A CLASS OF DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

MAKOTO NAMBA

(Received July 28, 1986)

1. Introduction. The pair of the period integrals

$$Y = \left(\int_{\tau} \frac{dz}{w}, \int_{\tau} \frac{zdz}{w}\right)$$
 for a 1-cycle γ

of the family of elliptic curves

$$w^{\scriptscriptstyle 2}=4z^{\scriptscriptstyle 3}-xz-y$$
 ,

parametrized by $(x, y) \in C^2$ with $\Delta = x^3 - 27y^2 \neq 0$, is known to satisfy the following differential equation of Fuchsian type of rank two on the complex projective plane $P^2 = P^2(C)$:

$$(1.1) dY = Y\Omega .$$

Here Ω is a (2×2) -matrix-valued meromorphic 1-form on P^2 defined by

•

The differential equation (1.1) has regular singularity along $C \cup L_{\infty}$, where C is the closure in P^2 of the affine curve $\{(x, y) \in C^2 | \Delta = 0\}$ and L_{∞} is the line at infinity.

For $\{\gamma_1, \gamma_2\}$ which gives rise to a Z-basis for the first homology group of the elliptic curve with the intersection number $\gamma_1 \cdot \gamma_2 = 1$, the multivalued map

$$S: \boldsymbol{P}^2 - C \cup L_{\infty} \to \boldsymbol{C}^2$$

which sends (x, y) to

$$(u, v) = \left(\int_{\tau_1} \frac{dz}{w}, \int_{\tau_2} \frac{dz}{w}\right)$$

has the single-valued inverse map

$$S^{\scriptscriptstyle -1} {:} \, D \mathop{
ightarrow} {oldsymbol{P}}^2 - C \cup L_{\scriptscriptstyle \infty}$$
 ,

which sends (u, v) to (x, y), where

$$D = \{(u, v) \in C^2 | uv \neq 0, \text{ Im}(v/u) > 0\}$$

is the image of S and Im(z) is the imaginary part of $z \in C$.

 S^{-1} can in fact be written as the Eisenstein series:

$$x = 60 \sum rac{1}{(mu \, + \, nv)^4}$$
 , $y = 140 \sum rac{1}{(mu \, + \, nv)^6}$,

with the summation taken over all pairs (m, n) of integers with $(m, n) \neq (0, 0)$.

The purpose of this paper is to discuss a wider class of differential equations

$$(1.2) dY = Y\Omega$$

of Fuchsian type of rank two on P^2 with regular singularity along $C \cup L_{\infty}$, which contains the differential equation (1.1) as a special case.

We discuss the multi-valued map

$$S: I\!\!P^{\scriptscriptstyle 2} - C \cup L_{\scriptscriptstyle \infty} \,{
ightarrow}\, C^{\scriptscriptstyle 2}$$
 ,

which sends (x, y) to $(u, v) = (f_1, g_1)$, where (f_1, f_2) and (g_1, g_2) are linearly independent solutions of (1.2). We give a criterion for the singlevaluedness of the inverse map S^{-1} from the image of S to $P^2 - C \cup L_{\infty}$.

Finally, using (1.2) and Selberg's theorem, we give an existence theorem for finite Galois coverings $\pi: X \to \mathbf{P}^2$ with the branch locus $C \cup L_{\infty}$.

2. Differential equations of Fuchsian type. Let p be a point of a connected complex manifold M of dimension n. Let \mathcal{Q} be an $(r \times r)$ -matrix-valued meromorphic 1-form on a neighborhood U of p in M satisfying the integrability condition

$$d\Omega + \Omega \wedge \Omega = 0.$$

Suppose that Ω can be written as

(2.2)
$$\Omega = B_1(z)dz_1 + \cdots + B_{n-1}(z)dz_{n-1} + B_n(z)dz_n/z_n$$

where $z = (z_1, \dots, z_n)$ is a local coordinate system in U with $p = (0, \dots, 0)$, and $B_j(z)$ $(1 \le j \le n)$ are $(r \times r)$ -matrix-valued holomorphic functions on U. Then we say that the differential equation

$$(2.3) dY = Y\Omega$$

in an unknown vector-valued function $Y = (y_1, \dots, y_r)$ has regular singularity along $\{z | z_n = 0\}$. It can be easily seen that this definition is

independent of the choice of a coordinate system (z_1, \dots, z_n) . In this case, the following is known:

THEOREM 1 (Gérard [2], Yoshida-Takano [7]). There is a fundamental matrix solution F(z) on U of (2.3) of the form

$$F(z) = (\exp(C \log z_n))(\exp(N \log z_n))G(z) ,$$

where C is a constant matrix, N is a diagonal matrix whose components are non-negative integers and G(z) is a matrix-valued holomorphic function on U with det G(z) nowhere vanishing. Moreover, if none of the differences of the eigenvalues of $B_n(p)$ are non-zero integers, then N and C can be so chosen that N = 0 and C is equivalent to $B_n(p)$.

