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1. Introduction and results. Baker, Mutδ and the author ([1], [4],
[5], [6], [8], [9]) have discussed the family of analytic mappings between
two ultrahyperelliptic surfaces. In this paper we investigate the structure
of the family of analytic mappings between two regularly branched three-
sheeted algebroid Riemann surfaces. Here we call a three-sheeted cover-
ing Riemann surface regularly branched if it has no branch point other
than those of order two.

Let R (resp. S) be the three-sheeted covering algebroid Riemann sur-
face formed by elements p = (z, y) (resp. q = (w, u)) for each z, y (resp.
w, u) satisfying the equation yz = G(z) (resp. uz = g(w))> where G and g are
entire functions, each of which has an infinite number of simple or double
zeros and no other zeros. Then, since R and S have branch points of order
two only, R and S are regularly branched. If the Nevanlinna counting
function N(r, 0, G) for the zeros of G is of finite order p(G), then we may
assume that G is the canonical product of order p(G) over these zeros; a
similar remark applies to g.

Let Sl(i?, S) denote the family of non-trivial analytic mappings of R
into S. Mutδ [3] proved:

THEOREM A. To every φe$t(R, S) there corresponds a non-constant
entire function h such that one of the two functional equations

f&YGKz) = g(h(z))

and

UzfG(zf = g(h(z))

holds, where ft is entire and f2 is a meromorphic function having at most
simple poles only at the double zeros of G. The converse is also true.

We call such h the projection for the analytic mapping φ and say that
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a pair (/„ f2) of functions f and f2 satisfies the property (A) when f and
f2 satisfy the property stated in Theorem A.

We denote by §(R, S) the family of projections for the mappings in
«(Λ, S) and by $P(R, S) (resp. QT(R, S)) the subfamily of Q(R, S) con-
sisting of polynomials (resp. transcendental entire functions). It is clear
that φ(Λ, S) = ®P(R, S)Ό$T(R, S).

In this paper we shall obtain the following theorems:

THEOREM 1. Q(R, S) is at most a countable set.

THEOREM 2. // ξ>P(R, S) is not empty, then it consists of polynomials
of the same degree.

THEOREM 3. If $(R, S) Φ 0 , then φ(i2, S) = &>(!?, S) or Q(R, S) =
®T(R, S).

THEOREM 4. Assume that there exist two polynomials h(z) — apz
p +

• + α0 (ap Φ 0) and k(z) — bpz
p + + b0 (bp Φ 0) belonging to φ(JB, S).

If I a>p I < I bp I, £Λeτι ίAe following hold:
(a) p(g) = p(G) = 0.
(b) fc(«) = (bjap)h(z) + A, where A is a constant.
(c) φ(jβ, S) = φp(12, S) αtid §(Λ, S) consists of just two elements h

and k.
(d) g satisfies one of the following functional equations:
( i ) g(Xw + A) = J3(λw + A — «i)
(ii) fif(λ^ + A) = B(xw + A -
(iii) JEΓ(λw + -A)8ff(λw + A) = J5(λn; + A - aMw)*, H{a,) Φ 0,
(iv) iϊ(λw + A)80(λw + A) = J5(λ^ + A - arfgiw)2, H{ax) Φ 0,
( v ) #(λw + A)2 = JS(λw + A - a,)H{Xw + Afg(w), Hfa) = 0,
(vi) g(\w + A)2 = B(λw + A - atfH(\w + Afg(w), H{aλ) Φ 0,

where λ = δp/α ,̂ ^ and £ are constants such that aλ Φ —A'f(\ — 1)
flf((ai — A)/λ) ^ 0 aticί H is an entire function having only simple zeros.

(e) p is a multiple of three and k(z) = ax + P{zf, where P is a
suitable polynomial of degree p/3.

(f) g has an infinite set of zeros only at the points a3; j = 1, 2, f

such that <Xj+1 = λ ^ + A(xJ — l)/(λ — 1). Moreover, if g satisfies the n-th
equation in (d), then {ctj} satisfies the corresponding n-th condition below:

( i ) {cίj} are all simple zeros of g,
(ii) {cίj} are all double zeros of g,
(iii) tei-JJLi are simple zeros of g, {a2j^}f=3 are zeros of H and {a2j}f=1

are double zeros of g,
(iv) {θL2,_ύ are double zeros of g, while {a2ί} are simple zeros of g

and H,
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(v) {a2j-i} are double zeros of g and are simple zeros of H, while
{a2j} are simple zeros of g,

(vi) {a2j-i} are simple zeros of g, while {α2y} are double zeros ofg and
are simple zeros of H.

