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Among the manifolds with a flat projective structure the homogene-
ous ones are particularly interesting. So far a general classification of
such manifolds does not seem to exist. So the interest mostly has
focussed on special cases. Agaoka [1] studied left-invariant protectively
flat structures on Lie groups in some detail. Also he obtained a complete
classification in the case where the Lie group action is the same as for
an irreducible Riemannian symmetric space. Vinberg [12] developed a
theory for projectively homogeneous bounded domains in Rn. Here we
will obtain rather complete results about another class of homogeneous
projectively flat manifolds, which we call bihomogeneous.

A differentiable manifold M is said to be bihomogeneous if there
exists a pair of Lie groups Gx and G2, each acting transitively on M and
transformations from different groups commuting with each other. When
M has a geometric structure, we say it is bihomogeneous if both Gx and
G2 preserve the structure in question. In this paper we study bihomo-
geneous manifolds with flat projective structures. This class of manifolds
includes S3, the real projective space RPn with two hyperplanes removed,
and, more generally, the models which can be described as follows.

Let A be an associative algebra with identity over R. The open
submanifold M of the projective space P(A) corresponding to the open
cone of all units in A is bihomogeneous where Gλ and G2 are the groups of
left and right multiplication, respectively. Our first main result is that
the universal covers of these models exhaust all simply-connected bihomo-
geneous projectively flat manifolds.

We reduce the problem to the study of biinvariant affine connections
on Lie groups which are projectively flat. We show, in particular, that
the only semisimple Lie groups admitting biinvariant flat projective
structures are SL(nf R) and SL(n, H), where H is the field of qua-
ternions. From biinvariant flat projective structures on SL(n, R) and
SL(n, H) we can easily obtain many examples of compact homogeneous
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protectively flat manifolds as quotient spaces by cocompact discrete
subgroups.

Now suppose that M is a manifold with a projective structure P.
We say that a Lie group acting freely on M is a translation group if
all orbits of 1-parameter subgroups are geodesies. We shall determine
the protectively flat manifolds which admit transitive translation groups.
They turn out to be bihomogeneous and their study is reduced to the
study of Lie groups whose (O)-connections are protectively flat. These
Lie groups were indeed studied by E. Car tan [3]. We are going to
complete his results, provide a simpler proof based on our general method
mentioned above, and describe our main result here in the following way:

The following subsets of RPn admit a transitive translation group.
(1) RPn — H = Rn where H is a hyperplane. The translation

group G is abelian or 2-step nilpotent.
(2) Each component of RPn — (H1\jH^), where Hλ and H2 are

hyperplanes; the group G is solvable but not nilpotent and is characterized
by an integer p, 0 <̂  p <; (n — l)/2.

(3) RP2n+1 — subspace of codimension 2; G is uniquely determined.
(4) RP*; G is SO(3).
(5 ) Each component of RPZ — Q where Q is a quadric of signature

(-, - , +, +); G is PSL(2, R).
All protectively flat manifolds admitting a transitive translation

group are obtained by passing to quotients by discrete central subgroups
of G in case (1) or by passing to arbitrary covering spaces in the non-
simply connected cases (3), (4) and (5).

In §1, we give several definitions and preliminary results on projec-
tive structures, volume elements, equiaffine connections, projective curva-
ture tensor, etc. Some old results in Eisenhart [4] and Schouten [9] are
reformulated. In §2 we study bihomogeneous spaces and reduce the
problem on bihomogeneous projectively flat manifolds to the study of
biinvariant projectively flat affine connections on Lie groups. This is
carried out and our first main result is precisely stated in §3. The case
of semisimple Lie groups is treated is §4. In §5 we show that there
is almost no overlap between the class of manifolds we study here
and the class investigated by Vinberg: we prove that the only bihomo-
geneous bounded domain in Rn is the interior of a simplex. In §6 we
reduce the study of projectively flat manifolds admitting transitive
translation groups to E. Cartan's problem on Lie groups. We give a
complete solution of this problem using a result from §3. In §7 we
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shall derive the geometric description we already mentioned.

1. Projective structures, equiaffine connections, projective curvature
tensors. The notion of flat projective structure can be defined in the
following way. A differentiate manifold M has a flat projective struc-
ture if it has an atlas {Ua, φa) where φa maps the open subset Ua onto
an open subset Va of the real projective space RPn in such a way that
in the non-empty intersection ί7αΠ Uβ the transformation

Φβφ~u. φa{ ua n uβ) -+ φβ( ua n uβ)
is the restriction of a projective transformation of RPn to φa(UaΓ\ Uβ).
See Kobayashi [7].

In order to give an equivalent definition which we shall use, we

start with affine connections V and V with zero torsion tensors defined

on a manifold M (or on an open subset of M). We say that V and V

are projectively equivalent if there is a 1-form p such that

(1) VxY=VxY+p(X)Y+p(Y)X

for all tangent vector fields X and Y. Geometrically, this means that
both affine connections have the same family of curves as geodesies
(though the affine parameters may not be the same). See Eisenhart [4,
p. 87] and Tanaka [11, Appendix].