Next, let B be a hypersurface in a connected complex manifold M of dimension n. Let Ω be an $(r \times r)$ -matrix-valued meromorphic 1-form on M such that

$$(2.4) d\Omega + \Omega \wedge \Omega = 0.$$

Suppose that (i) Ω is holomorphic on M - B and (ii) for every point p in the set Reg B of all non-singular points of B, there exists a neighborhood U of p in M such that Ω has regular singularity along $B \cap U$. Then we say that the differential equation

$$(2.5) dY = Y \Omega$$

in an unknown vector-valued function $Y = (y_1, \dots, y_n)$ is of Fuchsian type. We say that the equation (2.5) has regular singularity along B.

Let p_o be a fixed point of M - B. The monodromy representation

 $R: \pi_1(M - B, p_o) \rightarrow GL(r, C)$

of the equation (2.5) is defined by

FIGURE 1

$$\sigma^*F(:=F\circ\sigma)=R(\sigma)F$$
 for $\sigma\in\pi_1(M-B, p_o)$,

where F is a fundamental matrix solution of (2.5) in a neighborhood of p_o .

Let $B = B_1 \cup \cdots \cup B_s$ be the decomposition of B into irreducible components. Let σ_j be a loop starting and terminating at p_o , encircling a point $p \in B_j - \text{Sing } B$ in the positive sense as in Figure 1, where Sing B is the singular locus of B.

We identify σ_j with its homotopy class. Then, by Theorem 1, $R(\sigma_j)$ is equivalent to $\exp(2\pi \sqrt{-1}C)$.

3. A class of Fuchsian differential equations on P^2 . We now restrict ourselves to the case $M = P^2$. For complex numbers α , β , γ ($\gamma \neq 0$), δ , ε and ε' , consider the following (2×2)-matrix-valued meromorphic 1-form on P^2 :

(3.1)
$$\Omega = \begin{pmatrix} \frac{\alpha d\Delta}{\Delta} & \frac{\beta(xydx + \varepsilon x^2 dy)}{\Delta} \\ \frac{\gamma(ydx + \varepsilon' x dy)}{\Delta} & \frac{\delta d\Delta}{\Delta} \end{pmatrix},$$

which generalizes Ω appearing in (1.1), where (x, y) is an affine coordinate system and $\Delta = x^3 - 27y^2$. Ω is holomorphic on $P^2 - C \cup L_{\infty}$ with C and L_{∞} defined as in §1. For such Ω , consider the differential equation

$$(3.2) dY = Y \Omega$$

in an unknown vector-valued function Y.

THEOREM 2. Suppose $\beta \neq 0$ and $\gamma \neq 0$. Then the equation (3.2) is of Fuchsian type if and only if (i) $\varepsilon = \varepsilon' = -2/3$ and (ii) $\delta = \alpha + 1/6$.

PROOF. We first examine the regular singularity condition (2.2) and then the integrability condition (2.4). Let $(X_0: X_1: X_2)$ be the homogeneous coordinate system on P^2 such that

$$x = X_{_1}\!/X_{_0}$$
 and $y = X_{_2}\!/X_{_0}$.

The singular locus of $B = C \cup L_{\infty}$ consists of two points (1:0:0) and (0:0:1). (See Figure 2.)

Take a point $p = (a, b) \in C - \text{Sing } B$. Then $a^3 - 27b^2 = 0$. Put

$$z_{\scriptscriptstyle 1} = x - a \quad ext{and} \quad z_{\scriptscriptstyle 2} = arDelta = x^{\scriptscriptstyle 3} - 27y^{\scriptscriptstyle 2} \, .$$

Then (z_1, z_2) is a local coordinate system around p = (0, 0) such that, locally, $C = \{(z_1, z_2) | z_2 = 0\}$. Ω is then written as

$$arOmega=egin{pmatrix} oldsymbol{\omega}_{_{11}}&oldsymbol{\omega}_{_{12}}\ oldsymbol{\omega}_{_{21}}&oldsymbol{\omega}_{_{22}} \end{pmatrix}$$
 ,

where

$$egin{aligned} &\omega_{11}=lpha dz_2/z_2\ ,\ &\omega_{21}=[\gamma\{(2+3arepsilon')(z_1+a)^3-2z_2\}dz_1-\gammaarepsilon'(z_1+a)dz_2]/54hz_2\ ,\ &\omega_{12}=[eta\{(2+3arepsilon)(z_1+a)^4-2z_2(z_1+a)^4\}dz_1-etaarepsilon(z_1+a)^2dz_2]/54hz_2\ ,\ &\omega_{22}=\delta dz_2/z_2\ ,\ &h=[((z_1+a)^3-z_2)/27]^{1/2}\ . \end{aligned}$$

Hence Ω can be written as

$$arOmega = B_{_1}\!(z) dz_{_1} + B_{_2}\!(z) dz_{_2}\!/z_{_2}$$
 ,

where $B_1(z)$ and $B_2(z)$ are (2×2) -matrix-valued holomorphic functions around p, if and only if

(3.3)
$$\varepsilon = \varepsilon' = -2/3$$
.

