-cones, then $H_{F}(\dot{\sigma}, \dot{\sigma})$ must be unbounded below. It follows that if there is a function in a neighborhood of $\sigma(L)$ with timelike gradient in the opposite time-cone as that of $\nabla_{\dot{j}} \dot{\sigma}$ and with positivedefinite Hessian, then σ must have finite Riemannian-length.

The remainder of the proof is devoted to constructing in a neighborhood of an arbitrary point p in a Lorentz manifold M, a function F with timelike gradient (either future- or past-directed, as needed) and positivedefinite Hessian. F is the sum of a function whose Hessian is positive definite on a spacelike hyperplane in $T_{p} M$, and of a second function whose Hessian is zero on that hyperplane but positive on the vector perpendicular to it.

The first function, f, is defined by $f(x)=\left\langle\exp _{q}^{-1}(x), \exp _{q}^{-1}(x)\right\rangle$, where q is a point in the chronological past of p (i.e., $q \ll p$) that needs to be chosen appropriately. To find ∇f, consider a vector V in $T_{x} M, x \gg q$, with $V=(d / d v) x_{v}$ for some curve x_{v}; let $x_{v}=\exp _{q}\left(r_{v} T_{v}\right)$ with T_{v} unit timelike and $r_{v} \geqq 0$. Then $f\left(x_{v}\right)=-r_{v}^{2}$. Define $\beta(s, v)=\exp _{q}\left(s r_{v} T_{v}\right)$, so that V at x is extended by the definition to $V=\beta_{*}(\partial / \partial v)$; define $S=\beta_{*}(\partial / \partial s)$ and $T=S /|S|$. Let γ_{v} be the geodesic $\beta(-, v)$ from $s=0$ to $s=1$, so $L\left(\gamma_{v}\right)=$ $\left|S_{v}\right|=r_{v} . \quad$ Then $\quad V_{x} f=(d / d v) f\left(x_{v}\right)=-2 r_{v}(d / d v) r_{v}=-2 r_{v}(d / d v) L\left(\gamma_{v}\right)=$ $-2 r_{v}[-\langle V, T\rangle]_{s=0}^{s=1}=2|f(x)|^{1 / 2}\langle V, T\rangle_{x}$ (first variation of timelike arc-length has been used here - see, e.g., Corollary 11.24 in [1]). Therefore,

$$
\nabla f=2|f|^{1 / 2} T
$$

where T is the vector field defined by $T_{x}=\dot{\gamma}_{x}$, with γ_{x} the unit-speed geodesic from q to x (for $x \gg q$). Then, for any vector X at x,

$$
\begin{aligned}
\nabla_{X} \nabla f & =2\left(X(-f)^{1 / 2}\right) T+2|f|^{1 / 2} \nabla_{X} T=-|f|^{-1 / 2}\langle X, \nabla f\rangle T+2|f|^{1 / 2} \nabla_{X} T \\
& \left.=-\left.|f|^{-1 / 2}\langle X, 2| f\right|^{1 / 2} T\right\rangle T+2|f|^{1 / 2} \nabla_{X} T=2\left(|f|^{1 / 2} \nabla_{X} T-\langle X, T\rangle T\right),
\end{aligned}
$$

yielding

$$
H_{f}(X, X)=\left\langle\nabla_{X} \nabla f, X\right\rangle=2\left(|f|^{1 / 2}\left\langle\nabla_{X} T, X\right\rangle-\langle X, T\rangle^{2}\right) .
$$

Therefore, $H_{f}(X, Y)=2\left(|f|^{1 / 2}\left\langle V_{X} T, Y\right\rangle-\langle X, T\rangle\langle Y, T\rangle\right)$. For V perpendicular to T_{x}, the function r_{v} can be taken to be constant at $r=|f(x)|^{1 / 2}$, so $[V, T]=(1 / r)[V, S]=0$. Then

$$
H_{f}(V, V)=2|f|^{1 / 2}\left\langle\nabla_{V} T, V\right\rangle=|f|^{1 / 2} T\langle V, V\rangle
$$

