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1. Introduction and results. Baker, Muté and the author ([1], [4],
[5], [6], [8], [9]) have discussed the family of analytic mappings between
two ultrahyperelliptic surfaces. In this paper we investigate the structure
of the family of analytic mappings between two regularly branched three-
sheeted algebroid Riemann surfaces. Here we call a three-sheeted cover-
ing Riemann surface regularly branched if it has no branch point other
than those of order two.

Let R (resp. S) be the three-sheeted covering algebroid Riemann sur-
face formed by elements » = (2, ¥) (resp. ¢ = (w, w)) for each 2z, y (resp.
w, u) satisfying the equation ¥* = G(2) (resp. 4* = g(w)), where G and g are
entire functions, each of which has an infinite number of simple or double
zeros and no other zeros. Then, since R and S have branch points of order
two only, R and S are regularly branched. If the Nevanlinna counting
function N(r, 0, G) for the zeros of G is of finite order o(G), then we may
assume that G is the canonical product of order o(G) over these zeros; a
similar remark applies to g.

Let A(R, S) denote the family of non-trivial analytic mappings of R
into S. Muto [3] proved:

THEOREM A. To every ¢ € UR, S) there corresponds a mnon-constant
entire function h such that one of the two functional equations

£1(2)°G(z) = g(h(z))
and
£:(2)°G(2)* = g(h(z))

holds, where f, is entire and f, is a meromorphic function having at most
stmple poles only at the double zeros of G. The converse is also true.

We call such % the projection for the analytic mapping ¢ and say that
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a pair (f,, f,) of functions f, and f, satisfies the property (A) when f; and
f, satisfy the property stated in Theorem A.

We denote by H(R, S) the family of projections for the mappings in
AR, S) and by H,(R, S) (resp. $-(R, S)) the subfamily of H(R, S) con-
sisting of polynomials (resp. transcendental entire functions). It is clear
that $(R, S) = 9x(R, S)U $«(R, S).

In this paper we shall obtain the following theorems:

THEOREM 1. 9(R, S) is at most a countable set.

THEOREM 2. If ©.(R, S) is not empty, then it consists of polynomials
of the same degree.

THEOREM 3. If ©(R, S) # @, then H(R, S) = $»(R, S) or H(R, S) =
$:(R, S).

THEOREM 4. Assume that there exist two polynomials h(z) = a,2? +
<o+ a, (@, # 0) and k(z) = b,2? + -+ + b, (b, = 0) belonging to (R, S).
If la,| < |b,|, then the following hold:

@) p(9) = p(G) = 0.

(b) k(z) = (b,/a,)h(z) + A, where A is a constant.

() Q(R,S)=9R, S) and H(R, S) consists of just two elements h
and k.

(d) g satisfies one of the following functional equations:

(i) g0w + A) = BOw + A — a)g(w),

(ii) gOw + A) = BOw + A — a)g(w),

(ili) HQOw + APgOw + A) = BOw + A — a)g(w)?, H(a,) # 0,

(iv) HOw + APgOww + A) = BOw + A — a)’g(w)?, H(a,) # 0,

(v) gOww + AP = BOw + A — a)HOw + APg(w), H(e,) = 0,

(vi) gOwvw + AP = BOw + A — a)*HOw + A)lg(w), H(a) # 0,
where \ = b,/a,, a, and B are constants such that o, = —A/(N — 1) and
g((a, — A)/\) # 0 and H s an entire function having only simple zeros.

(e) » 1s a multiple of three and k(z) = a, + P(z)*, where P is a
suitable polynomial of degree p/3.

(f) g has an infinite set of zeros only at the points a;, J =1,2,+--,
such that a;., = Ma, + A0S —1)/(n—1). Moreover, if g satisfies the n-th
equation in (d), then {a;} satisfies the corresponding n-th condition below:

(i) {aj} are all simple zeros of g,

(ii) A{a;} are all double zeros of g,

(iii) {anj_i}i, are simple zeros of g, {a,;_.}5=s are zeros of H and {a,;}5,
are double zeros of g,

(iv) A{a,;_i} are double zeros of g, while {a,;} are simple zeros of g
and H,
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(v) A{aw_} are double zeros of g and are simple zeros of H, while
{an;} are simple zeros of g,

(vi) {awi_i} are simple zeros of g, while {a,;} are double zeros of g and
are simple zeros of H.
(g) Examples of these situations indeed occur.

THEOREM 5. Assume that p(g) < + oo, there exist two polynomsials h
and k of degree p belonging to (R, S) and the leading coefficients of h
and k are the ‘same in modulus. Then one of the following three cases
0CCUTS:

(1) k(z) = Lh(z) + M, where L is a root of unity and M is a con-
stant.

(ii) p s even and there is a polynomial r such that h(z) = r(z)* +
A, and k(z) = {r(z) + B} + D,, where A,, D, and B are constants.

(iii) The ratio of the leading coefficients of h and k is a primitive
s-th root of unity, and the (ps)-th iterate +,, of the expansion v of k™'ch
about oo satisfies ¥r,,(2) = z. Case (iii) can occur only if o(G) > 2.

Further, examples of each of the cases exist.

REMARK 1. Hiromi-Muto [2] obtained another interesting result that
if o(G) < +0, 0< p(g) < + and AR, S) # &, then p(G) = pp(g) with
a suitable positive integer p and H(R, S) consists of polynomials of the
same degree p.