If this is the case, then

(3.4)
$$B_1(z) = \begin{pmatrix} 0 & \frac{-\beta(z_1 + a)}{27h} \\ \frac{-\gamma}{27h} & 0 \end{pmatrix}$$

and

(3.5)
$$B_2(z) = \begin{pmatrix} \alpha & \frac{\beta(z_1 + a)^2}{81h} \\ \frac{\gamma(z_1 + a)}{81h} & \delta \end{pmatrix}$$

In particular,

(3.6)
$$B_2(p) = \begin{pmatrix} \alpha & \frac{\beta a^2}{81b} \\ \frac{\gamma a}{81b} & \delta \end{pmatrix}.$$

For a complex number c, consider a point

$$q = (0:1:0) \in L_{\infty} - \operatorname{Sing} B$$
, (see Figure 2).

Put

$$t_1 = (y/x) - c$$
 and $t_2 = 1/x$

Then (t_1, t_2) is a local coordinate system around q = (0, 0) such that, locally, $L_{\infty} = \{(t_1, t_2) | t_2 = 0\}$. Ω is written around p as

$$arOmega=C_{\scriptscriptstyle 1}(t)dt_{\scriptscriptstyle 1}+C_{\scriptscriptstyle 2}(t)dt_{\scriptscriptstyle 2}/t_{\scriptscriptstyle 2}$$
 , with $t=(t_{\scriptscriptstyle 1},\,t_{\scriptscriptstyle 2})$,

where

$$C_{ ext{\tiny 1}}(t) = rac{1}{g}inom{-54lpha(t_{ ext{\tiny 1}}+c)t_{ ext{\tiny 2}}}{\gammaarepsilon't_{ ext{\tiny 2}}} - 54\delta(t_{ ext{\tiny 1}}+c)t_{ ext{\tiny 2}}ig)$$

and

$$C_{ ext{\tiny 2}}(t) = rac{1}{g} egin{pmatrix} 54lpha(t_1+c)^2t_2 - 3lpha & -eta(1+arepsilon)(t_1+c) \ -\gamma(1+arepsilon')(t_1+c)t_2 & 54\delta(t_1+c)^2t_2 - 3\delta \end{pmatrix}$$

with $g = 1 - 27t_2(t_1 + c)^2$. Hence $C_1(t)$ and $C_2(t)$ are (2×2) -matrix-valued holomorphic functions around p. In particular,

(3.7)
$$C_2(q) = \begin{pmatrix} -3\alpha & -\beta(1+\varepsilon)c \\ 0 & -3\delta \end{pmatrix}.$$

Next, by simple calculation, we obtain

$$darOmega+arOmega\wedge arOmega=egin{pmatrix} \xi_{11}&\xi_{12}\ \xi_{21}&\xi_{22} \end{pmatrix} rac{dx\wedge dy}{arDelta^2}$$
 ,

where

$$\begin{split} \xi_{11} &= \beta \gamma(\varepsilon' - \varepsilon) x^2 y , \\ \xi_{21} &= \gamma(\varepsilon' - 1 + 3\varepsilon'(\delta - \alpha - 1)) x^3 + 27\gamma(1 - \varepsilon' + 2(\delta - \alpha - 1)) y^2 \\ \xi_{12} &= \beta(2\varepsilon - 1 + 3\varepsilon(\alpha - \delta - 1)) x^4 + 27\beta(1 - 2\varepsilon + 2(\alpha - \delta - 1)) x y^2 , \\ \xi_{22} &= \beta \gamma(\varepsilon - \varepsilon') x^2 y . \end{split}$$

Since $\beta \neq 0$ and $\gamma \neq 0$, we have $d\Omega + \Omega \wedge \Omega = 0$ if and only if $\varepsilon = \varepsilon' = -2/3$ and $\delta - \alpha = 1/6$. q.e.d.

If $\beta = 0$, then the above proof also shows:

THEOREM 2'. The differential equation (3.2), where Ω is as defined in (3.1) with $\beta = 0$ and $\gamma \neq 0$, is of Fuchsian type if and only if $\varepsilon' = -2/3$ and $\delta - \alpha = 1/6$.

Henceforth, we only consider the differential equation (3.2), where

(3.8)
$$\Omega = \begin{pmatrix} \frac{\alpha d\Delta}{\Delta} & \frac{\beta(xydx - (2/3)x^2dy)}{\Delta} \\ \frac{\gamma(ydx - (2/3)xdy)}{\Delta} & \frac{(\alpha + 1/6)d\Delta}{\Delta} \end{pmatrix}$$

with $\gamma \neq 0$. This equation is of Fuchsian type by Theorems 2 and 2'.

Let p_o be a fixed point of $P^2 - C \cup L_{\infty}$. Let σ (resp. σ' , resp. τ) be a loop starting and terminating at p_o , encircling the point (x, y) = $(3, -1) \in C$ (resp. $(x, y) = (3, 1) \in C$, resp. $(X_0; X_1; X_2) = (0; 1; 1) \in L_{\infty}$) in the positive sense as in Figure 3.