where V is a Jacobi field along γ_{x} with $V_{q}=0$.
It remains to be shown how to choose $q \ll p$ so that H_{f} will be positive definite on a spacelike hyperplane at p. To this end, pick any futuredirected unit-speed timelike geodesic γ with $\gamma(0)=p$; let $T=\dot{\gamma}(0)$. The basepoint q will be $\gamma(s)$ for some $s<0$, and the hyperplane at p will be T^{\perp}. By the calculations above, $(\nabla f)_{p}=2(-s) T$, and, for any U in T^{\perp}, $H_{f}(U, U)=(-s) T_{0}\langle V, V\rangle$, where $T_{t}=\dot{\gamma}(t)$ and V is the Jacobi field on γ defined by $V(0)=U$ and $V(s)=0$. It will be shown that for s close enough to $0, H_{f}(U, U)$ must be positive for all non-zero U in T^{\perp}.

On any finite interval of γ, the sectional curvature of any plane $X \wedge T$ containing T obeys $K(X \wedge T) \geqq-K$ for some constant $K>0$ (X can be restricted to T^{\perp} with $|X|=1$, a compact set). For a given unitlength vector U in T_{0}^{\perp}, let $h(t)=\langle V, V\rangle_{t}, V$ defined as above; then $h^{\prime \prime}=$ $(T\langle V, V\rangle)^{\prime}=2\left\langle\nabla_{T} V, V\right\rangle^{\prime}=2\left(\left\langle\nabla_{T}^{2} V, V\right\rangle+\left\langle\nabla_{T} V, \nabla_{T} V\right\rangle\right)=2(-\langle R(V, T) T, V\rangle+$ $\left.\left|\nabla_{T} V\right|^{2}\right)=2\left(K(V \wedge T)|V|^{2}+\left|\nabla_{T} V\right|^{2}\right) \geqq-2 K|V|^{2}=-2 K h$. Therefore,

$$
\begin{equation*}
h \geqq-\frac{1}{2 K} h^{\prime \prime} \tag{}
\end{equation*}
$$

Note that $h(s)=0$ and $h(0)=1$. For $-(2 K)^{-1 / 2}<s<0$, it can be shown that $h^{\prime}(0)>0$: There is some t_{1} in $[s, 0]$ with $h^{\prime}\left(t_{1}\right)=-1 / s$. With $h^{\prime}(0) \leqq 0$, there is some r_{1} in $\left[t_{1}, 0\right]$ with $h^{\prime \prime}\left(r_{1}\right)=\left(-s t_{1}\right)^{-1} \leqq\left(-s^{2}\right)^{-1}$. By $\left(^{*}\right), h\left(r_{1}\right) \geqq\left(2 K s^{2}\right)^{-1}$. From this and $h(s)=0$, we obtain some t_{2} in $\left[s, r_{1}\right]$ with $h^{\prime}\left(t_{2}\right)=\left(2 K s^{2}\left(r_{1}-s\right)\right)^{-1} \geqq\left(-2 K s^{3}\right)^{-1}$. With $h^{\prime}(0) \leqq 0$, there is some r_{2} in $\left[t_{2}, 0\right]$ with $h^{\prime}\left(r_{2}\right)=\left(-2 K s^{3} t_{2}\right)^{-1} \leqq\left(-2 K s^{4}\right)^{-1}$. By $\left({ }^{*}\right), h\left(r_{2}\right) \geqq\left(4 K^{2} s^{4}\right)^{-1}$. Continuing, we obtain a sequence r_{n} in [$\left.s, 0\right]$ with $h\left(r_{n}\right) \geqq\left(2 K s^{2}\right)^{-n}$. With s as specified, this implies that the continuous function h is unbounded on the interval $[s, 0]$, an imposibility. Thus, $q=\gamma(s)$ for such an s ensures that $H_{f}(U, U)=-s h^{\prime}(0)>0$ for unit-length, hence, any non-zero U in T_{p}^{\perp}.

