A CLASS OF DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

Makoto Namba

(Received July 28, 1986)

1. Introduction. The pair of the period integrals

$$
Y=\left(\int_{r} \frac{d z}{w}, \int_{r} \frac{z d z}{w}\right) \quad \text { for a 1-cycle } \gamma
$$

of the family of elliptic curves

$$
w^{2}=4 z^{3}-x z-y
$$

parametrized by $(x, y) \in C^{2}$ with $\Delta=x^{3}-27 y^{2} \neq 0$, is known to satisfy the following differential equation of Fuchsian type of rank two on the complex projective plane $\boldsymbol{P}^{2}=\boldsymbol{P}^{2}(\boldsymbol{C})$:

$$
\begin{equation*}
d Y=Y \Omega \tag{1.1}
\end{equation*}
$$

Here Ω is a (2×2)-matrix-valued meromorphic 1 -form on P^{2} defined by

$$
\Omega=\left(\begin{array}{ll}
\frac{(-1 / 12) d \Delta}{\Delta} & \frac{(3 / 8)\left(x y d x-(2 / 3) x^{2} d y\right)}{\Delta} \\
\frac{(-9 / 2)(y d x-(2 / 3) x d y)}{\Delta} & \frac{(1 / 12) d \Delta}{\Delta}
\end{array}\right)
$$

The differential equation (1.1) has regular singularity along $C \cup L_{\infty}$, where C is the closure in \boldsymbol{P}^{2} of the affine curve $\left\{(x, y) \in \boldsymbol{C}^{2} \mid \Delta=0\right\}$ and L_{∞} is the line at infinity.

For $\left\{\gamma_{1}, \gamma_{2}\right\}$ which gives rise to a Z-basis for the first homology group of the elliptic curve with the intersection number $\gamma_{1} \cdot \gamma_{2}=1$, the multivalued map

$$
S: \boldsymbol{P}^{2}-C \cup L_{\infty} \rightarrow \boldsymbol{C}^{2}
$$

which sends (x, y) to

$$
(u, v)=\left(\int_{r_{1}} \frac{d z}{w}, \int_{r_{2}} \frac{d z}{w}\right)
$$

has the single-valued inverse map

$$
S^{-1}: D \rightarrow \boldsymbol{P}^{2}-C \cup L_{\infty},
$$

which sends (u, v) to (x, y), where

$$
D=\left\{(u, v) \in C^{2} \mid u v \neq 0, \operatorname{Im}(v / u)>0\right\}
$$

is the image of S and $\operatorname{Im}(z)$ is the imaginary part of $z \in C$.
S^{-1} can in fact be written as the Eisenstein series:

$$
x=60 \sum \frac{1}{(m u+n v)^{4}}, \quad y=140 \sum \frac{1}{(m u+n v)^{8}}
$$

with the summation taken over all pairs (m, n) of integers with $(m, n) \neq$ (0,0).

The purpose of this paper is to discuss a wider class of differential equations

$$
\begin{equation*}
d Y=Y \Omega \tag{1.2}
\end{equation*}
$$

of Fuchsian type of rank two on \boldsymbol{P}^{2} with regular singularity along $C \cup L_{\infty}$, which contains the differential equation (1.1) as a special case.

We discuss the multi-valued map

$$
S: \boldsymbol{P}^{2}-C \cup L_{\infty} \rightarrow \boldsymbol{C}^{2},
$$

which sends (x, y) to $(u, v)=\left(f_{1}, g_{1}\right)$, where $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$ are linearly independent solutions of (1.2). We give a criterion for the singlevaluedness of the inverse map S^{-1} from the image of S to $P^{2}-C \cup L_{\infty}$.

Finally, using (1.2) and Selberg's theorem, we give an existence theorem for finite Galois coverings $\pi: X \rightarrow \boldsymbol{P}^{2}$ with the branch locus $C \cup L_{\infty}$.
2. Differential equations of Fuchsian type. Let p be a point of a connected complex manifold M of dimension n. Let Ω be an ($r \times r$)-matrix-valued meromorphic 1-form on a neighborhood U of p in M satisfying the integrability condition

$$
\begin{equation*}
d \Omega+\Omega \wedge \Omega=0 \tag{2.1}
\end{equation*}
$$

Suppose that Ω can be written as

$$
\begin{equation*}
\Omega=B_{1}(z) d z_{1}+\cdots+B_{n-1}(z) d z_{n-1}+B_{n}(z) d z_{n} / z_{n} \tag{2.2}
\end{equation*}
$$

where $z=\left(z_{1}, \cdots, z_{n}\right)$ is a local coordinate system in U with $p=(0, \cdots, 0)$, and $B_{j}(z)(1 \leqq j \leqq n)$ are $(r \times r)$-matrix-valued holomorphic functions on U. Then we say that the differential equation

$$
\begin{equation*}
d Y=Y \Omega \tag{2.3}
\end{equation*}
$$

in an unknown vector-valued function $Y=\left(y_{1}, \cdots, y_{r}\right)$ has regular singularity along $\left\{z \mid z_{n}=0\right\}$. It can be easily seen that this definition is
independent of the choice of a coordinate system $\left(z_{1}, \cdots, z_{n}\right)$. In this case, the following is known:

Theorem 1 (Gérard [2], Yoshida-Takano [7]). There is a fundamental matrix solution $F(z)$ on U of (2.3) of the form

$$
F(z)=\left(\exp \left(C \log z_{n}\right)\right)\left(\exp \left(N \log z_{n}\right)\right) G(z),
$$

where C is a constant matrix, N is a diagonal matrix whose components are non-negative integers and $G(z)$ is a matrix-valued holomorphic function on U with $\operatorname{det} G(z)$ nowhere vanishing. Moreover, if none of the differences of the eigenvalues of $B_{n}(p)$ are non-zero integers, then N and C can be so chosen that $N=0$ and C is equivalent to $B_{n}(p)$.