Then it is known (see Van Kampen [6]) that $\exists \pi_1(\mathbf{P}^2 - C \cup L_{\infty}, p_o)$ is generated by σ, σ' and τ with the relations

 $\sigma\sigma'\sigma = \sigma'\sigma\sigma' = \tau^{-1}$.

Note that σ and σ' are conjugate, since $\sigma' = (\sigma \sigma')\sigma(\sigma \sigma')^{-1}$. Let

$$R: \pi_1(\mathbf{P}^2 - C \cup L_\infty, p_o) \rightarrow GL(2, C)$$

be the monodromy representation of the differential equation (3.2). Then, by (3.6), (3.7) and Theorem 1, $R(\sigma)$ and $R(\sigma')$ are both equivalent to

(3.9)
$$\exp 2\pi \sqrt{-1}B_2(p) = \exp 2\pi \sqrt{-1} \begin{pmatrix} \alpha & \frac{\beta a^2}{81b} \\ \frac{\gamma a}{81b} & \alpha + 1/6 \end{pmatrix},$$

unless $2\sqrt{D}$ is a non-zero integer, where

$$D = (1/12)^2 + eta \gamma/243$$
 ,

while $R(\tau)$ is equivalent to

(3.10)
$$\exp 2\pi \sqrt{-1}C_2(q) = \exp 2\pi \sqrt{-1} \begin{pmatrix} -3\alpha & -\beta c/3 \\ 0 & -3\alpha - 1/2 \end{pmatrix}.$$

4. The single-valuedness of the inverse map. Let (f_1, f_2) and (g_1, g_2) be linearly independent solutions of the equation (3.2), where Ω is given by (3.8). Consider the multi-valued map

$$S: \boldsymbol{P}^{2} - C \cup L_{\infty} \rightarrow \boldsymbol{C}^{2}$$

which sends (x, y) to $(f_1(x, y), g_1(x, y))$.

LEMMA 1. If $\alpha \neq 0$ and $\gamma \neq 0$, then S is locally biholomorphic.

PROOF. Put $f_{1x} = \partial f_1 / \partial x$, etc. Since

$$df_{\scriptscriptstyle 1} = f_{\scriptscriptstyle 1} lpha (d arDelta / arDelta) + f_{\scriptscriptstyle 2} \gamma (y dx - (2/3) x dy) / arDelta$$

and

$$dg_{\scriptscriptstyle 1} = g_{\scriptscriptstyle 1} lpha (d {arDeta} / {arDeta}) + g_{\scriptscriptstyle 2} {arphi} (y dx - (2/3) x dy) / {arDeta}$$
 ,

we have

$$egin{array}{lll} f_{1x} &= (3lpha x^2 f_1 + \gamma y f_2)/arDelta \;, & f_{1y} &= (-54lpha y f_1 - (2/3)\gamma x f_2)/arDelta \;, \ g_{1x} &= (3lpha x^2 g_1 + \gamma y g_2)/arDelta \;, & g_{1y} &= (-54lpha y g_1 - (2/3)\gamma x g_2)/arDelta \;. \end{array}$$

Hence

$$\begin{vmatrix} f_{1x} & f_{1y} \\ g_{1x} & g_{1y} \end{vmatrix} = \frac{-2\alpha\gamma}{\varDelta} \begin{vmatrix} f_1 & f_2 \\ g_1 & g_2 \end{vmatrix} \neq 0 .$$
q.e.d.

Henceforth, we assume $\alpha \neq 0$ and $\gamma \neq 0$. The image

$$W = S(\boldsymbol{P}^2 - C \cup L_{\infty})$$

is an open set of C^2 . Consider the inverse map

$$S^{-1}$$
: $W \rightarrow P^2 - C \cup L_\infty$.

In general, S^{-1} is also a multi-valued map.

THEOREM 3. Let p be a non-zero integer and q be either $+\infty$ or an integer greater than one. If $\alpha = 1/6p$ and $\beta\gamma = 27(36 - q^2)/16q^2$, (while $\gamma \neq 0$ and $\beta\gamma = -27/16$ if $q = +\infty$), then S^{-1} is single-valued.

PROOF. Consider the following coordinate transformation:

$$(x, y) \mapsto (t, \lambda) = (x^3/27y^2, y/x)$$
,

where

$$x \neq 0, \ y \neq 0, \ x^3 \neq 27y^2$$

and so

 $t \neq 0, \ \lambda \neq 0, \ t \neq 1$.