(g) Examples of these situations indeed occur.

THEOREM 5. Assume that p{g) < +°°, there exist two polynomials h
and k of degree p belonging to Q(R, S) and the leading coefficients of h
and k are the same in modulus. Then one of the following three cases
occurs:

( i ) k(z) — Lh(z) + M, where L is a root of unity and M is a con-
stant.

(ii) p is even and there is a polynomial r such that h(z) = r{zf +
A and k(z) = {r{z) + βf + Do, where Ao, Do and β are constants.

(iii) The ratio of the leading coefficients of h and k is a primitive
s-th root of unity, and the {ps)-th iterate ψP8 of the expansion ψ of k~ι ° h
about °o satisfies ψP8{z) = z. Case (iii) can occur only if p(G) > 2.

Further, examples of each of the cases exist.

REMARK 1. Hiromi-Mutδ [2] obtained another interesting result that
if ρ(G) < +oo, 0 < ρ(g) < + oo and 9t(jβ, S) Φ 0 , then ρ(G) = pp(g) with
a suitable positive integer p and $3(R, S) consists of polynomials of the
same degree p.

REMARK 2. We assume that R and S have the maximal Picard con-
stant, that is, P(R) = P(S) = 6. Then the following hold: (I) If £P(i2, S) Φ
0 , then either case (i) or case (ii) in our Theorem 5 occurs. (II) If
$T(R, S) Φ 0 , then QT(R, S) consists of transcendental entire functions of
the same order, the same type and the same class ([10, Theorem 4]). We
have no other information on $T(R, S). In general, is the above statement
(II) true without the condition P(R) = P(S) = 6?

We can deduce our Theorems 1 and 3 from the argument of the proofs
of Theorem 1 in Muto [4] and Theorem in Mutδ [5] combined with (II) and
(III) of our Lemma 3.1. Hence their proofs are omitted here.

Proof of Theorem 5 is also omitted here, because by our Lemma 3.2
we can apply the argument of the proof of Theorem 1 in Baker [1] to
prove our Theorem 5 and all of his examples satisfy the functional equa-
tions G{z) = g(h(z)) = g(k(z)) or the functional equations G{z) — g{h{z)) and
eφωG(z) — g(k(z)), which are desired for our cases.

So in this paper we shall give the proofs of Theorems 2 and 4.
We assume here that the reader is familiar with the Nevanlinna

theory of meromorphic functions and usual notation such as T(r,f),
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N(r,a,f), N(r,a,f), m(r,f), S(r,f) etc. (see e.g. [7]).

ACKNOWLEDGEMENT. This paper was written during the author's stay-
ing at the Institute for Advanced Study in Princeton for the academic
year 1985-86. He expresses his sincere gratitude to the Institute for
Advanced Study for the hospitality and to the referee for the valuable
advice.

2. Lemmas (I). In order to prove our theorems we need several
lemmas.

The following lemma is clear.

LEMMA 2.1. Let g be an entire function and h a polynomial such

that h(z) = apz
p + (ap Φ 0). For any ε > 0 there is r0 > 0 such that

h'(z) Φ 0 and \ ap \ rp(l - e)< | h(z) \ < \ap\ rp(l + ε)

are valid for all z satisfying r = \z\ > r0 and so

pn(\ ap I rp(l - ε), 0, g) - (p - 1) ^ n(r, Q,g°h)^ pn(\ ap \ rp(l + ε), 0, g)

is true for all r > r0.

We have the following:

LEMMA 2.2. Let k be a polynomial of degree p and f a rational func-
tion whose zeros and poles are all of simple or double order. If the func-
tional equation

(2.1) F(zY=f(k(z))

holds with a suitable rational function F, then f has only one zero or
pole without counting its multiplicity and p is a multiple of three.

PROOF. Let a and β be zeros or poles of /. Since a and β are of
order at most two, it follows from (2.1) that p is a multiple of three, and
k(z) — a = q^zf and k{z) — β = q2(z)z are valid with suitable polynomials
q1 and q2 of degree p/3. Since a Φ β, k\z) has at least 4p/3 zeros, which
is impossible. Hence / has only one zero or pole without counting its
multiplicity, and p is clearly a multiple of three. q.e.d.