To define the second function, start with the same vector T at p, but extend it differently: For any U in T_{p}^{\perp}, define T_{x} for $x=\exp _{p}(U)$ as the parallel translate of T_{p} along the geodesic from p to x; let γ_{x} be the geodesic $\gamma_{x}(s)=\exp _{x}\left(s T_{x}\right)$; and define T at $\gamma_{x}(s)$ to be $\dot{\gamma}_{x}(s)$. Define the function k by $k\left(\gamma_{x}(s)\right)=s$. Then $\nabla k=-T$. Since $\nabla_{T} T=0$ and, at p, $\nabla_{U} T=0$ for U in $T^{\perp}, H_{k}=0$ at p. For any function $\phi: \boldsymbol{R} \rightarrow \boldsymbol{R}, \nabla(\phi \circ k)=$ $\left(\phi^{\prime} \circ k\right) \nabla k$ and $H_{\phi \circ k}=\left(\phi^{\prime} \circ k\right) H_{k}+\left(\phi^{\prime \prime} \circ k\right) d k \otimes d k$; thus, at $p, \nabla(\phi \circ k)=-\phi^{\prime}(0) T_{p}$ and $H_{\phi \circ k}=\phi^{\prime \prime}(0)\left\langle-, T_{p}\right\rangle \otimes\left\langle-, T_{p}\right\rangle$. Let $F=f+\phi \circ k$. Then, at p,

$$
\begin{aligned}
\nabla F & =\left(-2 s-\phi^{\prime}(0)\right) T_{p}, \\
H_{F} & =H_{f}+\phi^{\prime \prime}(0)\left\langle-, T_{p}\right\rangle \otimes\left\langle-, T_{p}\right\rangle .
\end{aligned}
$$

For U in $T_{p}^{\perp}, H_{F}(U+a T, U+a T)=H_{f}(U, U)+2 a H_{f}(U, T)+a^{2} H_{f}(T, T)+$

$$
\begin{aligned}
& \phi^{\prime \prime}(0)\langle U+a T, T\rangle^{2}=H_{f}(U, U)+\left(\phi^{\prime \prime}(0)-2\right) a^{2}, \text { so } \\
& H_{F}(X, X)=H_{f}\left(X^{\perp}, X^{\perp}\right)+\left(\phi^{\prime \prime}(0)-2\right)\left\langle X, T_{p}\right\rangle^{2},
\end{aligned}
$$

where $X^{\perp}=X+\langle X, T\rangle T$. Thus, H_{F} is positive-definite at p so long as $\phi^{\prime \prime}(0)>2$, and $(\nabla F)_{p}$ is timelike so long as $\phi^{\prime}(0) \neq-2 s$: future-directed for $\phi^{\prime}(0)<-2 s$ and past-directed for $\phi^{\prime}(0)>-2 s$. These properties of the Hessian and gradient remain true in a neighborhood of p.

Taking $p=\sigma(L)$ completes the proof.
As an application of this theorem, consider the bundle of orthonormal frames over M with the Levi-Civita connection associated with g : a horizontal lift of σ yields parallel translation along σ. If σ is a Frenet curve with a timelike principal normal vector, then the theorem below asserts that an appropriate curvature restriction on σ allows one to parallel translate the velocity vector at $\sigma(0)$ to a limit vector at $\sigma(L)$, yielding a differentiable end point at L. With just a little more work, we need not even assume the existence of the endpoint $\sigma(L)$, but infer its existence (first as a continuous endpoint, then as a differentiable one) from a completeness condition on M. The condition required is b-completeness ("b" for "bundle"), defined thus (see [3], p. 259 and Section 8.3): For $\sigma:[0, L) \rightarrow M^{n}$ a differentiable curve in a manifold M with a connection, any basis for $T_{\sigma(0)} M$ defines a Riemannian metric in the tangent spaces along σ by being parallel-translated all along σ and being regarded as an orthonormal basis at each point. This determines a length for σ in terms of this metric, called the Schmidt length of σ relative to the initial basis at $\sigma(0)$. Whether a Schmidt length for a given curve σ is finite or infinite is independent of the choice of initial basis. M is called b-complete if any differentiable curve $\sigma:[0, L) \rightarrow M$ of finite Schmidt length can be continuously extended to L.

Theorem 2. Let M be a b-complete Lorentz manifold, and let $\sigma:[0, L) \rightarrow M$ be a unit-speed spacelike curve obeying $\nabla_{\dot{j}} \dot{\sigma}=\kappa N$ with $N a$ unit-timelike vector defined over σ and κ a non-negative scalar defined over σ. If $L=L(\sigma)$ is finite and $\left|\nabla_{\dot{\sigma}} N\right|$ is bounded, then σ is differentiably extendible to (and past) L.