Using the new coordinate system (t, λ) , the (2×2) -matrix-valued 1-form Ω is written as

(4.1)
$$\Omega = \begin{pmatrix} \frac{6\alpha d\lambda}{\lambda} + \frac{\alpha(3t^2 - 2t)dt}{t^3 - t^2} & \frac{\beta\lambda dt}{3(t-1)} \\ \frac{\gamma dt}{81\lambda(t^2 - t)} & (\alpha + 1/6)\left(\frac{6d\lambda}{\lambda} + \frac{(3t^2 - 2t)dt}{t^3 - t^2}\right) \end{pmatrix}.$$

The restriction Ω_{λ} of Ω to the line

 $L_{\lambda} = \{(t, \lambda) | \lambda \text{ is constant}\}$

is written as

(4.2)
$$\Omega_{2} = \begin{pmatrix} \frac{\alpha(3t^{2} - 2t)dt}{t^{3} - t^{2}} & \frac{\beta\lambda dt}{3(t-1)} \\ \frac{\gamma dt}{81\lambda(t^{2} - t)} & (\alpha + 1/6)\left(\frac{(3t^{2} - 2t)dt}{t^{3} - t^{2}}\right) \end{pmatrix}.$$

For an unknown vector-valued function $\widetilde{Y} = (\widetilde{h}_1(t), \widetilde{h}_2(t))$, consider the differential equation

Eliminating \tilde{h}_2 from (4.3), we get the following ordinary differential equation of second order for \tilde{h}_1 :

$$\begin{array}{l} (4.4) \ \ \frac{d^2 \widetilde{h}_1}{dt^2} + \frac{(-6\alpha + 3/2)t + (4\alpha - 2/3)}{t(t-1)} \Big(\frac{d \widetilde{h}_1}{dt} \Big) \\ \\ + \frac{(9\alpha^2 - (3/2)\alpha)t^2 + (-12\alpha^2 + \alpha - \beta\gamma/243)t + 4\alpha^2 + (2/3)\alpha}{t^2(t-1)^2} \widetilde{h}_1 = 0 \ . \end{array}$$

Note that the equation (4.4) does not involve λ . Hence, using the symbol of Riemann-Papperitz (see Hochstadt [3]), we can write \tilde{h}_1 as

$$\widetilde{h}_{\scriptscriptstyle 1}(t) = Pegin{bmatrix} 0 & 1 & \infty \ 2lpha & lpha + (1/12) -
u \overline{D} & (1/2) - 3lpha & t \ (1/3) + 2lpha & lpha + (1/12) -
u \overline{D} & -3lpha & \end{bmatrix},$$

where

$$D = (1/12)^2 + eta \gamma/243$$
 .

By a well-known transformation, we get

$$\widetilde{h}_{_1}(t) = t^{_2lpha}(1-t)^{lpha+(_{1/12})+\sqrt{D}}Pegin{bmatrix} 0 & 1 & & \infty & \ 0 & 0 & (7/12) + \sqrt{D} & t \ 1/3 & -2\sqrt{D} & (1/12) + \sqrt{D} & \ \end{bmatrix}.$$

Hence a pair of linearly independent solutions of (4.4) is given by

(4.5)
$$\widetilde{h}_{1}(t) = \varphi(t)F((7/12) + \sqrt{D}, (1/12) + \sqrt{D}, 2/3; t) , \\ \widetilde{h}_{1}(t) = \psi(t)F((11/12) + \sqrt{D}, (5/12) + \sqrt{D}, 4/3; t)$$

in terms of Gauss' hypergeometric function F(a, b, c; t) and

$$arphi(t) = t^{2lpha}(1-t)^{lpha+(1/12)+\sqrt{D}}$$
 , $\psi(t) = t^{2lpha+(1/8)}(1-t)^{lpha+(1/12)+\sqrt{D}}$

We put

$$a=(7/12)+\sqrt{D}$$
 , $b=(1/12)+\sqrt{D}$, $c=2/3$.

Then

$$1-c=1/3$$
 , $c-a-b=-2
u/\overline{D}$, $b-a=-1/2$.

Hence, by Schwarz' theory, the inverse of the multi-valued map

$$\widetilde{S}: C - \{0, 1\} \rightarrow C$$

which sends t to $\tilde{k}_1(t)/\tilde{h}_1(t)$ is single-valued, if (and only if) $2\sqrt{D}$ is written as

$$2
u \overline{D} = \pm 1/q$$
 ,

where q is either $+\infty$ or an integer greater than one. This last condition means

(4.6)
$$\beta \gamma = \frac{27(36-q^2)}{16q^2}$$

Note that the functions $\tilde{h}_2(t)$ and $\tilde{k}_2(t)$ appearing in the linearly independent solutions $(\tilde{h}_1, \tilde{h}_2)$ and $(\tilde{k}_1, \tilde{k}_2)$ of (4.3), where \tilde{h}_1 and \tilde{k}_1 are given above, can be given by

$$egin{aligned} &\widetilde{h}_2(t)=81\lambda(t^2-t)\gamma^{-1}(d\widetilde{h}_1/dt)-81lpha\lambda(3t-2)\gamma^{-1}\widetilde{h}_1\ ,\ &\widetilde{k}_2(t)=81\lambda(t^2-t)\gamma^{-1}(d\widetilde{k}_1/dt)-81lpha\lambda(3t-2)\gamma^{-1}\widetilde{k}_1\ . \end{aligned}$$

Next, for an unknown vector-valued function Y, consider the differential equation

$$(4.7) dY = Y\Omega ,$$

where Ω is given by (4.1). We show that linearly independent solutions (h_1, h_2) and (k_1, k_2) of the equation (4.7) are given by