Next, let B be a hypersurface in a connected complex manifold M of dimension n. Let Ω be an $(r \times r)$-matrix-valued meromorphic 1-form on M such that

$$
\begin{equation*}
d \Omega+\Omega \wedge \Omega=0 \tag{2.4}
\end{equation*}
$$

Suppose that (i) Ω is holomorphic on $M-B$ and (ii) for every point p in the set Reg B of all non-singular points of B, there exists a neighborhood U of p in M such that Ω has regular singularity along $B \cap U$. Then we say that the differential equation

$$
\begin{equation*}
d Y=Y \Omega \tag{2.5}
\end{equation*}
$$

in an unknown vector-valued function $Y=\left(y_{1}, \cdots, y_{n}\right)$ is of Fuchsian type. We say that the equation (2.5) has regular singularity along B.

Let p_{0} be a fixed point of $M-B$. The monodromy representation

$$
R: \pi_{1}\left(M-B, p_{o}\right) \rightarrow G L(r, C)
$$

of the equation (2.5) is defined by

Figure 1

$$
\sigma^{*} F(:=F \circ \sigma)=R(\sigma) F \quad \text { for } \quad \sigma \in \pi_{1}\left(M-B, p_{o}\right),
$$

where F is a fundamental matrix solution of (2.5) in a neighborhood of p_{0} 。

Let $B=B_{1} \cup \cdots \cup B_{s}$ be the decomposition of B into irreducible components. Let σ_{j} be a loop starting and terminating at p_{o}, encircling a point $p \in B_{j}-\operatorname{Sing} B$ in the positive sense as in Figure 1, where Sing B is the singular locus of B.

We identify σ_{j} with its homotopy class. Then, by Theorem $1, R\left(\sigma_{j}\right)$ is equivalent to $\exp (2 \pi \sqrt{-1} C)$.
3. A class of Fuchsian differential equations on \boldsymbol{P}^{2}. We now restrict ourselves to the case $M=\boldsymbol{P}^{2}$. For complex numbers $\alpha, \beta, \gamma(\gamma \neq 0)$, δ, ε and ε^{\prime}, consider the following (2×2)-matrix-valued meromorphic 1 form on P^{2} :

$$
\Omega=\left(\begin{array}{cc}
\frac{\alpha d \Delta}{\Delta} & \frac{\beta\left(x y d x+\varepsilon x^{2} d y\right)}{\Delta} \tag{3.1}\\
\frac{\gamma\left(y d x+\varepsilon^{\prime} x d y\right)}{\Delta} & \frac{\delta d \Delta}{\Delta}
\end{array}\right),
$$

which generalizes Ω appearing in (1.1), where (x, y) is an affine coordinate system and $\Delta=x^{3}-27 y^{2}$. Ω is holomorphic on $P^{2}-C \cup L_{\infty}$ with C and L_{∞} defined as in $\S 1$. For such Ω, consider the differential equation

$$
\begin{equation*}
d Y=Y \Omega \tag{3.2}
\end{equation*}
$$

in an unknown vector-valued function Y.
Theorem 2. Suppose $\beta \neq 0$ and $\gamma \neq 0$. Then the equation (3.2) is of Fuchsian type if and only if (i) $\varepsilon=\varepsilon^{\prime}=-2 / 3$ and (ii) $\delta=\alpha+1 / 6$.

Proof. We first examine the regular singularity condition (2.2) and then the integrability condition (2.4). Let ($X_{0}: X_{1}: X_{2}$) be the homogeneous coordinate system on \boldsymbol{P}^{2} such that

$$
x=X_{1} / X_{0} \quad \text { and } \quad y=X_{2} / X_{0} .
$$

The singular locus of $B=C \cup L_{\infty}$ consists of two points (1:0:0) and (0:0:1). (See Figure 2.)
Take a point $p=(a, b) \in C-\operatorname{Sing} B$. Then $a^{3}-27 b^{2}=0$. Put

$$
z_{1}=x-a \quad \text { and } \quad z_{2}=\Delta=x^{3}-27 y^{2} .
$$

Then $\left(z_{1}, z_{2}\right)$ is a local coordinate system around $p=(0,0)$ such that, locally, $C=\left\{\left(z_{1}, z_{2}\right) \mid z_{2}=0\right\} . \quad \Omega$ is then written as

Figure 2

$$
\Omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \omega_{11}=\alpha d z_{2} / z_{2}, \\
& \omega_{21}=\left[\gamma\left\{\left(2+3 \varepsilon^{\prime}\right)\left(z_{1}+a\right)^{3}-2 z_{2}\right\} d z_{1}-\gamma \varepsilon^{\prime}\left(z_{1}+a\right) d z_{2}\right] / 54 h z_{2}, \\
& \omega_{12}=\left[\beta\left\{(2+3 \varepsilon)\left(z_{1}+a\right)^{4}-2 z_{2}\left(z_{1}+a\right)^{4}\right\} d z_{1}-\beta \varepsilon\left(z_{1}+a\right)^{2} d z_{2}\right] / 54 h z_{2}, \\
& \omega_{22}=\delta d z_{2} / z_{2}, \\
& h=\left[\left(\left(z_{1}+a\right)^{3}-z_{2}\right) / 27\right]^{1 / 2} .
\end{aligned}
$$

Hence Ω can be written as

$$
\Omega=B_{1}(z) d z_{1}+B_{2}(z) d z_{2} / z_{2},
$$

where $B_{1}(z)$ and $B_{2}(z)$ are (2×2)-matrix-valued holomorphic functions around p, if and only if

$$
\begin{equation*}
\varepsilon=\varepsilon^{\prime}=-2 / 3 \tag{3.3}
\end{equation*}
$$