3. Lemmas (II). First, we study relations among the growths of
G, g, g°h and the counting functions for their zeros when h belongs to
«(Λ, S).

Let N*(rf 0, /) be the counting function for simple or double zeros of
the function / and Nξ(r9 0, /) the counting function for the other zeros
of/.

LEMMA 3.1. // h belongs to Q(R, S), then we have the following:
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( I ) n(rf Q,goh)- n(r, 0, h') ^ n(r, 0, G) ̂  n(r, 0, g o h).
( Γ ) Especially, if h is a polynomial of degree p, then for large r

n(r, 0, goh) - (p - 1) ^ «(r, 0, G) ^ ή(r, 0, goh) .

( I I ) (l/2)i\Γ2*(r, 0, ff o fc) ̂  iSΓ(r, 0, G) ̂  2ΛΓ(r, 0, ff o h).
(III) For αnt/ positive constant K and any ε satisfying 0 < 5/K <

ε < 1 we have

KT(r, h) < N*(r, 0,goh)^ N(r, 0,goh)

and

(1/2)(1 - e)N(r, 0,goh)^ N(r, 0, G)

for all large r if h is of finite order, and for r outside a set E of r of
finite measure otherwise.

PROOF. If h belongs to φ(JB, S), then it follows from Theorem A
that either

(3.1) Λ(zYG(z) = g(h(z))

or

(3.2) UzfG{zf = g(h(z))

is valid, where (fl9f2) satisfies the property (A).
If the functional equation (3.1) is valid, then we have

n(r, 0, G) ^ n(r9 0, g o h) ,

n{r, 0,goh)^ n{r, 0, G) + n(r, 0, f) ^ n(r, 0, G) + ή(r, 0, V) ,

jSΓ(r, 0,goh) = N(r, 0, G) + 3ΛΓ(r, 0, f)

and

Hence we have (I) and (II). If the functional equation (3.2) is valid, then
we have

n(r, 0, G) ̂  n(r, 0, g o fc) ,

«(r, 0, ^ofe) ^ fϊ(r, 0, G) + n(r, 0, /2) ^ fi(r, 0, G) + n(r, 0, λ') ,

N(r,0,G)£2N(r,0,goh)

and

because a double zero of G may be a simple zero of goh and a double
zero of goh is a simple zero of G. Hence we have (I) and (II) in this
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case. Therefore (I) and (II) are valid in all cases.
It is clear from (I) that (Γ) is true.
Since g has an infinite number of simple or double zeros only, we have

N(r, 0, goh) = N2*(r, 0, goh) + N2

e(r, 0, goh) ,

N2

c(r, 0,goh)^ 4N(r, 0, h') ^ 4Γ(rf h) + S(r, h) .

Let {Wj} be the set of distinct zeros of g. For an arbitrary but fixed
number q it follows from Nevanlinna's second fundamental theorem that

(3.4) N(r, 0, g o h) > Σ Mr, wy, h) >(q - l)T(r, Λ) + S(r, h) .

So we deduce from (3.3), (3.4) and (II) in this lemma that

( 3 . 5 ) (q - 5)T(r, h) + S ( r , h) < N2*(r, 0 , g o h ) ^ N ( r , 0 , g o h ) .

For any K > 0 choosing g such that q > K + 6, we obtain (III) from (3.3),
(3.5), (II) and the property of S(r, h). q.e.d.

Next we prove:

LEMMA 3.2. Suppose that the polynomials h{z) = apz
p H and k(z) =

bpz
p + •••, \ap\ = \bp\ Φ 0, 6eionsr to §(R, S). Then there exists r0 > 0

that in \z\ > r0 each of the p branches of ψ = kr^h is regular,
except for the pole at z = oo. Moreover, G{ψ(zJ) — 0 holds for any zx such
that G(zλ) = 0 and \zλ\> r0, and for any branch of ψ.