Proof. Let $\tau_{s}^{t}: T_{\sigma(t)} M \rightarrow T_{\sigma(s)} M$ be parallel translation along σ. Define $E(t)=\tau_{t}^{0} N(0)$. Let $T=\dot{\sigma}$ and $S=T+\langle T, E\rangle E$, the component of T perpendicular to E. Let ' denote $\nabla_{\dot{j}}$. The main burden of the proof is to show that with L finite and $\left|N^{\prime}\right|$ bounded, $\langle T, E\rangle^{\prime}$ and $\left|S^{\prime}\right|$ are bounded also (S^{\prime}, being perpendicular to E, is spacelike). From this it immediately follows that $\langle T, E\rangle$ is bounded, as well as $|S|=\left(1+\langle T, E\rangle^{2}\right)^{1 / 2}$. The

Schmidt length of σ, relative to an orthonormal basis at $\sigma(0)$ containing E_{0}, is $\int_{0}^{L}\left(\langle T, E\rangle^{2}+|S|^{2}\right)^{1 / 2} d t$, which is therefore finite: this yields the (continuous) endpoint $\sigma(L)$. For differentiability, consider $X_{t}=\tau_{0}^{t} S_{t}$: This vector always lies in the spacelike subspace perpendicular to E_{0}; furthermore, $\left|X_{t}^{\prime}\right|=\left|S_{t}^{\prime}\right|$ is bounded. Therefore X_{t} has a limit X_{L}. Similarly, $\langle T, E\rangle_{t}$ has a limit r, so $\tau_{0}^{t} T_{t}=X_{t}-\langle T, E\rangle_{t} E_{0}$ has a limit $X_{L}-r E_{0}$. By Theorem 1, τ_{L}^{t} is defined. Let $E_{L}=\tau_{L}^{0} E_{0}$. Then we have $\tau_{L}^{t} \dot{\sigma}(t)=\tau_{L}^{0} \tau_{0}^{t} T_{t}$ has a limit $\tau_{L}^{0}\left(X_{L}-r E_{0}\right)=\tau_{L}^{0} X_{L}-r E_{L}$. It follows that $\dot{\sigma}(t)$ approaches $\tau_{L}^{0} X_{L}-r E_{L}$.

To show the boundedness of $\langle T, E\rangle^{\prime}$ and $\left|S^{\prime}\right|$, first we note that $\kappa=$ $\left\langle N^{\prime}, T\right\rangle$. At each point $x=\sigma(t)$, define $\pi: T_{x} M \rightarrow T_{x} M$ to be projection onto the (spacelike) subspace perpendicular to both N and T, i.e., $\pi Y=$ $Y+\langle Y, N\rangle N-\langle Y, T\rangle T$. Then $|\pi E|^{2}=-1+\langle E, N\rangle^{2}-\langle E, T\rangle^{2}$, or

$$
\begin{equation*}
\langle N, E\rangle= \pm\left(1+\langle T, E\rangle^{2}+|\pi E|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

We thus have $\langle T, E\rangle^{\prime}=\kappa\langle N, E\rangle= \pm\left\langle N^{\prime}, T\right\rangle\left(1+\langle T, E\rangle^{2}+|\pi E|^{2}\right)^{1 / 2}$, so

$$
\begin{equation*}
\langle T, E\rangle^{2^{\prime}}= \pm 2\left\langle N^{\prime}, T\right\rangle\langle T, E\rangle\left(1+\langle T, E\rangle^{2}+|\pi E|^{2}\right)^{1 / 2} . \tag{2}
\end{equation*}
$$