If this is the case, then

$$
B_{1}(z)=\left(\begin{array}{cc}
0 & \frac{-\beta\left(z_{1}+a\right)}{27 h} \tag{3.4}\\
\frac{-\gamma}{27 h} & 0
\end{array}\right)
$$

and

$$
B_{2}(z)=\left(\begin{array}{cc}
\alpha & \frac{\beta\left(z_{1}+a\right)^{2}}{81 h} \tag{3.5}\\
\frac{\gamma\left(z_{1}+a\right)}{81 h} & \delta
\end{array}\right)
$$

In particular,

$$
B_{2}(p)=\left(\begin{array}{cc}
\alpha & \frac{\beta a^{2}}{81 b} \tag{3.6}\\
\frac{\gamma a}{81 b} & \delta
\end{array}\right)
$$

For a complex number c, consider a point

$$
q=(0: 1: 0) \in L_{\infty}-\operatorname{Sing} B, \quad \text { (see Figure 2). }
$$

Put

$$
t_{1}=(y / x)-c \text { and } t_{2}=1 / x
$$

Then $\left(t_{1}, t_{2}\right)$ is a local coordinate system around $q=(0,0)$ such that, locally, $L_{\infty}=\left\{\left(t_{1}, t_{2}\right) \mid t_{2}=0\right\} . \quad \Omega$ is written around p as

$$
\Omega=C_{1}(t) d t_{1}+C_{2}(t) d t_{2} / t_{2}, \quad \text { with } \quad t=\left(t_{1}, t_{2}\right),
$$

where

$$
C_{1}(t)=\frac{1}{g}\left(\begin{array}{cc}
-54 \alpha\left(t_{1}+c\right) t_{2} & \beta \varepsilon \\
\gamma \varepsilon^{\prime} t_{2} & -54 \delta\left(t_{1}+c\right) t_{2}
\end{array}\right)
$$

and

$$
C_{2}(t)=\frac{1}{g}\left(\begin{array}{ll}
54 \alpha\left(t_{1}+c\right)^{2} t_{2}-3 \alpha & -\beta(1+\varepsilon)\left(t_{1}+c\right) \\
-\gamma\left(1+\varepsilon^{\prime}\right)\left(t_{1}+c\right) t_{2} & 54 \delta\left(t_{1}+c\right)^{2} t_{2}-3 \delta
\end{array}\right)
$$

with $g=1-27 t_{2}\left(t_{1}+c\right)^{2}$. Hence $C_{1}(t)$ and $C_{2}(t)$ are (2×2)-matrix-valued holomorphic functions around p. In particular,

$$
C_{2}(q)=\left(\begin{array}{cc}
-3 \alpha & -\beta(1+\varepsilon) c \tag{3.7}\\
0 & -3 \delta
\end{array}\right)
$$

Next, by simple calculation, we obtain

$$
d \Omega+\Omega \wedge \Omega=\left(\begin{array}{ll}
\xi_{11} & \xi_{12} \\
\xi_{21} & \xi_{22}
\end{array}\right) \frac{d x \wedge d y}{\Delta^{2}}
$$

where

$$
\begin{aligned}
& \xi_{11}=\beta \gamma\left(\varepsilon^{\prime}-\varepsilon\right) x^{2} y \\
& \xi_{21}=\gamma\left(\varepsilon^{\prime}-1+3 \varepsilon^{\prime}(\delta-\alpha-1)\right) x^{3}+27 \gamma\left(1-\varepsilon^{\prime}+2(\delta-\alpha-1)\right) y^{2} \\
& \xi_{12}=\beta(2 \varepsilon-1+3 \varepsilon(\alpha-\delta-1)) x^{4}+27 \beta(1-2 \varepsilon+2(\alpha-\delta-1)) x y^{2}, \\
& \xi_{22}=\beta \gamma\left(\varepsilon-\varepsilon^{\prime}\right) x^{2} y .
\end{aligned}
$$

Since $\beta \neq 0$ and $\gamma \neq 0$, we have $d \Omega+\Omega \wedge \Omega=0$ if and only if $\varepsilon=\varepsilon^{\prime}=$ $-2 / 3$ and $\delta-\alpha=1 / 6$.
q.e.d.

If $\beta=0$, then the above proof also shows:
TheOrem 2'. The differential equation (3.2), where Ω is as defined in (3.1) with $\beta=0$ and $\gamma \neq 0$, is of Fuchsian type if and only if $\varepsilon^{\prime}=$ $-2 / 3$ and $\delta-\alpha=1 / 6$.

Henceforth, we only consider the differential equation (3.2), where

$$
\Omega=\left(\begin{array}{cc}
\frac{\alpha d \Delta}{\Delta} & \frac{\beta\left(x y d x-(2 / 3) x^{2} d y\right)}{\Delta} \tag{3.8}\\
\frac{\gamma(y d x-(2 / 3) x d y)}{\Delta} & \frac{(\alpha+1 / 6) d \Delta}{\Delta}
\end{array}\right)
$$

with $\gamma \neq 0$. This equation is of Fuchsian type by Theorems 2 and 2^{\prime}.
Let p_{0} be a fixed point of $P^{2}-C \cup L_{\infty}$. Let σ (resp. σ^{\prime}, resp. τ) be a loop starting and terminating at p_{o}, encircling the point $(x, y)=$ $(3,-1) \in C$ (resp. $(x, y)=(3,1) \in C$, resp. $\left.\left(X_{0}: X_{1}: X_{2}\right)=(0: 1: 1) \in L_{\infty}\right)$ in the positive sense as in Figure 3.