(4.8)

$$\begin{split} h_1(t,\,\lambda) &= \varphi(t,\,\lambda) F((7/12) + \sqrt{D}\,,\,(1/12) + \sqrt{D}\,,\,2/3;\,t)\,, \\ h_2(t,\,\lambda) &= 81\lambda(t^2 - t)\gamma^{-1}(\partial h_1/\partial t) - 81\alpha\lambda(3t - 2)\gamma^{-1}h_1\,, \\ h_1(t,\,\lambda) &= \psi(t,\,\lambda)F((11/12) + \sqrt{D}\,,\,(5/12) + \sqrt{D}\,,\,4/3;\,t)\,, \\ h_2(t,\,\lambda) &= 81\lambda(t^2 - t)\gamma^{-1}(\partial k_1/\partial t) - 81\alpha\lambda(3t - 2)\gamma^{-1}k_1\,, \end{split}$$

where

$$arphi(t,\,\lambda)=\lambda^{6lpha}t^{2lpha}(1-t)^{lpha+(1/12)+\sqrt{D}} \ , \ \psi(t,\,\lambda)=\lambda^{6lpha}t^{2lpha+(1/8)}(1-t)^{lpha+(1/12)+\sqrt{D}} \ .$$

Indeed, the vector-valued 1-form $d(h_1, h_2) - (h_1, h_2)\Omega$ vanishes on every line L_{λ} , since $h_1 | L_{\lambda} = \tilde{h}_1$, $h_2 | L_{\lambda} = \tilde{h}_2$ and $\Omega | L_{\lambda} = \Omega_{\lambda}$. On the other hand, this vector-valued 1-form vanishes on every line $L'_t = \{(t, \lambda) | t \text{ is constant}\}$, since

$$arOmega_t' = arOmega \, | \, L_t' = egin{pmatrix} rac{6lpha d\lambda}{\lambda} & 0 \ 0 & rac{(6lpha+1)d\lambda}{\lambda} \end{pmatrix}$$

Hence we identically have $d(h_1, h_2) = (h_1, h_2)\Omega$. In a similar way, (k_1, k_2) is also a solution of (4.7), which clearly is linearly independent of (h_1, h_2) .

Now, consider the multi-valued map

$$S': C^2 - \{(t, \lambda) \in C^2 \mid t \neq 0, \lambda \neq 0, t \neq 1\} \rightarrow C^2$$

which sends (t, λ) to $(k_1(t, \lambda)/h_1(t, \lambda), h_1(t, \lambda))$. We show that the inverse S'^{-1} of S' is single-valued if (4.6) is satisfied and $\alpha = 1/6p$ for a non-zero

integer p. Suppose the contrary. Then we may assume that, for distinct points (t, λ) and (t', λ') ,

$$(k_1(t, \lambda)/h_1(t, \lambda), h_1(t, \lambda)) = (k_1(t', \lambda')/h_1(t', \lambda'), h_1(t', \lambda'))$$

Note that the function $k_1/h_1 = \tilde{k}_1/\tilde{h}_1$ is independent of λ , (see (4.8) and (4.5)). By the assumption (4.6), the equality $\tilde{k}_1(t)/\tilde{h}_1(t) = \tilde{k}_1(t')/\tilde{h}_1(t')$ implies t = t'. Then we have $h_1(t, \lambda) = h_1(t, \lambda')$. By (4.8), this implies $\lambda^{6\alpha} = \lambda'^{6\alpha}$. If $\alpha = 1/6p$ for a non-zero integer p, then $\lambda^{1/p} = \lambda'^{1/p}$. Hence $\lambda = \lambda'$, a contradiction. Hence S'^{-1} is single-valued.

It is clear that if S'^{-1} is single-valued, then so is S^{-1} on the set

$$S(P^2 - C \cup L_{\infty} - \{(x, y) \in C^2 | xy = 0\})$$
.

By Lemma 1, S is locally biholomorphic. If there exist distinct points (x, y) and (x', y') in $P^2 - C \cup L_{\infty}$ such that S(x, y) = S(x', y'), then there must exist disjoint neighborhoods U and U' of (x, y) and (x', y') in $P^2 - C \cup L_{\infty}$, respectively, such that (i) S(U) = S(U') and (ii) $S: U \to S(U)$ and $S: U' \to S(U)$ are biholomorphic. Since the set $\{(x, y) \in C^2 | xy = 0\}$ is nowhere dense in P^2 , there must exist a point (x_1, y_1) in U (resp. (x'_1, y'_1) in U') with $x_1y_1 \neq 0$ (resp. $x'_1y'_1 \neq 0$) such that $S(x_1, y_1) = S(x'_1, y'_1)$. Thus S^{-1} is single-valued on $S(P^2 - C \cup L_{\infty})$, if S'^{-1} is single-valued. q.e.d.

Under the assumption of Theorem 3, we write

$$S^{-1}: (u, v) \mapsto (x, y) = (x(u, v), y(u, v))$$
.