PROOF. Since h and k belongs to φ(J?, S), it follows from Theorem
A that h satisfies one of the following functional equations

fnMG{z) = g{h{z)) and Λ2(z)3G(z)2 - g{h{z)) ,

where (fhl, fh2) satisfies the property (A), and k satisfies one of the func-
tional equations

Λi(*)3G(z) = g(k(z)) and fk2(z)*G(zy = g(k(z)) ,

where (fklf fk2) satisfies the property (A). Since h and k are also poly-
nomials, there exists rx > 1 such that in \z\ > rι we have h\z) Φ 0, k\z) Φ 0
and (1/2) \ap\rp < \h(z)\, \k(z)\ < 2 \ap\rp {r = \z\). Hence each branch
of the inverse function k~ι of k is regular in \z\ > rlf except for the pole
at co, while all roots of h(z) = a and k(z) = a for | a \ > 21 ap | r\ are of
simple order. Hence the zeros of goh and gofe in |z\ > 4rx are all simple
or double. Therefore, it follows from the above equations that they are
also zeros of G. Conversely, the zeros of G in | z | > 4TΊ are also zeros of
goh and gok. q.e.d.

4. Proof of Theorem 2. Assume that h(z) = apz
p + + ao(apφ 0)
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and k{z) = bqz
q + + b0 (bq Φ 0) belong, to §P{R, S). Then it follows

from Theorem A that h satisfies one of the functional equations

(4.1) fhι(z)*G(z) = g(h(z)) and Mz)*G(z)* = g(h(z)j,

where (fhl,fh2) satisfies the property (A), and k satisfies one of the func-
tional equations

(4.2) MzYG(z) = g(k(z)) and Λ2(z)3G(z)2 = g(k(z)) ,

where (fkl,fk2) satisfies the property (A).
We contrarily suppose that q > p. For any fixed ε (0 < ε < 1) there

exists r0 > 0 such that

\ap\r*(X - ε ) < \h(z)\ < \ap\r»{l + ε) ,

I M r d - e ) < \k(z)\< \bq\r%l + ε) ,

(4.4) h'(z) Φ 0 , k\z) Φ 0 ,

(4.5) (|α,|/|

are valid for all r > r0, r = | ^ |. Then it follows from Lemma 2.1 and (Γ)
of Lemma 3.1 that

««(|&ff|r*(l - ε), 0, g) - 2(g - 1) ^ ΰ(r, 0, G) ^ ^ ( | α j r p ( l + ε), 0, g)

and so

n(\apIrp(l + ε), 0, g) - ή(\bq\r?(l - ε), 0, g) + 2 ^ (2/?) .

Hence, since | α j r p ( l + ε) < \bq\rq(l — ε) from (4.5), we obtain

(4.6) ή(\bq\r<(l - ε), 0, g) - «( |α p | r p ( l + ε), 0, g) = 0 or 1

for all r > r0.

Let {wj}?^ be the set of zeros of g satisfying \w,\ > |6 g | rJ( l + ε)
without considering their multiplicities and assume that \wx\ ^ \w2\ ^
We set

K{r) = {z; [αplr 'd + ε) ^ | z | < \bq\r\l - ε)} .

The equation (4.6) means that the number of elements of {w3) belonging
to K(r) is at most one for all r > r0.

We take rt so that | α p | r f ( l + ε) = \wt\ for some wx. Then (4.6) im-
plies

(4.7)

Let zu (j = 1, •••, p) be p roots of the equation h(z) = w,. It follows
from (4.3) that

(4.8) I bq I rf(l - e ) < I fc(β,y) | < 16 f | rf {(1 + ε)/(l - e)} " ( l + ε)
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and so from (4.5) that all k(zιs) (j = 1, •••,?>) belong to K(rΊ), where r\ is
a number satisfying \ap\rίp(l + e) = \bq\rΐ(l — e). Therefore (4.6) implies
that all k(zu) take the same value, say, k(zu) = w[ (j = 1, , p). Since zl3

are zeros of G by (4.1) and (4.4), (4.2) implies that w[ is a zero of g. If
wj Φ Wι+ι9 then it follows from (4.7) and (4.8) that \w[\ ̂  \wι+1\, and conse-
quently that wΊ and wz+1 belong to K{r[), which contradicts (4.6). Hence
we have w[ — wι+ι. Since A; is a polynomial of degree q (>p), there is a
root z' of the equation k(z) = wz+i different from % 0" = 1, •••, p). It
follows from (4.4) that zf is a simple root and so from (4.2) that zf is a
zero of G. Hence wf = h{z') is a zero of g(w) and w' ̂  ŵ  because of zf Φ
zxi (j = 1, , p). On the other hand, since wi+1 belongs to the ring (4.8),
we deduce from (4.3) that

εψ%l - e )< \w'\ < |α,|rf{(l + e)/(l - ε)}^+1(l + e) .