Figure 3
Then it is known (see Van Kampen [6]) that $\pi_{1}\left(\boldsymbol{P}^{2}-C \cup L_{\infty}, p_{o}\right)$ is generated by σ, σ^{\prime} and τ with the relations

$$
\sigma \sigma^{\prime} \sigma=\sigma^{\prime} \sigma \sigma^{\prime}=\tau^{-1}
$$

Note that σ and σ^{\prime} are conjugate, since $\sigma^{\prime}=\left(\sigma \sigma^{\prime}\right) \sigma\left(\sigma \sigma^{\prime}\right)^{-1}$. Let

$$
R: \pi_{1}\left(\boldsymbol{P}^{2}-C \cup L_{\infty}, p_{o}\right) \rightarrow G L(2, \boldsymbol{C})
$$

be the monodromy representation of the differential equation (3.2). Then, by (3.6), (3.7) and Theorem $1, R(\sigma)$ and $R\left(\sigma^{\prime}\right)$ are both equivalent to

$$
\exp 2 \pi \sqrt{-1} B_{2}(p)=\exp 2 \pi \sqrt{-1}\left(\begin{array}{cc}
\alpha & \frac{\beta a^{2}}{81 b} \tag{3.9}\\
\frac{\gamma a}{81 b} & \alpha+1 / 6
\end{array}\right)
$$

unless $2 \sqrt{D}$ is a non-zero integer, where

$$
D=(1 / 12)^{2}+\beta \gamma / 243
$$

while $R(\tau)$ is equivalent to

$$
\exp 2 \pi \sqrt{-1} C_{2}(q)=\exp 2 \pi \sqrt{-1}\left(\begin{array}{cl}
-3 \alpha & -\beta c / 3 \tag{3.10}\\
0 & -3 \alpha-1 / 2
\end{array}\right)
$$

4. The single-valuedness of the inverse map. Let $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$ be linearly independent solutions of the equation (3.2), where Ω is given by (3.8). Consider the multi-valued map

$$
S: \boldsymbol{P}^{2}-C \cup L_{\infty} \rightarrow C^{2}
$$

which sends (x, y) to $\left(f_{1}(x, y), g_{1}(x, y)\right)$.
Lemma 1. If $\alpha \neq 0$ and $\gamma \neq 0$, then S is locally biholomorphic.
Proof. Put $f_{1 x}=\partial f_{1} / \partial x$, etc. Since

$$
d f_{1}=f_{1} \alpha(d \Delta / \Delta)+f_{2} \gamma(y d x-(2 / 3) x d y) / \Delta
$$

and

$$
d g_{1}=g_{1} \alpha(d \Delta / \Delta)+g_{2} \gamma(y d x-(2 / 3) x d y) / \Delta,
$$

we have

$$
\begin{aligned}
& f_{1 x}=\left(3 \alpha x^{2} f_{1}+\gamma y f_{2}\right) / \Delta, \quad f_{1 y}=\left(-54 \alpha y f_{1}-(2 / 3) \gamma x f_{2}\right) / \Delta, \\
& g_{1 x}=\left(3 \alpha x^{2} g_{1}+\gamma y g_{2}\right) / \Delta, \quad g_{1 y}=\left(-54 \alpha y g_{1}-(2 / 3) \gamma x g_{2}\right) / \Delta .
\end{aligned}
$$

Hence

$$
\left|\begin{array}{ll}
f_{1 x} & f_{1 y} \\
g_{1 x} & g_{1 y}
\end{array}\right|=\frac{-2 \alpha \gamma}{\Delta}\left|\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right| \neq 0 .
$$

q.e.d.

Henceforth, we assume $\alpha \neq 0$ and $\gamma \neq 0$. The image

$$
W=S\left(\boldsymbol{P}^{2}-C \cup L_{\infty}\right)
$$

is an open set of \boldsymbol{C}^{2}. Consider the inverse map

$$
S^{-1}: W \rightarrow \boldsymbol{P}^{2}-C \cup L_{\infty}
$$

In general, S^{-1} is also a multi-valued map.
Theorem 3. Let p be a non-zero integer and q be either $+\infty$ or an integer greater than one. If $\alpha=1 / 6 p$ and $\beta \gamma=27\left(36-q^{2}\right) / 16 q^{2}$, (while $\gamma \neq 0$ and $\beta \gamma=-27 / 16$ if $q=+\infty)$, then S^{-1} is single-valued.

Proof. Consider the following coordinate transformation:

$$
(x, y) \mapsto(t, \lambda)=\left(x^{3} / 27 y^{2}, y / x\right)
$$

where

$$
x \neq 0, y \neq 0, x^{3} \neq 27 y^{2}
$$

and so

$$
t \neq 0, \lambda \neq 0, t \neq 1
$$

Using the new coordinate system (t, λ), the (2×2)-matrix-valued 1-form Ω is written as

$$
\Omega=\left(\begin{array}{cc}
\frac{6 \alpha d \lambda}{\lambda}+\frac{\alpha\left(3 t^{2}-2 t\right) d t}{t^{3}-t^{2}} & \frac{\beta \lambda d t}{3(t-1)} \tag{4.1}\\
\frac{\gamma d t}{81 \lambda\left(t^{2}-t\right)} & (\alpha+1 / 6)\left(\frac{6 d \lambda}{\lambda}+\frac{\left(3 t^{2}-2 t\right) d t}{t^{3}-t^{2}}\right)
\end{array}\right)
$$

The restriction Ω_{2} of Ω to the line

$$
L_{\lambda}=\{(t, \lambda) \mid \lambda \text { is constant }\}
$$

is written as

$$
\Omega_{\lambda}=\left(\begin{array}{cc}
\frac{\alpha\left(3 t^{2}-2 t\right) d t}{t^{3}-t^{2}} & \frac{\beta \lambda d t}{3(t-1)} \tag{4.2}\\
\frac{\gamma d t}{81 \lambda\left(t^{2}-t\right)} & (\alpha+1 / 6)\left(\frac{\left(3 t^{2}-2 t\right) d t}{t^{3}-t^{2}}\right)
\end{array}\right)
$$