Furthermore, using the fact that $\langle\pi X, Y\rangle=\langle X, \pi Y\rangle$, we also have

$$
\begin{align*}
|\pi E|^{2^{\prime}} & =2\left(\langle E, N\rangle\langle E, N\rangle^{\prime}-\langle E, T\rangle\langle E, \kappa N\rangle\right) \tag{3}\\
& =2\langle N, E\rangle\left\langle N^{\prime}-\left\langle N^{\prime}, T\right\rangle T, E\right\rangle \\
& =2\langle N, E\rangle\left\langle\pi N^{\prime}, E\right\rangle=2\left\langle N^{\prime}, \pi E\right\rangle\langle N, E\rangle \\
& = \pm 2\left\langle N^{\prime}, \pi E\right\rangle\left(1+\langle T, E\rangle^{2}+|\pi E|^{2}\right)^{1 / 2} .
\end{align*}
$$

Let $x=\langle T, E\rangle^{2}$ and $y=|\pi E|^{2}$. Suppose that $\left|N^{\prime}\right| \leqq C$, a constant. Then, since N^{\prime}, T, and πE all lie in the subspace perpendicular to N, we have, from equations (2) and (3)

$$
\left|x^{\prime}\right| \leqq 2 C x^{1 / 2}(1+x+y)^{1 / 2} \leqq 2 C(1+x+y)
$$

and

$$
\left|y^{\prime}\right| \leqq 2 C y^{1 / 2}(1+x+y)^{1 / 2} \leqq 2 C(1+x+y)
$$

Let $z=\ln (x+y)$; then

$$
\begin{equation*}
\left|z^{\prime}\right| \leqq\left(\left|x^{\prime}\right|+\left|y^{\prime}\right|\right) /(x+y) \leqq 4 C(1 /(x+y)+1)=4 C\left(e^{-z}+1\right) \tag{4}
\end{equation*}
$$

If $\lim \sup (z)=\infty$ as $t \rightarrow L$, then (since $L<\infty$) there is a sequence $\left\{t_{i}\right\}$ with $z\left(t_{i}\right) \geqq i$ and $z^{\prime}\left(t_{i}\right) \geqq i$, which contradicts inequality (4). Therefore, z is bounded above, so x and y, i.e., $\langle T, E\rangle^{2}$ and $|\pi E|^{2}$, must be also. From equation (1), it follows that $\langle N, E\rangle$ is bounded. Therefore, $\langle T, E\rangle^{\prime}=$ $\kappa\langle N, E\rangle=\left\langle N^{\prime}, T\right\rangle\langle N, E\rangle$ is bounded, as is $\quad\left|S^{\prime}\right|=|\kappa||N+\langle N, E\rangle E|=$ $\left|\left\langle N^{\prime}, T\right\rangle\right|\left(\langle N, E\rangle^{2}-1\right)^{1 / 2}$.

Note that if σ is a geodesic in a spacelike hypersurface in M, then it satisfies $\nabla_{\dot{j}} \dot{\sigma}=\kappa N$, with N the normal vector to the hypersurface. Theorem 2 is used in this context in [2] to show that in a b-complete Lorentz manifold, a closed spacelike hypersurface with bounded principal curvatures must be complete.

Remark. If the timelike quality of the acceleration vector for σ is removed from the hypotheses of Theorem 1 , then it is possible to construct counter-examples. For instance, let $\sigma:[\pi, \infty) \rightarrow \boldsymbol{R}^{3}$ be defined by $\sigma(t)=$ $\left(4 t^{-1 / 2}, t^{-1} \sin (t), \int_{\pi}^{t} s^{-1} \cos (s) d s\right)$. This has a continuous endpoint at $t=\infty$. With metric $d x^{2}+d y^{2}-d z^{2}$, it is spacelike and has finite length, but its Euclidean length is infinite. If the metric used is $e^{\rho(x)}\left(d x^{2}+d y^{2}-d z^{2}\right)$ for some function $\rho: \boldsymbol{R} \rightarrow \boldsymbol{R}$, then the Lorentz length is still finite. If ρ is appropriately chosen, then parallel translation along σ can be precisely calculated, and there is a choice of ρ under which parallel translation along σ fails to have a limit as $t \rightarrow \infty$.

Acknowledgment. The author wishes to thank Prof. K. Nomizu of Brown University for bringing this matter to attention.

References

[1] J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
[2] S. G. Harris, "Closed and Complete Spacelike Hypersurfaces in Minkowski Space" (preprint).
[3] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
[4] N. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.

Department of Mathematics
Oregon State University
Corvallis, OR 97331
USA