Hence it follows from (4.5) that two elements w9 and wt of {wj\ belong
to the ring K(r'), where rf is a number satisfying | ap \ r

fp(l + έ) =
\ap\rp{(X - e)/(l + ε)}p/9(l - ε). This contradicts (4.6). Hence we obtain
q ^z p. Similarly, we also have p ^ q. Therefore we obtain p = q, that
is, all the degrees of polynomials belonging to SQP{R, S) are the same p.

q.e.d.

5. Proof of Theorem 4. Since h and k belong to Q(R, S), h satisfies
one of the following functional equations:

(5.1) ΛiGO GGO = 9(h(z)) ,

(5.2) ΛMGizf = g(h(z)) ,

where (fhl,fh2) satisfies the property (A), and k satisfies one of the follow-
ing functional equations:

(5.3) fkMG(z) = g(k(z)) ,

(5.4) MzfGizf = g(k(z)) ,

where (fkl, fk2) satisfies the property (A). For s > 0 satisfying | ap \ (1 + ε)3 <
I ft, 1(1 — ε)3, there exists a large number r0 such that

(5.5) | α p | r * ( l - ε ) < \h(z)\ < \ap\r*(l + ε) ,

(5.6) 16,1^(1 - ε ) < \k(z)\ < \bp\r*(l + ε) ,

(5.7) h'(z)Φ0 and k\z) Φ 0

are valid for all r > r0, r = \z\.
Let {w ĴLi be the set of zeros of g satisfying \ws\ > |6 p | rf(l + ε)

without considering their multiplicities and assume that |wι\ ^ \w2\ ^ .
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Then from an argument similar to that in the proof of our Theorem 2
we deduce that

(5.8) n{\bpIr'(l - ε), 0, g) - n(\ap\rp(l + ε), 0, g) = 0 or 1

for all r > r0 and consequently

0< for all
" 1 6 , 1 ( 1 - e )

Hence the exponent of convergence of the sequence {WJ} is zero. Since
the zeros of g are of order at most two, we have p{N(r, 0, g)) = 0, that
is, p(g) = 0. From (II) of Lemma 3.1 we also have p(G) = 0 because of
p(N(r, 0, g°h)) = 0 for a polynomial h. Thus we obtain (a).

Now we shall prove (b). From a discussion similar to that in the
proof of Theorem 2, we can deduce that the images under k of all roots
of the equation h(z) = w3- must be Wj+1. Hence we have

(5.9) k{z) = (bp/ap)h(z) + wj+1 - (bPlap)ws for all j ^ 2 .

By setting A = wj+1 — (bp/ap)Wj we obtain (b).
Next we shall prove (c). Let h^z) be an arbitrary element belonging

to φ(jR, S). Then it follows from Theorems 2 and 3 that £(i2, S) =
^>P(i2, S) and hλ{z) is a polynomial of degree p. We put h^z) = cp^

p + +
Co ( C , =

that

and so

£ 0). If cp

k(z) = (bjcp)ι

<|6,l,

^(2) +

using (5.9) we have

(1/e, - 1/α

Therefore we have c

p)Wj =

p = ap

then, by the above argument,

wj+1

Ai(«)y

and

- (bJc^Wj

cp - h(z)/ap

consequently

for all j > ii g

for all j > j \

ΛX2;) Ξ Λ,(z). If

we

cp

deduce

then we similarly deduce that

K(z) = (cp/ap)h(z) + wj+1 - {cPlap)w5 for all i > j 2 ^ 2

and so

(1/Cp - l/bp)wi+1 = hx{z)lcp - fc(2)/6p for all j > j 2 .

Hence we have cp = bp and so hλ(z) = k(z). Thus we have proved (c).
Next we shall prove (d) and (e). We now note that k(z) = xh(z) + A,

where λ = bp/ap and A = w i + 1 — λw, for all j ^ 2, and that all roots of
the equations ft(z) = w$ and fe(«) = wy are simple. We consider the follow-
ing two cases (A) and (B):

(A) The case where wj is a simple zero of g. Suppose that the func-
tional equation (5.1) is valid. Then the roots zix (I = 1, * ,p) of the
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equation h(z) — ws are simple zeros of G and k(zn) — Xwβ + A = wi+1.
If Wj+i is a simple zero of g, then, since zjt are simple zeros of g°k,

the functional equation (5.3) must be valid. Since the roots zi+ltl of the
equation h(z) — wj+1 are also simple zeros of G, it follows from (5.3) that
k(zj+lfι) = wj+2 is a simple zero of g.