We say that a differentiate manifold M has a projective structure
P if M has an open covering {Ua}, where each Ua has a torsion-free
affine connection Vα in such a way that in any non-empty intersection
Ua Π Uβ the affine connections Vα and V3 are projectively equivalent. We
may call such a covering {i7α} an atlas for the projective structure P
and it is obvious when two atlases define the same projective structure.

PROPOSITION 1. If M has a projective structure, we can find a
torsion-free a fine connection V on the whole M such that in a neighbor-
hood of each point, V is projectively equivalent to a local affine connection
Vα on Ua of the atlas.

PROOF. Choose a partition of unity {/α} subordinate to {Ua} and
define a global affine connection V = Σ/«^ α Note that each point x of
M has a compact neighborhod on which all but a finite number of fa's
vanish so that V is locally a finite convex sum of torsion-free affine con-
nections which are projectively equivalent. •

PROPOSITION 2. Let V be a torsion-free affine connection on a

manifold M. Given a volume element (i.e. a non-vanishing n-form) ω

on M, there is a unique torsion-free affine connection V on M such that
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(1) V is projectively equivalent to V;
(2) Vω = 0 (that is, ω is a parallel relative to V).

PROOF. It is easily verified that

is the unique choice for the 1-form in (1), where the right-hand side is
independent of the choice of a basis {Xlf •••, Xn} at each point. •

Proposition 2 can be found in Eisenhart [4, p. 104] and Schouten
[9, p. 288].

The Ricci tensor of an affine connection is defined by

Ric(Γ, Z) = trace of the linear map X\->R(X, Y)Z.

The Ricci tensor may not be symmetric
PROPOSITION 3. A torsion-free affine connection V has symmetric

Ricci tensor if and only if it admits locally a parallel volume element.
If the manifold M is simply connected, then a torsion-free affine con-
nection with symmetric Ricci tensor admits a global parallel volume
element.

PROOF. From the definition of the Ricci tensor and the first Bianchi
identity for the curvature tensor, we get

Ric(Γ, Z) - Ric(Z, Y) = - trace R(Y, Z) .

If there is a parallel volume element ω in a neighbourhood U, then the
holonomy group at x for U is contained in SL{TX{M)) so that R(Y, Z)
has trace 0. Thus Ric is symmetric. The converse can be proved by
using a well-known theorem on the Lie algebra of the holonomy group.

D
An affine connection with zero torsion is said to be equiaffine if it

admits a globally defined parallel volume element.

PROPOSITION 4. Suppose a differentiate manifold M has a protec-
tive structure P. For any given volume element o) on M we can find
an equiaffine connection (with zero torsion) which induces the given
protective structure P. Such V is unique.

This follows from Propositions 1 and 2.
An affine connection V with zero torsion and symmetric Ricci tensor

is said to be projectively flat if in a neighborhood of each point V is
projectively equivalent to an affine connection V which is flat, that is,
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the curvature tensor R is identically zero. The following is well-known
(H. Weyl).

PROPOSITION 5. A torsion-free equiaffine connection V is protectively
flat if and only if

(a) the protective curvature tensor W defined by

( 3) W(X, Y)Z = R(X, Y)Z - {Ric( Y, Z)X - Ric(X, Z) Y)
(n - 1)

is identically 0; and

(b) the Ricci tensor satisfies Codazzi equation, that is,

(4) (V* Ric)( Y, Z) = (VΓ Ric)(X, Z)

for all tangent vectors X, Y, Z.
Furthermore, if d i m i k f = w ^ 3 , then (b) follows from (a). For

n = 2, (a) is automatically satisfied, so (b) is a necessary and sufficient
condition for protective flatness.

REMARK. The protective curvature tensor W defined by (3) is the
same for all protectively equivalent equiaffine connections.

For Proposition 5, see Schouten [9, p. 289], Eisenhart [4, p. 95]. It
is known that the Levi-Civita connection of a nondegenerate metric g is
protectively flat if and only if g has constant sectional curvature.

Finally, a protective structure P defined by an atlas {Ua, V
α} is flat

if each local affine connection Vα is protectively flat. This definition
indeed coincides with the definition of flat projective structure given in
the first paragraph of this section.

2. Bihomogeneous projectively flat manifolds. By a bihomogeneous
manifold M we mean a manifold M with a pair of Lie groups Gx and G2

acting effectively and transitively on M in such a way that the transfor-
mation by every element aλ of Gx commutes with the transformation by
every element a2 of G2. It is natural to denote the action of Gx on M
on the left:

x e M H* aλx 6 M, a1eGί

and the action of G2 on M on the right

x e M ι-» xa2 e M , a2eG2

and thus we have

{axx)a2 = ax(xa2) for all a1eG1, a2eG2, xeM.

PROPOSITION 6. If M is a bihomogeneous manifold with groups Gλ
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and G2, then M is dίffeomorphic to a Lie group G in such a way that Gt

corresponds to the group of left translations of G and G2 to the group of
right translations of G. Gx and G2 are isomorphic to each other.

PROOF. We show that Gx acts freely on M. Suppose ax e Gx has a
fixed point x e M: aγx = x. For any y in M there exists α2 e G2 such that
y = xa2. Then

showing that αx acts as the identity transformation on M. Since G1 is
effective, αx is the identity element of Gλ. Similarly, G2 acts freely on
M.