For an unknown vector-valued function $\tilde{Y}=\left(\widetilde{h}_{1}(t), \widetilde{h}_{2}(t)\right)$, consider the differential equation

$$
\begin{equation*}
d \tilde{Y}=\tilde{Y} \Omega_{\lambda} \tag{4.3}
\end{equation*}
$$

Eliminating \tilde{h}_{2} from (4.3), we get the following ordinary differential equation of second order for \widetilde{h}_{1} :
(4.4) $\frac{d^{2} \widetilde{h}_{1}}{d t^{2}}+\frac{(-6 \alpha+3 / 2) t+(4 \alpha-2 / 3)}{t(t-1)}\left(\frac{d \widetilde{h}_{1}}{d t}\right)$

$$
+\frac{\left(9 \alpha^{2}-(3 / 2) \alpha\right) t^{2}+\left(-12 \alpha^{2}+\alpha-\beta \gamma / 243\right) t+4 \alpha^{2}+(2 / 3) \alpha}{t^{2}(t-1)^{2}} \tilde{h}_{1}=0
$$

Note that the equation (4.4) does not involve λ. Hence, using the symbol of Riemann-Papperitz (see Hochstadt [3]), we can write \widetilde{h}_{1} as

$$
\tilde{h}_{1}(t)=P\left[\begin{array}{cccc}
0 & 1 & \infty \\
2 \alpha & \alpha+(1 / 12)-\sqrt{D} & (1 / 2)-3 \alpha & t \\
(1 / 3)+2 \alpha & \alpha+(1 / 12)-\sqrt{D} & -3 \alpha &
\end{array}\right],
$$

where

$$
D=(1 / 12)^{2}+\beta \gamma / 243
$$

By a well-known transformation, we get

$$
\tilde{h}_{1}(t)=t^{2 \alpha}(1-t)^{\alpha+(1 / 2)+\sqrt{D}} P\left[\begin{array}{cccc}
0 & 1 & \infty & \\
0 & 0 & (7 / 12)+\sqrt{\bar{D}} & t \\
1 / 3 & -2 \sqrt{D} & (1 / 12)+\sqrt{\bar{D}} &
\end{array}\right] .
$$

Hence a pair of linearly independent solutions of (4.4) is given by

$$
\begin{align*}
& \tilde{h}_{1}(t)=\varphi(t) F((7 / 12)+\sqrt{\bar{D}},(1 / 12)+\sqrt{\bar{D}}, 2 / 3 ; t), \\
& \widetilde{k}_{1}(t)=\psi(t) F((11 / 12)+\sqrt{D},(5 / 12)+\sqrt{D}, 4 / 3 ; t) \tag{4.5}
\end{align*}
$$

in terms of Gauss' hypergeometric function $F(a, b, c ; t)$ and

$$
\begin{aligned}
& \varphi(t)=t^{2 \alpha}(1-t)^{\alpha+(1 / 12)+\sqrt{D}}, \\
& \psi(t)=t^{2 \alpha+(1 / 3)}(1-t)^{\alpha+(1 / 12)+\sqrt{D}} .
\end{aligned}
$$

We put

$$
a=(7 / 12)+\sqrt{D}, \quad b=(1 / 12)+\sqrt{D}, \quad c=2 / 3
$$

Then

$$
1-c=1 / 3, \quad c-a-b=-2 \sqrt{D}, \quad b-a=-1 / 2
$$

Hence, by Schwarz' theory, the inverse of the multi-valued map

$$
\widetilde{S}: C-\{0,1\} \rightarrow C
$$

which sends t to $\widetilde{k}_{1}(t) / \widetilde{h}_{1}(t)$ is single-valued, if (and only if) $2 \sqrt{D}$ is written as

$$
2 \sqrt{D}= \pm 1 / q,
$$

where q is either $+\infty$ or an integer greater than one. This last condition means

$$
\begin{equation*}
\beta \gamma=\frac{27\left(36-q^{2}\right)}{16 q^{2}} . \tag{4.6}
\end{equation*}
$$

Note that the functions $\widetilde{h}_{2}(t)$ and ${\widetilde{k_{2}}}_{2}(t)$ appearing in the linearly independent solutions ($\widetilde{h}_{1}, \widetilde{h}_{2}$) and ($\widetilde{k}_{1}, \widetilde{k}_{2}$) of (4.3), where \widetilde{h}_{1} and \widetilde{k}_{1} are given above, can be given by

$$
\begin{aligned}
& \tilde{h}_{2}(t)=81 \lambda\left(t^{2}-t\right) \gamma^{-1}\left(d \tilde{h}_{1} / d t\right)-81 \alpha \lambda(3 t-2) \gamma^{-1} \tilde{h}_{1} \\
& \widetilde{k}_{2}(t)=81 \lambda\left(t^{2}-t\right) \gamma^{-1}\left(d \widetilde{k}_{1} / d t\right)-81 \alpha \lambda(3 t-2) \gamma^{-1} \widetilde{k}_{1}
\end{aligned}
$$