If Wj+1 is a double zero of g, then zn are double zeros of g°k. Hence
the functional equation (5.4) must be true. Since the roots zj+lfl of the
equation h{z) = wj+1 are double zeros of G(z), (5.4) implies that k(zj+ltl) =
wj+2 is a simple zero of g.

Next suppose that the functional equation (5.2) is valid. Then the
roots Zji (1 = 1, , v) of the equation h(z) = w3- are double zeros of G.

If wj+1 is a simple zero of g, then zn are simple zeros of gok. Hence
the functional equation (5.4) must be true. Since the roots zί+ltl of h(z) =
Wj+1 are double zeros of (?, (5.4) implies that k(zj+ltι) = wj+2 is a simple
zero of g.

If Wj+i is a double zero, then z3 ι are double zeros of gok. Hence the
functional equation (5.3) must be valid. Similarly we deduce that wj+2 is
a simple zero of g.

(B) The case where ws is a double zero of g. From a discussion
similar to that for (A) we can deduce that if (5.1) is valid and wj+1 is
simple, then (5.4) is valid and wj+2 is double; if (5.1) is valid and wj+1 is
double, then (5.3) is valid and wj+2 is double; if (5.2) is valid and wj+1 is
simple, then (5.3) is valid and wj+2 is double; finally if (5.2) is valid and
Wj+i is double, then (5.4) is valid and wj+2 is double.

Therefore, from the arguments for (A) and (B) we have the following
three cases (I), (II) and (III):

( I ) The case where {wj} are all simple zeros. It follows from the
reasoning for (A) that the functional equations (5.1) and (5.3) are valid
or the functional equations (5.2) and (5.4) are valid. In either case we
have the functional equation

(5.10) F{z)*g{h{z)) = g(k(z)) ,

where F is a rational function of degree at most p — 1 because p(g°h) =
p(g o k) = 0 and F has at most zeros and poles at the zeros of kf and h\
We put

g(W) = q(W) Π (1 -

where q is a polynomial having only simple or double zeros which are
distinct from wά (j ^ 2). Then noting that k(z) = \h{z) + A, λ = bp/ap

and A = wi+1 — \ws for all j ^ 2, we obtain
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g(k(z)) =
W2 / i=2 \ wi+

where C = Πj°=2 (Xws/wί+1). Hence it follows from (5.10) that

F(z)3 = q(k(z))(l - k(z)/w2)/q(h(z)) ,

that is,

(5.11) F(k-\w))z = 9(w)d - w/w2)/q((w - A)/X) .

We deduce from (5.11) that /(w) Ξ F{k~\w)f is a single-valued rational
function of w of the form /(w) = p1(w)/p2(w)J where pι and p2 are mutu-
ally prime polynomials with only simple or double zeros such that deg pι =
degp 2 + 1. Since F{zf =f(k(z)), it follows from Lemma 2.2 that f(w) =
JB(ιι; — α j , where B and αx are constants. Hence (5.10) implies

(5.12) B(w - aM(w - A)/λ) = g(w) ,

that is,

ff(λte; + A) = B(xw + A — aλ)g(w) .

Further, taking the multiplicity of zeros of both sides of (5.12) into ac-
count and noting that g(w) has only simple zeros in \w\ > r0, we deduce
that

(«x - A)/x Φ alf that is, aλΦ - A/(λ - 1) and ^ ( ( ^ - A)/λ) ^ 0 .

Thus we obtain (i) in (d). Moreover in this case, we have F(zf = f(k(z)) =
B{k{z) — α j , and consequently (e).

(II) The case where {w0) are all double zeros. In this case, either
(5.1) and (5.3) are valid or (5.2) and (5.4) are valid. Hence in either case
we have the functional equation

(5.13) F(zYg(h(z)) = g{k{z)) ,

where F is a rational function of degree at most p — 1. We put

oo

g(w) = q(w) Π (1 - w/wj)2 ,

where q is a polynomial having only simple or double zeros which are
distinct from w3- (j ^ 2). By the same procedure as in the case (I) we
deduce that

(5.14) f(w) = F{k-\w))z - ί(w)d - w/w2)
2/q((w - A)/λ) .