By choosing an arbitrary point xQ in M as the origin we can define a
diffeomorphism f of Gx onto M by f(a^) = a^. Since fφ^) = (δiαJίCo =
bifi(xo)> we see that the action of Gx on Λί corresponds to the action of
Gi on itself by left translations. This way we can identify M with Glf

and similarly for M and G2.
For each a1 in Gx we can find a unique a2 e G2 such that atxQ = ίc0α2.

It is easy to verify that 0: ax 6 Gx —• α2 6 G2 determined in this way is an
isomorphism of Gx onto G2. Π

Now let M and Λf be differentiate manifolds with projective struc-
tures P and P, respectively. A diffeomorphism f of M onto M is called
a projective transformation if for each local connection Vα of the atlas
for M the pull-back /*Vα is projectively equivalent to every local affine
connection of the atlas for M. For a manifold M with a projective
structure P, a projective transformation of M onto itself is also called
an automorphism of (M, P). The group of all automorphisms is denoted
by Aut(M, P).

A manifold M with a projective structure P is bihomogeneous if the
action of each group Gίf i = 1,2, preserves P. In this case, M may be
thought of as the space of a Lie group G provided with a biinvariant
projective structure, namely, a projective structure which is preserved
by left and right translations.

We want to reduce the study of this structure to that of a biin-
variant affine connection which is projectively flat. For this purpose, we
prove the following general result.

THEOREM 1. Let G\ΐl he a homogeneous space of a connected Lie
group G. Assume

(1) G/H admits a projective structure invariant by G;
(2) G/H admits a volume element ω invariant by each g e G up to



HOMOGENEOUS PROJECTIVELY FLAT MANIFOLDS 413

a scalar multiple, that is, for each geG there is a positive constant c(g)
such that g*ω — c(g)ω.
Then there is on G/H a unique invariant torsion-free affine connection
V which is equiaffine relative to ω and which induces the given protective
structure.

PROOF. By Proposition 4 we can choose an equiaffine connection V
relative to ω which induces the given projective structure. For each geG,
the transform #*V of the connection V is equiaffine relative to the pull-
back g*ω = c(g)ω and hence relative to ω. By the uniqueness part of
Proposition 2 we conclude that g*V = V. Thus V is invariant by every
geG. The uniqueness of V is clear. •

REMARK. A typical situation of a volume element as in condition (2)
is the usual volume element on the affine space Rn regarded as a homo-
geneous space A{n, R)/GL(n, R) of the affine group A(n, R). An orientable
homogeneous space G/H with compact H, in particular a Lie group G
itself with H = {e}, has an invariant volume element.

We obtain

COROLLARY. Let G be a connected Lie group with a biinvariant
projective structure. Then there is a unique torsion-free biinvariant
affine connection which is equiaffine relative to a left invariant volume
element and which induces the given projective structure.

PROOF. Consider G as a homogeneous space G/D, where G = GxG
and D is the diagonal subgroup of G. A left invariant volume element
on G satisfies condition (2) in Theorem 1 for the action of (α, b) e G,
which is xeGv^>axb'1 eG. In fact, R*-ιω is left invariant and hence
equal to a constant multiple of ω. •

3. Biinvariant projectively flat affine connections on Lie groups.
Our problem is now to study biinvariant projectively flat affine connec-
tions on Lie groups. Let g be the Lie algebra of a Lie group G. Recall
that for any left invariant geometric structure on G (such as a Rieman-
nian metric, an affine connection, etc.) there is an algebraic structure
on g. If V is a left invariant affine connection on G, then it can be
expressed as a bilinear mapping

(5) {X, Y)eQXQ^VxYe8.

This transition comes simply by observing that if X and Y are left
invariant vector fields on G (i.e. elements of g), then so is VXY. See
Nomizu [8]. Since the torsion tensor is 0 we have
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(6) VXY-VYX=[X, Y] for X, Γeg.

Biinvariance of the affine connection of G leads to the invariance of the
bilinear mapping (5) by the adjoint mapping in g:

(7) Vίz,xlY+Vx[Z, Π = [Z,VXY].

The connection being equiaffine relative to a left invariant volume
element on G we have

(8) traceVx = 0 for XβQ.

Somewhat more generally, even if the affine connection V is not
equiaffine relative to a left invariant volume element on G, assume it
has symmetric Ricci tensor (that is, it admits locally a parallel volume
element—see Proposition 3). Let 7 be the normalized Ricci tensor
7(F, Z) = Ric(F, Z)/(n — 1), where n = dimG. The projective curvature
tensor W is given by

W(X, Y)Z = R(X, Y)Z - {τ( Y, Z)X - 7(X, Z) Y) ,

which is an algebraic expression in g like (5), (6) and others. Thus the
projective flatness is given by

(9) R(X, Y)Z = 7(Γ, Z)X - 7(X, Z)Y.

We now prove

LEMMA. Let V be a biinvariant torsion-free affine connection on a
Lie group and consider its Lie algebra expression on the Lie algebra g.
If V is flat (that is, R = 0), then g becomes an associative algebra over
R with respect to multiplication X Y — VXY.