Next, for an unknown vector-valued function Y, consider the differential equation

$$
\begin{equation*}
d Y=Y \Omega \tag{4.7}
\end{equation*}
$$

where Ω is given by (4.1). We show that linearly independent solutions (h_{1}, h_{2}) and (k_{1}, k_{2}) of the equation (4.7) are given by

$$
\begin{align*}
& h_{1}(t, \lambda)=\varphi(t, \lambda) F((7 / 12)+\sqrt{D},(1 / 12)+\sqrt{D}, 2 / 3 ; t), \\
& h_{2}(t, \lambda)=81 \lambda\left(t^{2}-t\right) \gamma^{-1}\left(\partial h_{1} / \partial t\right)-81 \alpha \lambda(3 t-2) \gamma^{-1} h_{1}, \tag{4.8}\\
& k_{1}(t, \lambda)=\psi(t, \lambda) F((11 / 12)+\sqrt{D},(5 / 12)+\sqrt{D}, 4 / 3 ; t), \\
& k_{2}(t, \lambda)=81 \lambda\left(t^{2}-t\right) \gamma^{-1}\left(\partial k_{1} / \partial t\right)-81 \alpha \lambda(3 t-2) \gamma^{-1} k_{1},
\end{align*}
$$

where

$$
\begin{aligned}
& \varphi(t, \lambda)=\lambda^{\beta \alpha} t^{2 \alpha}(1-t)^{\alpha+(1 / 12)+\sqrt{D}} \\
& \psi(t, \lambda)=\lambda^{\beta \alpha} t^{2 \alpha+(1 / 3)}(1-t)^{\alpha+(1 / 12)+\sqrt{D}}
\end{aligned}
$$

Indeed, the vector-valued 1-form $d\left(h_{1}, h_{2}\right)-\left(h_{1}, h_{2}\right) \Omega$ vanishes on every line L_{λ}, since $h_{1}\left|L_{\lambda}=\widetilde{h}_{1}, h_{2}\right| L_{\lambda}=\widetilde{h}_{2}$ and $\Omega \mid L_{\lambda}=\Omega_{\lambda}$. On the other hand, this vector-valued 1-form vanishes on every line $L_{t}^{\prime}=\{(t, \lambda) \mid t$ is constant $\}$, since

$$
\Omega_{t}^{\prime}=\Omega \left\lvert\, L_{t}^{\prime}=\left(\begin{array}{cc}
\frac{6 \alpha d \lambda}{\lambda} & 0 \\
0 & \frac{(6 \alpha+1) d \lambda}{\lambda}
\end{array}\right)\right.
$$

Hence we identically have $d\left(h_{1}, h_{2}\right)=\left(h_{1}, h_{2}\right) \Omega$. In a similar way, $\left(k_{1}, k_{2}\right)$ is also a solution of (4.7), which clearly is linearly independent of $\left(h_{1}, h_{2}\right)$.

Now, consider the multi-valued map

$$
S^{\prime}: C^{2}-\left\{(t, \lambda) \in C^{2} \mid t \neq 0, \lambda \neq 0, t \neq 1\right\} \rightarrow C^{2}
$$

which sends (t, λ) to $\left(k_{1}(t, \lambda) / h_{1}(t, \lambda), h_{1}(t, \lambda)\right)$. We show that the inverse $S^{\prime-1}$ of S^{\prime} is single-valued if (4.6) is satisfied and $\alpha=1 / 6 p$ for a non-zero
integer p. Suppose the contrary. Then we may assume that, for distinct points (t, λ) and ($t^{\prime}, \lambda^{\prime}$),

$$
\left(k_{1}(t, \lambda) / h_{1}(t, \lambda), h_{1}(t, \lambda)\right)=\left(k_{1}\left(t^{\prime}, \lambda^{\prime}\right) / h_{1}\left(t^{\prime}, \lambda^{\prime}\right), h_{1}\left(t^{\prime}, \lambda^{\prime}\right)\right)
$$

Note that the function $k_{1} / h_{1}=\widetilde{k}_{1} / \widetilde{h}_{1}$ is independent of λ, (see (4.8) and (4.5)). By the assumption (4.6), the equality $\widetilde{k}_{1}(t) / \widetilde{h}_{1}(t)=\widetilde{k}_{1}\left(t^{\prime}\right) / \widetilde{h}_{1}\left(t^{\prime}\right)$ implies $t=t^{\prime}$. Then we have $h_{1}(t, \lambda)=h_{1}\left(t, \lambda^{\prime}\right)$. By (4.8), this implies $\lambda^{8 \alpha}=\lambda^{\prime \beta \alpha}$. If $\alpha=1 / 6 p$ for a non-zero integer p, then $\lambda^{1 / p}=\lambda^{1 / p}$. Hence $\lambda=\lambda^{\prime}$, a contradiction. Hence $S^{\prime-1}$ is single-valued.

It is clear that if $S^{\prime-1}$ is single-valued, then so is S^{-1} on the set

$$
S\left(\boldsymbol{P}^{2}-C \cup L_{\infty}-\left\{(x, y) \in \boldsymbol{C}^{2} \mid x y=0\right\}\right)
$$

By Lemma $1, S$ is locally biholomorphic. If there exist distinct points (x, y) and (x^{\prime}, y^{\prime}) in $\boldsymbol{P}^{2}-C \cup L_{\infty}$ such that $S(x, y)=S\left(x^{\prime}, y^{\prime}\right)$, then there must exist disjoint neighborhoods U and U^{\prime} of (x, y) and (x^{\prime}, y^{\prime}) in $\boldsymbol{P}^{2}-C \cup L_{\infty}$, respectively, such that (i) $S(U)=S\left(U^{\prime}\right)$ and (ii) $S: U \rightarrow S(U)$ and $S: U^{\prime} \rightarrow S(U)$ are biholomorphic. Since the set $\left\{(x, y) \in C^{2} \mid x y=0\right\}$ is nowhere dense in \boldsymbol{P}^{2}, there must exist a point $\left(x_{1}, y_{1}\right)$ in U (resp. ($x_{1}^{\prime}, y_{1}^{\prime}$) in U^{\prime}) with $x_{1} y_{1} \neq 0$ (resp. $x_{1}^{\prime} y_{1}^{\prime} \neq 0$) such that $S\left(x_{1}, y_{1}\right)=S\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$. Thus S^{-1} is single-valued on $S\left(\boldsymbol{P}^{2}-C \cup L_{\infty}\right)$, if $S^{\prime-1}$ is single-valued. q.e.d.