Then the functions x(u, v) and y(u, v) are automorphic with respect to the monodromy group. That is, putting

$$R(\gamma) = egin{pmatrix} a & b \ c & d \end{pmatrix}$$

for $\gamma \in \pi_1(\mathbf{P}^2 - C \cup L_{\infty}, p_o)$, where $R: \pi_1(\mathbf{P}^2 - C \cup L_{\infty}, p_o) \to GL(2, C)$ is the monodromy representation of the equation (3.2) with Ω as in (3.8), we have

x(au + bv, cu + dv) = x(u, v) and y(au + bv, cu + dv) = y(u, v).

For example, if

 $\alpha = 1/6, \ \beta = 0 \ \text{ and } \ \gamma = 9/2, \quad (\text{i.e., } p = 1, \ q = 6),$

then, for a suitable choice of linearly independent solutions (f_1, f_2) and (g_1, g_2) of the equation (3.2) with Ω as in (3.8), the functions x(u, v) and y(u, v) satisfy

$$egin{aligned} & x(\zeta u,\,-u\,+\,\zeta^2 v) = x(-u,\,v) = x(u,\,v) \;, \ & y(\zeta u,\,-u\,+\,\zeta^2 v) = y(-u,\,v) = y(u,\,v) \;, \end{aligned}$$

where

$$\zeta = \exp(2\pi \sqrt{-1}/6) \; .$$

(See (3.9) and (3.10).)

5. Branched finite Galois coverings. A branched finite covering of a connected compact complex manifold M is, by definition, an irreducible normal complex space X together with a surjective proper finite holomorphic map $\pi: X \to M$. The sets

$$R_{\pi} = \{p \in X | \pi^* : \mathscr{O}_{M,\pi(p)} \to \mathscr{O}_{X,p} \text{ is not isomorphic}\}$$
,
 $B_{\pi} = \pi(R_{\pi})$,

where $\mathcal{O}_{X,p}$ is the local ring of germs at p of holomorphic functions, are hypersurfaces of X and M, called the ramification locus and the branch locus of π , respectively. For a non-singular point q of B_{π} , every point p in $\pi^{-1}(q)$ is non-singular as a point of both $\pi^{-1}(B_{\pi})$ and X. Choosing suitable local coordinate systems (z_1, \dots, z_n) around $p = (0, \dots, 0)$ and (w_1, \dots, w_n) around $q = (0, \dots, 0)$ such that

$$\pi^{-1}(B_{\pi}) = \{(z_1, \, \cdots, \, z_n) \, | \, z_n = 0\} \; , \ B_{\pi} = \{(w_1, \, \cdots, \, w_n) \, | \, w_n = 0\} \; ,$$

locally, we can write the map π locally as

$$\pi: (z_1, \cdots, z_n) \rightarrow (w_1, \cdots, w_n) = (z_1, \cdots z_{n-1}, z_n^e)$$

for a positive integer e, which is constant on each irreducible component C of $\pi^{-1}(B_{\pi})$ and is called the ramification index of π along C. For any irreducible hypersurface C' of X which is not contained in $\pi^{-1}(B_{\pi})$, the ramification index of π along C' is defined to be one.

For branched finite coverings $\pi: X \to M$ and $\pi': X' \to M$, a morphism (resp. isomorphism) of π to π' is a surjective holomorphic (resp. biholomorphic) map

$$\varphi \colon X \to X'$$

such that $\pi = \pi' \circ \varphi$. The group G_{π} of all isomorphisms of π to itself is called the covering transformation group. $\pi: X \to M$ is said to be a Galois covering if G_{π} acts transitively on every fiber of π .

Let D_j $(1 \le j \le s)$ be distinct irreducible hypersurfaces of M. For positive integers e_j $(1 \le j \le s)$, put

$$B = D_1 \cup \cdots \cup D_s$$
 (a hypersurface of M),
 $D = e_1 D_1 + \cdots + e_s D_s$ (a positive divisor on M).

A branched finite covering $\pi: X \to M$ is said to branch along D (resp. at most along D) if (i) $B_{\pi} = B$ (resp. $B_{\pi} \subset B$) and (ii) for every irreducible component C of $\pi^{-1}(B_j)$, the ramification index of π along C is e_j (resp. divides e_j) for $1 \leq j \leq s$.

Denote also by σ_j $(1 \le j \le s)$ the homotopy classes of the loops σ_j defined in §2. (See Figure 1.) Let

$$J = \langle \sigma_1^{e_1}, \cdots, \sigma_s^{e_s} \rangle^{\pi_1}$$

be the smallest normal subgroup of $\pi_1(M-B, p_o)$ which contains $\sigma_1^{e_1}, \dots, \sigma_s^{e_s}$. For the proof of the following theorem, see Namba [4].

THEOREM 4. There is a one-to-one correspondence $\pi \mapsto N = N(\pi)$ between the set of all isomorphism classes of finite Galois coverings $\pi: X \to M$ which branch at most along D and the set of all normal subgroups N of $\pi_1(M - B, p_o)$ of finite index such that $J \subset N$. The correspondence satisfies (i) $G_{\pi} \simeq \pi_1(M - B, p_o)/N(\pi)$ and (ii) π branches along D if and only if, for every j $(1 \leq j \leq s)$, the following condition for $N(\pi)$ is satisfied:

 $\sigma_j^d \in N(\pi)$ if and only if $d \equiv 0 \pmod{e_j}$.