Since / is a single-valued function of wr (5.14) and Lemma 2.2 imply f(w) =
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B(w — αj 2 , where B and α : are constants. Hence it follows from (5.13)
that

B(w - axfg{{w - A)/x) =

that is,

g(\w + A) = B(\w + A -

is valid. Similarly, we also have

αx =£ - A/(λ - 1) and ^((^ - A)/λ) =£ 0 .

Thus we obtain (ii) in (d). Further, in this case we have F(z)z =
f(k(z)) = B(k(z) — αx)

2 and consequently k(z) = at + P(zf, where P(z) is a
polynomial, that is, we have (e).

(Ill) The case where {w0) are alternately simple and double zeros.
We put

g(w) = q(w) Π (1 - w/wjy*+{-1)j)/2 ,

where q is a polynomial having only simple or double zeros which are
distinct from w3- (j ^ 2 ) . In this case, it follows from the discussions in
(A) and (B) that either the functional equations (5.1) and (5.4) are valid
or the functional equations (5.2) and (5.3) are valid.

Suppose that (5.1) and (5.4) are valid. Then we have

(5.15) F(z)*g(h(z)y = g(k(z)) ,

where F is a meromorphic function. By the same reasoning as in the
case (I) we obtain

F(z)* = Cq(k(z))(l -

that is,

Aw) EE F{k-\w)γ

( 5 β l 6 ) = Cq(w)(l - w/w2γ/[q((w

x j π α - (w - A)/(λ^

Now we can put f(w) = Q(w)/H(w)\ where Q is a rational function whose
zeros and poles are simple or double and H is an entire function having
only simple zeros which are different from the zeros of Q. Since we can
write Q{k{z)) = F^z)*, where Fx is a suitable rational function, (5.16) and
Lemma 2.2 imply Q(w) = B(w - α j or Q(w) = B(w - αx)

2 and H(ad Φ 0,
where B and #i are constants. Hence it follows from (5.15) that
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(5.17) B(w - aM(w - A)/x)2 = H(w)3g(w) , H(aι) Φ 0

or

(5.18) B(w - atfgttw - A)/x)2 = H(w)5g(w) , H(a±) Φ 0 .

Further, taking the multiplicity of the zeros of both sides of (5.17) and
(5.18) and H(ax) Φ 0 into account and noting that g(w) has only zeros of
order at most two, we deduce that aλ Φ —A/(l — λ) and g{{ax — A)/x) Φ 0.
Thus we obtain either (iii) or (iv) in (d). In this case we have F1(z)z =
Q(k(z)) = B(Jc(z) — α j or =B(k(z) — ax)

2 and consequently (e).
Next suppose that (5.2) and (5.3) are valid. Then we have

(5.19) FXzMhM) = g{k{z))2 ,

where F is a meromorphic function. So we can deduce that

f{w) = F(k~\w))z

= C2q(w)\l - φ 2 )
(5.20) (

x {(1 - w/w2) Π (1 - (w -

= Q(w)H(wf ,

where Q is a rational function whose zeros and poles are of order at most
two and H is an entire function having only simple zeros such that the
simple zeros of Q are also zeros of H and the double zeros and poles of
Q are not zeros of H. Since we can write Q(k(z)) = Fx(z)z with a suitable
rational function FXJ (5.20) and Lemma 2.2 imply that Q(w) = B(w — αx),
H(aλ) = 0 or Q(w) = B(w — α2)

2, H(aλ) Φ 0, where B and ax are constants.
Hence from (5.19) and (5.20) we have

B(w - aJHiwMiw - A)/x) = </(w)2 , H{aλ) = 0

or

^ 0 .

Similarly, we also have ax Φ — A/(l — λ) and flf((αx — A)/λ) ^ 0. Thus we
obtain either (v) or (vi) in (d). In this case we have F^zf = QQc(z)) =
B(k(z) — a^ or = B(k(z) — αx)

2 and consequently (e). Therefore the proofs
of (d) and (e) are complete.

Now, from the equations of (i)-(vi) in (d), αx Φ — A/(λ—l), g{{a1—A)/x) Φ
0 and the property of H, we can deduce that in every case {α, }~=i defined
by aj+1 = XQίj + A (j ^ 1), that is, λ i + 1 = λ ^ + (Xj - l)A/(x - 1) (j =
0,1, ) are zeros of g, and moreover with respect to their multiplicities
and zeros of H, the corresponding one of (i)-(vi) in (f) is valid.