PROOF. R = 0 gives

vxvγz - vYvxz - vUtT1z = o
and hence

(10) X-(Y-Z) - Y>(X-Z) - (X Y- Y-X)-Z=0 .

On the other hand, biinvariance of V leads to

Vtx.nZ + VΓ[X, Z] = [X, VYZ]

that is,

(X F- Y X) Z+ Y (X.Z-Z X) = X-(Y-Z)-{Y-Z).X.

Combining this with (10) we get Γ (Z X) = (Y Z) X, thus proving
associativity of the multiplication.

Conversely, let A be any associative algebra over R. Then A can
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be made into a Lie algebra g by setting [X, Y] = X- Y— Γ X. Also the
bilinear mapping (X, Y)\-+VΣY= XΎ is biinvariant and flat. Hence
the simply connected Lie group G with g as its Lie algebra will have a
biinvariant, torsion-free, flat affine connection.

For the study of left-invariant complete torsion-free flat affine con-
nections on Lie groups, see Auslander [2].

Next we prove

THEOREM 2. Let V be a biinvariant torsion-free affine connection
on a Lie group G. Assume V has symmetric Rίcci tensor and is pro-
jectively flat. Then the Lie algebra g can be enlarged to a Lie algebra
Q = g φ Re which admits a biinvariant torsion-free flat affine connection
V (so that Theorem 2 applies and g becomes an associative algebra with
identity e). If furthermore V is assumed to be equiaffine relative to a
left-invariant volume element, then g can be recovered in g as

(11) g = {u 6 g; tracefy βQ-^u-vβQ} = 0} .

PROOF. In the direct sum g = g 0 Re, as a Lie algebra, we define a
bilinear mapping V:gxg—•§ by

(12) V X F = V X Γ-7(X, Y)e for X, Γeg

and

(13) Vxe = VβX = X for Xe g and V.e = e .

We now wish to verify that V corresponds to a biinvariant torsion-
free flat affine connection on a Lie group with Lie algebra g.

First, the torsion tensor is 0, namely Vuv — Vυu = [u, v] for all
u, veQ. The only non-trivial case is for X, Γeg

Vx Y - VFX = Vz Y - 7(X, Y)e - (VrX - τ( Y, X)e)

= V X F - V F X = [ X , Y],

because of the symmetry of 7.

The curvature tensor R(Xf Y)Z = VXVYZ - VYVXZ - VίΣίYlZ can be
computed as

&(X, Y)Z = R(X, Y)Z - 7( Y, Z)X + 7(X, Z) Y

- 7(X, VγZ)e + 7(7, VzZ)e + 7(VX7, Z)e - 7(VFX, Z)e .

The first three terms on the right hand side give 0 because of (9). We
have

7(VΓX, Z) = -(VF7)(X, Z) .
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Since projective flatness implies Codazzi equation for the Ricci tensor (4),
we have (VX7)( Γ, Z) = (VF7)(X, Z). Thus we find &(X, Y)Z = .0.

The remaining verification of R{X, Y)e = 0, &(X, e)Y - 0 and
R(X, e)e = 0, where X, Feg, is straightforward. We have thus R = 0.

Biinvariance of V can be checked as follows. For X, Y,ZβQ, we
have

VU,F]Z + VF[X, Z] = V[X,F]Z - 7([X, Γ], Z)e + VF[X, Z]

- 7( Y, [X, Z])β = VU,F]Z + VF[X, Z] ,

since

7([X, Y],Z) + j(Y,[X,Z]) = 0

because 7 is biinvariant, like V and R. On the other hand

[X, VYZ] = [X, VFZ - 7( Γ, Z)e] = [X, VFZ]

Thus biinvariance of V on g leads to

V[XfΓ]Z + VF[X, Z] = [X, VFZ] .

It is now easy to complete the verification of the biinvariance of V.
By the lemma, § becomes an associative algebra with multiplication

u v = Vuv. We get X e = X = e X and e e = e, so that e is the
identity for the algebra.

Assume condition (8) for V in g. For Xeg we have

XΎ= V Z F - 7 ( X , Y)e and X e = X ,

so

traced Ggh->X ^eg} = trace{ ΓegH->V^Γeg} = 0

by assumption. Obviously, trace {wegi—>e *ueQ} — dimg. Hence we
have (11). •

Conversely, we may start with an associative algebra A with identity
over R. Let ά\mRA — n + 1. As we already know, we can make A into
a Lie algebra g by defining [u, v] = uv — vu and obtain a biinvariant
torsion-free flat aίfine connection by Vuv = uv. Let

τ(u) = traced e g H-> UV e g} .

We have τ(e) = n + 1. Let g = {weg; τ(u) = 0}. Then g is a Lie sub-
algebra such that g = Q@Re and [g, g]cg. For X, Y in g, define VXY
to be the g-component of VXY. We can verify that this defines a bi-
invariant torsion-free aίfine connection in g which is protectively flat.