Under the assumption of Theorem 3, we write

$$
S^{-1}:(u, v) \mapsto(x, y)=(x(u, v), y(u, v))
$$

Then the functions $x(u, v)$ and $y(u, v)$ are automorphic with respect to the monodromy group. That is, putting

$$
R(\gamma)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for $\gamma \in \pi_{1}\left(\boldsymbol{P}^{2}-C \cup L_{\infty}, p_{o}\right)$, where $R: \pi_{1}\left(\boldsymbol{P}^{2}-C \cup L_{\infty}, p_{o}\right) \rightarrow G L(2, \boldsymbol{C})$ is the monodromy representation of the equation (3.2) with Ω as in (3.8), we have

$$
x(a u+b v, c u+d v)=x(u, v) \text { and } \quad y(a u+b v, c u+d v)=y(u, v)
$$

For example, if

$$
\alpha=1 / 6, \beta=0 \quad \text { and } \quad \gamma=9 / 2, \quad \text { (i.e., } p=1, q=6 \text {) }
$$

then, for a suitable choice of linearly independent solutions (f_{1}, f_{2}) and (g_{1}, g_{2}) of the equation (3.2) with Ω as in (3.8), the functions $x(u, v)$ and $y(u, v)$ satisfy

$$
\begin{aligned}
& x\left(\zeta u,-u+\zeta^{2} v\right)=x(-u, v)=x(u, v) \\
& y\left(\zeta u,-u+\zeta^{2} v\right)=y(-u, v)=y(u, v)
\end{aligned}
$$

where

$$
\zeta=\exp (2 \pi \sqrt{-1} / 6)
$$

(See (3.9) and (3.10).)
5. Branched finite Galois coverings. A branched finite covering of a connected compact complex manifold M is, by definition, an irreducible normal complex space X together with a surjective proper finite holomorphic map $\pi: X \rightarrow M$. The sets

$$
\begin{aligned}
& R_{\pi}=\left\{p \in X \mid \pi^{*}: \mathcal{O}_{M, \pi(p)} \rightarrow \mathcal{O}_{X, p} \text { is not isomorphic }\right\} \\
& B_{\pi}=\pi\left(R_{\pi}\right)
\end{aligned}
$$

where $\mathcal{O}_{x, p}$ is the local ring of germs at p of holomorphic functions, are hypersurfaces of X and M, called the ramification locus and the branch locus of π, respectively. For a non-singular point q of B_{π}, every point p in $\pi^{-1}(q)$ is non-singular as a point of both $\pi^{-1}\left(B_{\pi}\right)$ and X. Choosing suitable local coordinate systems $\left(z_{1}, \cdots, z_{n}\right)$ around $p=(0, \cdots, 0)$ and $\left(w_{1}, \cdots, w_{n}\right)$ around $q=(0, \cdots, 0)$ such that

$$
\begin{aligned}
& \pi^{-1}\left(B_{\pi}\right)=\left\{\left(z_{1}, \cdots, z_{n}\right) \mid z_{n}=0\right\} \\
& B_{\pi}=\left\{\left(w_{1}, \cdots, w_{n}\right) \mid w_{n}=0\right\}
\end{aligned}
$$

locally, we can write the map π locally as

$$
\pi:\left(z_{1}, \cdots, z_{n}\right) \rightarrow\left(w_{1}, \cdots, w_{n}\right)=\left(z_{1}, \cdots z_{n-1}, z_{n}^{e}\right)
$$

for a positive integer e, which is constant on each irreducible component C of $\pi^{-1}\left(B_{\pi}\right)$ and is called the ramification index of π along C. For any irreducible hypersurface C^{\prime} of X which is not contained in $\pi^{-1}\left(B_{\pi}\right)$, the ramification index of π along C^{\prime} is defined to be one.

For branched finite coverings $\pi: X \rightarrow M$ and $\pi^{\prime}: X^{\prime} \rightarrow M$, a morphism (resp. isomorphism) of π to π^{\prime} is a surjective holomorphic (resp. biholomorphic) map

$$
\varphi: X \rightarrow X^{\prime}
$$

such that $\pi=\pi^{\prime} \circ \varphi$. The group G_{π} of all isomorphisms of π to itself is called the covering transformation group. $\pi: X \rightarrow M$ is said to be a Galois covering if G_{π} acts transitively on every fiber of π.

Let $D_{j}(1 \leqq j \leqq s)$ be distinct irreducible hypersurfaces of M. For positive integers $e_{j}(1 \leqq j \leqq s)$, put

$$
\begin{array}{ll}
B=D_{1} \cup \cdots \cup D_{s} & \text { (a hypersurface of } M \text {) } \\
D=e_{1} D_{1}+\cdots+e_{s} D_{s} & \text { (a positive divisor on } M \text {). }
\end{array}
$$

A branched finite covering $\pi: X \rightarrow M$ is said to branch along D (resp. at most along D) if (i) $B_{\pi}=B$ (resp. $B_{\pi} \subset B$) and (ii) for every irreducible component C of $\pi^{-1}\left(B_{j}\right)$, the ramification index of π along C is e_{j} (resp. divides e_{j}) for $1 \leqq j \leqq s$.

Denote also by $\sigma_{j}(1 \leqq j \leqq s)$ the homotopy classes of the loops σ_{j} defined in §2. (See Figure 1.) Let

$$
J=\left\langle\sigma_{1}^{\varepsilon_{1}}, \cdots, \sigma_{s}^{\varepsilon_{s}}\right\rangle^{\pi_{1}}
$$

be the smallest normal subgroup of $\pi_{1}\left(M-B, p_{o}\right)$ which contains $\sigma_{1}^{e_{1}}, \cdots, \sigma_{s}^{e_{s}}$. For the proof of the following theorem, see Namba [4].