We recall the following theorem of Selberg [5], (see also Borel [1]):

THEOREM 5 (Selberg). For any finitely generated subgroup $\Gamma(\neq \{1\})$ of GL(r, C), there exists a normal torsion free subgroup $H \ (\neq \Gamma)$ of Γ of finite index.

Combining Theorems 4 and 5, we have:

THEOREM 6. Assume that $\pi_1(M-B, p_o)$ is finitely generated. Suppose that there exists a homomorphism $R: \pi_1(M-B, p_o) \to GL(r, C)$ such that $R(\sigma_j)$ has order e_j for $1 \leq j \leq s$. Then we have a finite Galois covering $\pi: X \to M$ which branches along $D = e_1D_1 + \cdots + e_sD_s$.

REMARK. If $M = P^n$, then $\pi_1(P^n - B, p_o)$ is generated by $\sigma_1, \dots, \sigma_s$ and a finite number of their conjugates. M. Oka informed us that $\pi_1(M - B, p_o)$ is finitely generated in general, if M is a projective manifold.

Now we apply Theorem 6 to the monodromy represention

$$R: \pi_1(\mathbf{P}^2 - C \cup L_{\infty}, p_o) \to GL(2, C)$$

of the differential equation (3.2), where Ω is given by (3.8) and satisfies the condition of Theorem 3. Suppose that $q \neq +\infty$.

By (3.9) and (3.10), the orders of $R(\sigma)$ and $R(\tau)$ are given by

$$\operatorname{ord} R(\sigma) = \operatorname{ord} R(\sigma') = m_{\scriptscriptstyle 0} , \quad \operatorname{ord} R(\tau) = 2 \left| p \right| ,$$

where m_0 is the smallest among positive integers m such that $m/6p + m/12 \pm m/2q$ are integers. In particular, putting $\beta = 0$ (i.e., q = 1/6), we have ord $R(\sigma) = 6 |p|$. Thus we have:

THEOREM 7. For any positive integer k, there exists a finite Galois covering $\pi: X \to \mathbf{P}^2$ which branches along $6kC + 2kL_{\infty}$.

6. A generalization. For positive integers a and b with $a \ge 2$ and $a \ge b$, let C be the closure in P^2 of the affine curve

$$\{(x, y) | f(x, y) = x^a - y^b = 0\}$$

For non-negative integers k and l, consider the following differential equation

$$(6.1) dY = Y\Omega ,$$

where

$$arOmega = egin{pmatrix} lpha df/f & eta x^k \omega/f \ \gamma x^i \omega/f & \delta df/f \end{pmatrix}$$

for complex numbers α , β , γ , δ , ε and $\omega = ydx + xdy$. Then Ω is holomorphic on $P^2 - C \cup L_{\infty}$. As in Theorem 2, we have:

THEOREM 8. The equation (6.1) is of Fuchsian type if and only if (i) $\varepsilon = -b/a$, (ii) $\beta(1 - (k+1)/a - 1/b - \alpha + \delta) = 0$, (iii) $\gamma(1 - (l+1)/a - 1/b + \alpha - \delta) = 0$, (iv) $k \leq a - 2$ if $\beta \neq 0$ and (v) $l \leq a - 2$ if $\gamma \neq 0$.

In particular, let us assume

$$\beta = 0, \ \gamma \neq 0, \ a > b, \ l = a - 2 \quad \text{and} \quad \alpha = 1/em$$
,

where e is the least common multiple of a and b, and m is a positive integer. Then we have the following generalization of Theorem 7.

THEOREM 9. Assume a > b. Then, for any positive integer m, there exists a finite Galois covering $\pi: X \to \mathbf{P}^2$ which branches along $em(C_1 + \cdots + C_s) + (e/a)mL_{\infty}$, where e is the least common multiple of aand b, and $C = C_1 \cup \cdots \cup C_s$ is the irreducible decomposition of C.

References

- [1] A. BOREL, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122.
- [2] R. GÉRARD, Théorie de Fuchs sur une variété analytique complexe, J. Math. Pures Appl. 47 (1968), 321-404.
- [3] H. HOCHSTADT, The Functions of Mathematical Physics, John Wiley and Sons, Inc., New York, 1971.

- [4] M. NAMBA, Branched Coverings and Algebraic Functions, Lec. Notes, to appear in Research Notes in Math., Longman Science & Technical.
- [5] A. SELBERG, On discontinuous groups in higher dimensional symmetric spaces, in Contribution to Function Theory, Tata Institute of Fund. Research, Bombay, 1960.
- [6] E. R. VAN KAMPEN, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 225-260.
- [7] M. YOSHIDA AND K. TAKANO, On a linear system of Pfaffian equations with regular singular points, Funkcial. Ekvac. 19 (1976), 175-189.

Mathematical Institute Tôhoku University Sendai, 980 Japan