Another way of viewing this situation is to consider the group U of
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all units (i.e. invertible elements) in the associative algebra A. The
quotient group G = U/R*e, where R* is the multiplicative group of all
nonzero reals, can be considered as an open subset of the real projective
space A/R*e. Thus G admits a natural flat projective structure in such
a way that the group G acts on the left as well as on the right as
projective transformations. We may summarize this as follows;

THEOREM 3. Every bihomogeneous projectively flat manifold is
equivariantly projectively diffeomorphic to a Lie group with a biinvariant
projective structure. Every such Lie group G can be obtained as follows:
Take the group of units U in the corresponding associative algebra with
identity and form U/R*e. Take the universal covering group G of U/R*e
and take the quotient G = GjΓ, where Γ is a central discrete subgroup
ofG.

REMARK. The connection between associative algebras with identity
and commuting pairs of transitive projective group actions on domains
in RPn was already known to E. Study [10] in 1890.

COROLLARY. There is a natural one-one correspondence between
(a) simply connected bihomogeneous projectively flat manifolds up

to equivariant projective diffeomorphism;
(b) associative algebras with identity over R up to algebraic iso-

morphism.

Study [10] classified all associative algebras over R of dimensions 2
and 3. For higher dimensions, see Happel [5]. Vinberg [12] studied
projectively homogeneous bounded domains in Rn using a certain kind of
non-associative algebras.

REMARK. In order to emphasize the fact that bihomogeneity is not
only the manifold but also a choice of a pair of groups Gx and G2 acting
on it, we mention the following example.

The ordinary affine space JB3 may be considered as a (projectively,
in fact, affinely) flat space with G1 and G2 as usual translations: j e R —»
α + j: = j + α, α e Gx — G2. Or we may identify the points (x, y, z) e Rz

with the elements

1

0

0

X

1

0

z

y

1

of the 3-dimensional Heisenberg group H and regard G1 as H acting on
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consisting of all matrices

aeR.

itself by left multiplication and G2 by right multiplication. In this case,
Gx and G2 are non-abelian. The Lie algebra § consisting of all matrices

"0 x z]

0 0 y

.0 0 0.

is enlarged to the associative algebra A =

a x z~

0 a y ae

.0 0 α_

We may also consider two other protectively flat manifolds PSL(2, R),
which is bihomogeneous with a unique choice of the pair (Glf G2), and
RPZ, which is bihomogeneous where the choice of (G19 G2) is unique up to
conjugacy within the automorphism group.

4. Semisimple Lie groups. In this section, we prove

THEOREM 4. Let G be a semisimple Lie group that admits a bi-
invariant torsion-free equiaffine relative to a left-invariant volume ele-
ment connection which is protectively flat. Then its Lie algebra is
isomorphic to $l(n, R) or to $l(n, H), where H is the quaternion field.

PROOF. By Theorem 3 we obtain an associative algebra g = g φ Re.
By the lemma below, we see that this associative algebra g is semisimple
if the Lie algebra g is semisimple. The structure theorem of Wedderburn
implies that g splits as gx + g2 + + gfc, where each §f is isomorphic to
gl(n, R), Ql(n, C) or gl(w, H). (See van der Waerden [13], p. 54). If there
were more than one summand, then z = m2et — m^, where et is the
identity of gf and m* = diing* for i = 1, 2, would be in the center of g.
In fact, for each cceg, written x = χ1 + x2 + ••• + xk with α?{εgi9 we
have

[x, z] = (α?i + x2 + + ^A)(m2e1 — mxβ2) — {m2eλ — m1e2)(a?1 + x2 + + xk)

= m2xγ — mγx2 — (m^ — mxx2) = 0 .

We still have to show that zeg. This can be done by checking that

trace{w e g t-> zu e g} = 0 .

Therefore we conclude that g is either gl(n, R) or gl(n, C) or QΪ(n, H).
The case gl(n, C) must be excluded because the element ie is in the
center of g.

If § = 9l(w, R), then we get g = Sl(n, R).
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If g = QΪ(n, H), then g is the Lie subalgebra consisting of all Xe
Ql(n, H), which as a real linear transformation of the real 4^-dimensional
vector space has trace 0. This is 8l(n, H), known to be semisimple. See
Hausner und Schwartz [6, p. 186]. •

We now prove

LEMMA. If g is semisimple, then the associative algebra g is semi-
simple, that is, g does not contain any nonzero nilpotent two-sided ideal.

PROOF. Let I be a nilpotent two-sided ideal of the associative
algebra g. If \a e I, then left multiplication by a is a nilpotent linear
transformation and has trace 0. Thus a e g. Hence I is a nilpotent ideal
of the Lie algebra g and / = {0}, because g is semisimple. •

EXAMPLE. For g = δί(n, R),

V X Γ = XY- (tτa.ce(XY)/n)In (In: identity matrix)

defines a biinvariant torsion-free affine connection which is protectively
flat. The normalized Ricci tensor is given by

and the curvature tensor by

R(X, Y)Z = 7( Y, Z)X - 7(X, Z) Y ,

as can be directly verified. Note that the Ricci tensor is a constant
multiple of the Killing-Cartan form.

5. Bihomogeneous bounded domains in RPn. In order to show the
relationship of our work to that of Vinberg [12] we prove that the
interior of a simplex is the only protectively bihomogeneous bounded
domain in Rn. The proof is more natural in terms of protective spaces.
So we first give the following definitions.