Theorem 4. There is a one-to-one correspondence $\pi \mapsto N=N(\pi)$ between the set of all isomorphism classes of finite Galois coverings $\pi: X \rightarrow M$ which branch at most along D and the set of all normal subgroups N of $\pi_{1}\left(M-B, p_{o}\right)$ of finite index such that $J \subset N$. The correspondence satisfies (i) $G_{\pi} \simeq \pi_{1}\left(M-B, p_{o}\right) / N(\pi)$ and (ii) π branches along D if and only if, for every $j(1 \leqq j \leqq s)$, the following condition for $N(\pi)$ is satisfied:

$$
\sigma_{j}^{d} \in N(\pi) \quad \text { if and only if } d \equiv 0 \quad\left(\bmod e_{j}\right)
$$

We recall the following theorem of Selberg [5], (see also Borel [1]):
Theorem 5 (Selberg). For any finitely generated subgroup $\Gamma(\neq\{1\})$ of $G L(r, C)$, there exists a normal torsion free subgroup $H(\neq \Gamma)$ of Γ of finite index.

Combining Theorems 4 and 5, we have:
Theorem 6. Assume that $\pi_{1}\left(M-B, p_{0}\right)$ is finitely generated. Suppose that there exists a homomorphism $R: \pi_{1}\left(M-B, p_{o}\right) \rightarrow G L(r, C)$ such that $R\left(\sigma_{j}\right)$ has order e_{j} for $1 \leqq j \leqq s$. Then we have a finite Galois covering $\pi: X \rightarrow M$ which branches along $D=e_{1} D_{1}+\cdots+e_{s} D_{s}$.

REMARK. If $M=\boldsymbol{P}^{n}$, then $\pi_{1}\left(\boldsymbol{P}^{n}-B, p_{o}\right)$ is generated by $\sigma_{1}, \cdots, \sigma_{s}$ and a finite number of their conjugates. M. Oka informed us that $\pi_{1}\left(M-B, p_{o}\right)$ is finitely generated in general, if M is a projective manifold.

Now we apply Theorem 6 to the monodromy represention

$$
R: \pi_{1}\left(\boldsymbol{P}^{2}-C \cup L_{\infty}, p_{o}\right) \rightarrow G L(2, C)
$$

of the differential equation (3.2), where Ω is given by (3.8) and satisfies the condition of Theorem 3. Suppose that $q \neq+\infty$.

By (3.9) and (3.10), the orders of $R(\sigma)$ and $R(\tau)$ are given by

$$
\operatorname{ord} R(\sigma)=\operatorname{ord} R\left(\sigma^{\prime}\right)=m_{0}, \quad \operatorname{ord} R(\tau)=2|p|
$$

where m_{0} is the smallest among positive integers m such that $m / 6 p+$ $m / 12 \pm m / 2 q$ are integers. In particular, putting $\beta=0$ (i.e., $q=1 / 6$), we have ord $R(\sigma)=6|p|$. Thus we have:

Theorem 7. For any positive integer k, there exists a finite Galois covering $\pi: X \rightarrow \boldsymbol{P}^{2}$ which branches along $6 k C+2 k L_{\infty}$.
6. A generalization. For positive integers a and b with $a \geqq 2$ and $a \geqq b$, let C be the closure in P^{2} of the affine curve

$$
\left\{(x, y) \mid f(x, y)=x^{a}-y^{b}=0\right\}
$$

For non-negative integers k and l, consider the following differential equation

$$
\begin{equation*}
d Y=Y \Omega \tag{6.1}
\end{equation*}
$$

where

$$
\Omega=\left(\begin{array}{ll}
\alpha d f / f & \beta x^{k} \omega / f \\
\gamma x^{l} \omega / f & \delta d f / f
\end{array}\right)
$$

for complex numbers $\alpha, \beta, \gamma, \delta, \varepsilon$ and $\omega=y d x+x d y$. Then Ω is holomorphic on $\boldsymbol{P}^{2}-C \cup L_{\infty}$. As in Theorem 2, we have:

Theorem 8. The equation (6.1) is of Fuchsian type if and only if (i) $\varepsilon=-b / a$, (ii) $\beta(1-(k+1) / a-1 / b-\alpha+\delta)=0$, (iii) $\gamma(1-(l+1) / a-1 / b$ $+\alpha-\delta)=0$, (iv) $k \leqq a-2$ if $\beta \neq 0$ and (v) $l \leqq a-2$ if $\gamma \neq 0$.

In particular, let us assume

$$
\beta=0, \gamma \neq 0, a>b, l=a-2 \text { and } \alpha=1 / \mathrm{em}
$$

where e is the least common multiple of a and b, and m is a positive integer. Then we have the following generalization of Theorem 7.

Theorem 9. Assume $a>b$. Then, for any positive integer m, there exists a finite Galois covering $\pi: X \rightarrow \boldsymbol{P}^{2}$ which branches along em $\left(C_{1}+\cdots+C_{s}\right)+(e / a) m L_{\infty}$, where e is the least common multiple of a and b, and $C=C_{1} \cup \cdots \cup C_{s}$ is the irreducible decomposition of C.

References

[1] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122.
[2] R. Gérard, Théorie de Fuchs sur une variété analytique complexe, J. Math. Pures Appl. 47 (1968), 321-404.
[3] H. Hochstadt, The Functions of Mathematical Physics, John Wiley and Sons, Inc., New York, 1971.
[4] M. Namba, Branched Coverings and Algebraic Functions, Lec. Notes, to appear in Research Notes in Math., Longman Science \& Technical.
[5] A. Selberg, On discontinuous groups in higher dimensional symmetric spaces, in Contribution to Function Theory, Tata Institute of Fund. Research, Bombay, 1960.
[6] E. R. Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 225-260.
[7] M. Yoshida and K. Takano, On a linear system of Pfaffian equations with regular singular points, Funkcial. Ekvac. 19 (1976), 175-189.

Mathematical Institute
TôHoku University
SEndai, 980
Japan