Let βx be a zero of g distinct from a, (j ^ 1). Then we deduce from
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the equations (i)-(vi) in (d) that in every case {βj}f=1 defined by βj+1 =
(βj — A)/x (j Ξ> 1), that is, βd+1 = X~3'β1 — λ(l — \~J~ι)A/(\ — 1) are zeros
of g without counting their multiplicities, and the sequence {βj} converges
to —xA/(x — 1), which is a contradiction. Therefore g has no zero other
than {αy}~=1. Thus we obtain (f).

Finally we shall prove (g), that is, we shall give examples of realiza-
tion of our six cases.

Let g be the following:
oo

g(w) = Π (1 — w/aj) in the case (i) in (d),
3=1

oo

g(w) = Π (1 — wlttjf in the case (ii),
3=1

g(w) = JJ (i _ w/αi)
(3+(-1)i)/2 in the cases (iii) and (vi)

and

g(w) = π (i - wla5)
{z-{-ι)j)/2 in the cases (iv) and (v).

Here since the exponent of convergence of the sequence is zero, all the
above products converge. Let P(z) be a polynomial such that P\z) Φ 0
on the set {z; z = P'\(ad - αj173), j = 2, 3, •}. Put k(z) = a, + P{zf and
h(z) = (k(z) — A)/x. Then all roots of the equations k(z) — a3- (j — 2, 3, •)
and h(z) = aά (j = 1, 2, •) are simple. Hence the zeros of Gt(z) := g(h(z))
are simple or double according to the order of zeros of g. Let Rί9 R2 and
S be regularly branched three-sheeted algebroid Riemann surfaces defined
by yz = Gy(z), yz = G2{z) and v? = g(w), respectively, where G2 is an entire
function defined later.

First of all, we have he$(Rlf S) by Gλ(z) = g(h(z)) and Theorem A.
Case (i). It follows from the equation (i) in (d) that

where Bι = B1/3 and consequently ke^(Rlf S) by Theorem A. Here the
zeros of G1 are all simple. On the other hand, we put G2(z) = g(h(z))2.
Then the zeros of G2(z) are all double and from the equation (i) in (d) we
have

{l/g(h(z))YG2(zY = g(h(z)) , {B1P(z)/g(h(z))YG2(z)i = g(k(z))

and so h,ke$(R2, S) by Theorem A.
Case (ii). From the equation (ii) in (d) we have

YGM = g(k(z))
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and so k e $(Rlf S). Here the zeros of Gλ(z) = g{h(zj) are all double.
Hence we can define G2{z) by g{h{z))lβ with a fixed branch. Then we have

G2(zY = g(h(z)) and {B^zYYG&Y = g(Jc(z))

and consequently Λ, ke$(R2, S).
Case (iii). From the equation (iii) in (d) we have

and so k e φ(Λlf S). Next we put G2{z) = g(h(z))2/H(k(z))\ Then it follows
from (iii) in (f) that the zeros of G2 are all simple or double and from the
definition of G2 and the equation (iii) in (d) that

{H(k(z)Y/g(h(z))YG2(zy = g(h(z)) and {JΉWG2GO = fif(fc(«)) ,

and so ft, & e ΦCB2, S).
Case (iv). We have

{BfWIHmWGM = g(k(z))

and so ke$(Rl9 S). We put G2(z) = g(h(z))2IH(k(z))\ Then we have

{H(k(z)Y/g(h(z))YG2(zY = g(h(z)) and {^(z)2}3^*) = g(k(z)) ,

and so h, k e ®(R2, S).
Case (v). We have

and so ke^(Rίf S). We put G2(«) = g(h(z))2/H(h(z))\ Then we have

{iϊ(fe(z))2/g^(^)}3G2(z)2 = g(h(z))

and

{BlP{z)1H(k(z))Wh(z))lg(km^(z) = g{k{z)) ,

and so Λ, k e ξ>(i?2, S).
Case (vi). We have

{B2P(zyH(k(z)Y/g(k(zWG1(zf = g{k{z))

and so ke®(R19 S). We put G2(z) = g(h(z)Y/H(h(z)Y. Then we have

{H(h(z)Y/g(h(z))YG2(zY = g{h{z))

and

{B!P(zYH(k(z)YH(h(z))/g(k(z))YG2(z) = </(&(*)) ,

and so fe, fc e φ(i?2, S).
Thus the proof of (g) is complete and consequently so is the proof of

Theorem 4. q.e.d.
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