By a bounded domain Ω in RPn we mean a domain Ω which avoids
a neighborhood of a hyperplane H. If H is taken as the hyperplane at
infinity, then ΩcRn = RPn — H is bounded. A bounded domain Ω is
called an open simplex if it is the interior of a simplex in Rn = RPn — H.
In suitable homogeneous coordinates it can be described as the set of all
points (x0, , ficj, where xt > 0 for all i.

We shall prove

THEOREM 5. An open simplex is the only bihomogeneous bounded
domain in RPn.

We prove two lemmas.
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LEMMA 1. Let ΩczRP71 be a bίhomogeneous domain and π: Rn+1—
{0} —> RPn be the canonical projection. Then Rn+1 can be given the
structure of an associative algebra in such a way that Ω = π(UQ), where
Uo is the identity component of the group of units.

PROOF. Let / be an identifying map from the simply connected
covering Ω of Ω onto the simply connected covering Go of GocP(§) (in
the manner of Theorem 3). If p2 is the projection of Go onto Go, then
p2of is a development (i.e. a map which is locally a protective diffeo-
morphism) of Ω into P(§), as is the projection pλ: Ω —> RPn. Thus there
exists a projective transformation g of RPn onto P(§) such that p2°f =
g o p1# So we get g(Ω) = Go.

LEMMA 2. // α bounded domain ΩcRPn is bihomogeneous, then the
corresponding associative algebra A does not contain elements x with
x2 = —-1 nor nonzero elements x with x2 = 0.

PROOF. If x2 — — 1, then Xe + μx with λ2 + μ2 — 1 has an inverse
Xe — μx. So G — U/R*eczRPn contains a whole projective line through
e, which is a contradiction because g(Ω) = Go by Lemma 1 and Ω is
bounded. If x2 = 0 and $ ^ 0, then e + μx has an inverse e — μx for all
μ. Thus GQ contains a line minus a point, which is again a contradiction.

PROOF OF THEOREM 5. The associative algebra A corresponding to a
bihomogeneous bounded domain ΩaRPn (in the manner of Theorem 3) is
semisimple, because if it had a nonzero nilpotent ideal, it would have an
element x Φ 0 such that x2 = 0. By the theorem of Wedderburn and by
the fact that A contains no element x with x2 = —1, we conclude that
A is the direct sum R 0 R φ φ R. The identity component in the
group of units in A consists of all points (xOf •••, xn), where all xt > 0.
We thus obtain the conclusion that Ω is an open simplex. •

6. Projectively flat manifolds with transitive translation groups.
Let M be a differentiate manifold with a projective structure P. A Lie
group G acting freely on M is called a translation group for (M, P) if
every orbit of each 1-parameter subgroup of G is a geodesic. We shall
determine all projectively flat manifolds (M, P) which admit transitive
translation groups.

LEMMA. Suppose G is a translation group which is transitive on a
manifold M with a projective structure P. Then (M, P) is projectively
diffeomorphic to (G, Po), where Po is the biinvariant projective structure
on the Lie group G which is determined by the (Oyconnection of G. Here
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the (^-connection of G is the biinvariant affine connection on G which
is given by

ΨZY=[X, Y]/2.

For the (O)-connection, see Nomizu [8]. Every 1-parameter subgroup
at of G has orbits atx (left action) and xat (right action) which are
geodesies.

PROOF. Choose an arbitrary point xQ as the origin of M and define
a diffeomorphism φ: G —> M by φ(a) — a(x0) for each aeG. Also choose a
torsion-free affine connection V which determines P. Then the pull-back
0*V and the (O)-connection V° have the same geodesies and thus they are
protectively equivalent. This means that φ is a projective diffeomorphism
between (G, Po) and (M, P). It also follows that the given translation
group G is contained in Aut(Λf, P) and that (M, P) is bihomogeneous
(corresponding to biinvariance of Po on G). •

Now E. Cartan [2] already considered the problem of determining
all Lie algebras of Lie groups whose (O)-connections are protectively flat.
We shall clarify and complete his work by using a method from §3. We
shall prove the following theorem which is due to Cartan, except that
his statement is somewhat vague on the last three cases.

THEOREM 6. If the (^-connection on a Lie group G is projectively
flat, then the Lie algebra Q of G is isomorphic to one of the following
Lie algebras:

(1) g is abelian or 2-step nilpotent (this is the case if and only if
the (^-connection is flat).

(2a) g has an abelian ideal ϊ of codimension 1 such that g = (-3Γ0)ΘΪ>
where [XQ, X] = X for all Xeΐ.

(2b) g has two ideals ί+ and ϊ~ such that g = (Xo) 0 ί+ 0 ϊ~, where

[Xo, X] = X for all Xet+

[X0,X] = -X for all Xet~

f = i+ 0 t~ abelian ,

and

0 < dim I" ^ dim ϊ+ < n - 1 .

( 3) g = (Xo) 0 ϊ, where I is an abelian ideal with a basis {Xlf , Xp,
Ylf Yp} such that

[XQ, Xt] = Yi and [Xo, Yt] = --X* for l ^ i ^ p .

( 4 ) β =
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( 5 ) g = o(3).

Conversely, a Lie group with such a Lie algebra is projectively flat rela-
tive to the (0)-connection.

PROOF. We first note that the curvature tensor R of the ((^-con-
nection is

B(X, Y) = -ad([X, Y])/4

and the Ricci tensor is

ΈLic(Y,Z) = -B(Γ,Z)/4,

where B is the Killing-Cartan form B(Y, Z) = tracead(Y)ad(Z). Thus
Ric is symmetric. The flat case (1) is obvious.

Assume that the (O)-connection is projectively flat but not flat. The
normalized Ricci tensor 7 = Ric/(w — 1) is not 0. Take Xo such that
7(X0, -Xo) = 1 or - 1 . We first deal with the case 7(X0, -Xo) = - 1 .

By Theorem 2 we can construct the associative algebra g = 9 0/ίe,
in which we have

XI = VXoXo - 7(X0, X0)e = "e .
Let

ϊ = {Xeg;7(X0, X) = 0}.

Since 7 = — i?/4(w — 1) is biinvariant, we have

7([X0, X], Xo) + 7(X, [Xo, Xo]) = 0

and hence [Xo, X]e ϊ for every Xeg. In particular, we can consider the
linear endomorphism θ of ϊ defined by

Θ(X) = [Xo, X]/2 - Xo X .

Since X0

2 = e in g, we see that 0 is involutive. Thus θ has eigenvalues
1 or —1 or both.

If 1 is the only eigenvalue, then we get g = iίX0 0 f, where [Xo, X] =
2X for every Xeϊ . By replacing Xo by X0/2, we get the Lie algebra
described in (2a).

If —1 is the only eigenvalue, then replacing Xo by — X0/2, we get the
same Lie algebra structure as above.

Now suppose that both 1 and —1 are eigenvalues of θ. Then
changing Xo to X0/2 we get g = / ? X o 0 i + 0 i ~ , where [X0, X] = X for
X e ϊ + and [Xo, X] = - X for Xeϊ" . Assume X, Yeΐ+. We show that
[X, Y] = 0. We have

[Xo, [X, Y]] = -[X, [Y, Xo]] - [Y, [Xo, X]]

= -[X, - Γ ] - [ F , X ] = 2[X, Y\.
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If we write [X, Y] = λX0 + U + V, with Uet+, Vel'f then

[Xo, [X, Y]] = [Xo, EΠ + [X0,V]=U-V,

while the above shows that

[Xo, [X, Y]] = 2λX0 +2U+2V.

Hence λ = 0, U = 0, 7 = 0 , that is, [X, Y] = 0 for X, Γ e ϊ + .
Similarly, [X, Y] = 0 for X, Γ e ί " .
Now let X e ϊ + and Yef". From

[Xo, [X, Y]] = -[X, [F, Xo]] - [F, [Xo, X]] = -[X, Y] - [Γ, X] = 0

we get [X, Y] = λX0 for some xeR. We now repeat Cartan's argument.
Let {X19 « ,Xm} be a basis of ϊ + and {XTO+1, •• ,X7l_i} a basis of ϊ~.
From what we have seen already, we have the following information
about the structure constants of the Lie algebra g (0 ̂  σ, p ^ n — 1):

[Xif Xj] = cS,Xo for l ^ i ^ r a , m + l ^ i ^ n - 1 ;

cj. = 1 , cσoi = 0 for σ Φi , cσ

iS = 0 for all σ, if 1 <; i, i ^ m

cίy = - 1 , cj, = 0 for σ Φ j , cfc = 0

for all σ, if m + 1 ^ i, i ^ w — 1

cϊs = 0 for all σ ^ 0 , if 1 ^ i ^ m and m + l < Ξ j ^ w — 1 .

Using all this information we can compute the Killing-Cartan form B for

Xi and Xj, l < ; ΐ ^ m , m + l ^ i ^ ^ — 1:

tX,)) = g c?Pc?σ

= c\s - c% = 2c%

For the normalized Ricci tensor we have

Ύ(Xi,Xi)= -cy2(n-l).

On the other hand

R(X0, Xτ)Xά = Ύ(Xif Xj)X0 = -cΐjXJ2(n - 1)

- -[[Xo, XJ, X,]/4 - -[X,, X,]/4 = -<X0/4 .

Hence cj, /2(w — 1) = 4, /4. If w Φ 3, this implies cjy = 0, that is,
[Xίf Xj] = 0 for 1 <; i ^ m, m + 1 ^ i ^ n — 1. If ti = 3, we might still
have Cij — 0, but cϊy may be a nonzero number.

When cij = 0, we have the Lie algebra structure described in (2b),
including the case n = 3. We may assume dim ϊ~ ^ dim ϊ + without loss
of generality.

When n — 3 and cjy ̂  0, this means we have a basis {Xo, Xly XJ of
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g such that [XQ, JQ = X19 [Xo, X2] = - Jζ and [Xlt X2] = Xo. Or by taking
Y, = (-Xi + Jζ)/i/ 2 and Γ2 = (X, - X2)\V 2 , we have

[Xo, ΓJ = F2 , [Ylf Y2] = -X o , [Γ2, XJ = Yi .

Thus we get g = §1(2, R) in (4).
We now proceed to the case where we have 7(X0, Xo) = 1. In g we

have

XI = VXoXo - 7(X0, X0)β = -e .

If ϊ = {XeQ;Ύ(X0, X) = 0}, then ϊ is invariant by the endomorphism θ
induced by u—>X0-u as before. Since θ2 is —/, we have a basis in ϊ
of the form {Xίf , Xp, Y19 , Yp} where Yd = &Xif 1 ^ j ^ p.

We complexify g and write gc = CX0 0 ϊ c

Z, = X,. - iYj and Zy = Xt + iYd, 1 ^ j ^ p .

Extending θ to ϊc, we have Θ(Z5) = iZs and Θ(ZS) = — iZy. We may
write ϊc = ϊ+ i 0 I"*, the direct sum of the eigenspaces t+ί for i and ϊ"*
for — ί. We have dim ϊ+ i = dim I™*. We can now repeat the argument
in the case of g = RX0 + ϊ+ + ϊ~ essentially in the same way in order
to conclude that unless n = 3, ϊ c is abelian, so that ϊ is abelian. We
get the Lie algebra structure described in (3) by simply replacing Xo by
XJ2.

If n = 3 and ϊ is not abelian, we have a basis {XQ, Xlf X2} in g such
that

[Xo, Xt] = X2 , [Xo, X2] = — XiCso [X2J Xo] = Xj) , [-Xi, X2] = X o

Thus g = o(3) as in (5). This completes the proof of Theorem 5. •

REMARK. For the Lie algebras in (2a), (2b) and (3) we can determine
all biinvariant affine connections and show that they are projectively flat.
On the other hand, each of §1(2, R) and o(3) has a unique biinvariant
torsion-free affine connection.

7. Geometric models for Theorem 6. We now wish to construct
geometric models for all projectively flat manifolds admitting a transitive
translation group. According to Theorem 3 we can proceed in the follow-
ing two steps:

(1) Determine the group of units U in the associative algebra §
corresponding to each Lie algebra listed in Theorem 6 and consider the
identity component Go of its projectivization G = U/R*e.

(2) Determine the discrete central subgroups Γ of the universal
covering group G of G. Every Lie group with Lie algebra g is then
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obtained as G = G/Γ.
We distinguish the following cases as in Theorem 6.
Case (1): g is abelian or 2-step nilpotent. Since the Ricci form 7

vanishes identically on g, the associative product X-Y in § for X, Ye$
is simply given by [X, Γ]/2eg. An element z = xe + X, Xeg, in § is a
non-unit if and only if there exists μe + Y, Feg, in § such that

0 = (λβ + X){μe + Γ) = λμe + XY + μX + [X, Γ]/2 .

Considering the cases μ = 0 and μ ^ 0 separately we see that λ has to
be 0. Conversely, λ = 0 clearly implies that z is a non-unit. Thus the
units in g are exactly the elements z = λe + X with λ Φ 0. The projec-
tion G of the group of units U to the protective space P(§) is the com-
plement of a hyperplane. G is simply connected and we therefore obtain
the most general Lie group with Lie algebra g by passing to the quotient
G = ό/Γ, where Γ is a discrete central subgroup of G.

Cases (2a), (2b) and (3): g is one of these in Theorem 6. Using the
notation in the proof of Theorem 5 any element z e Q can be written as
z = xe + μX0 + X, with Xeΐ. A computation similar to that in Case (1)
shows that z is a unit if and only if

or

o in case (2a) and (2b)

+ μ* φ o in case (3) .

Thus the group of units in g projects to the complement G2 of two
hyperplanes in P(§) in case (2a) and (2b) and to the complement G8 of a
subspace of codimension 2 is case (3).

Go is the unique connected Lie group with Lie algebra g, because it
is simply connected and has trivial center. To see that Go has trivial
center one can use the following matrix representation of the Lie
algebra g:

/λ + μ

0
λ + μ

X - μ

0
x-μ χn
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Similarly, G3 has trivial center as can be seen from the following re-
presentation of the Lie algebra g of case (3):

(X -μ

μ X xι

X —μ

μ X

0

0 #2 - J

λ

λ

1

0

Thus the center of the universal covering group G of G3 corresponds
exactly to the fundamental group of G8, which is isomorphic to Z. There-
fore the most general group with Lie algebra g in case (3) is given by
an arbitrary convering of G3.

Case (4): g = 31(2, R). Here g is isomorphic to gl(2, R) and z e gl(2, R)
is a unit if and only if det z Φ 0. The determinant is a quadratic poly-
nomial on gϊ(2, R) of signature ( —, —, +, +). Thus the image G of the
group of units is the complement of a quadratic in P(g) = RPS.

As in case (3) we can use the fact that the identity component of
Go has trivial center to show that an arbitrary connected Lie group with
Lie algebra §1(2, R) is a covering of Go = PSL(2, R).

Case (5): g = o(3). Here g is the quaternion algebra and every
nonzero element is a unit. The image of all the units in P(§) is there-
fore the whole of P(§) = RP\ The only further connected group with
Lie algebra o(3) is S\
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