REMARK 2. We assume that R and S have the maximal Picard con-
stant, that is, P(R) = P(S) =6. Then the following hold: (I) If (R, S) #
@, then either case (i) or case (ii) in our Theorem 5 occurs. II) If
9-(R, S) = @, then (R, S) consists of transcendental entire funections of
the same order, the same type and the same class ([10, Theorem 4]). We
have no other information on $,(R, S). In general, is the above statement
(IT) true without the condition P(R) = P(S) = 6?

We can deduce our Theorems 1 and 3 from the argument of the proofs
of Theorem 1 in Muto [4] and Theorem in Muto [5] combined with (II) and
(III) of our Lemma 3.1. Hence their proofs are omitted here.

Proof of Theorem 5 is also omitted here, because by our Lemma 3.2
we can apply the argument of the proof of Theorem 1 in Baker [1] to
prove our Theorem 5 and all of his examples satisfy the functional equa-
tions G(2) = g(h(z)) = g(k(2)) or the functional equations G(z) = g(h(z)) and
e*“G(z) = g(k(z)), which are desired for our cases.

So in this paper we shall give the proofs of Theorems 2 and 4.

We assume here that the reader is familiar with the Nevanlinna
theory of meromorphic functions and usual notation such as T(r, f),
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N(r, a, ), N(r, a, ), m(r, f), S(r, f) ete. (see e.g. [T]).

ACKNOWLEDGEMENT. This paper was written during the author’s stay-
ing at the Institute for Advanced Study in Princeton for the academic
year 1985-86. He expresses his sincere gratitude to the Institute for
Advanced Study for the hospitality and to the referee for the valuable
advice.

2. Lemmas (I). In order to prove our theorems we need several
lemmas.
The following lemma is clear.

LEMMA 2.1. Let g be an entire function and h a polynomial such
that h(z) = a2 + +++ (a, #0). For any & > 0 there is r, > 0 such that
K@ #0 and |a,|r*1 —¢) < |h(2)| < |a,|r*1 + ¢)

are valid for all z satisfying r = |z| > r, and so
pi(la,|r* (L —¢€),0,9) — (» — 1) = 7(r, 0, goh) < pu(|a, | r*(1 + &), 0, 9)
18 true for all r > 7,
We have the following:
LEMMA 2.2. Let k be a polynomial of degree » and f a rational func-

tion whose zeros and poles are all of stmple or double order. If the func-
tional equation

@.1) F(2)* = flk(2))

holds with a suitable rational function F, then f has only one zero or
pole without counting its multiplicity and p is a multiple of three.

PrOOF. Let a and B be zeros or poles of f. Since a and B are of
order at most two, it follows from (2.1) that p is a multiple of three, and
k(z) — a = q,(2)* and k(z) — 8 = ¢,(2)* are valid with suitable polynomials
q, and ¢, of degree p/3. Since a # B, k'(z) has at least 4p/3 zeros, which
is impossible. Hence f has only one zero or pole without counting its
multiplicity, and p is clearly a multiple of three. q.e.d.

3. Lemmas (II). First, we study relations among the growths of
G, g, goh and the counting functions for their zeros when % belongs to
(R, S).

Let NX(r, 0, f) be the counting function for simple or double zeros of
the function f and N;(r, 0, f) the counting function for the other zeros
of f.

LeMMA 3.1. If h belongs to O(R, S), then we have the following:
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(I) @, 0,goh) — @a(r,0,h) < 7(r, 0, @) < u(r, 0, goh).

(I') Especially, if h is a polynomial of degree p, then for large r
(r, 0, goh) — (p — 1) = A(r, 0,G) = 7(r, 0, goh) .

(II) (1/2)N*(r, 0, goh) < N(r, 0, G) < 2N(r, 0, goh).
(III) For any positive constant K and any & satisfying 0 < 5/K <
e <1 we have

KT(’I', h’) < N2*('rr 0’ goh) é N('I', 07 goh)
and
(1/2)(1 — e)N(r, 0, goh) =< N(r, 0, G)

Jor all large r if h is of finite order, and for r outside a set E of r of
finite measure otherwise.

ProoF. If h belongs to H(R, S), then it follows from Theorem A
that either

(3.1) fi(2)’G(2) = g(h(2))
or
3.2) f(2)°G(2) = g(h(2))

is valid, where (f,, f,) satisfies the property (A).
If the functional equation (8.1) is valid, then we have

#i(r, 0, G) < n(r, 0, goh) ,
#(r, 0, goh) < @(r, 0, G) + @(r, 0, f,) < %lr, 0, G) + @(r, 0, A'),
N(r, 0, goh) = N(r, 0, G) + 3N(r, 0, f))
and
N*(r, 0,goh) < N(r, 0,G) .

Hence we have (I) and (II). If the functional equation (8.2) is valid, then
we have

7i(r, 0, G) £ a(r, 0, goh),

a(r, 0, goh) < a(r, 0, G) + %@(r, 0, f,) < alr, 0, G) + #(r, 0, 1) ,
N(r, 0, G) < 2N(r, 0, goh)

and
NX*(r, 0,g°h) < 2N(r, 0, G)

because a double zero of G may be a simple zero of goh and a double
zero of goh is a simple zero of G. Hence we have (I) and (I) in this
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case. Therefore (I) and (II) are valid in all cases.

It is clear from (I) that (I') is true.

Since g has an infinite number of simple or double zeros only, we have
N(r, 0, goh) = N;*(r, 0, goh) + N;(r, 0, goh),
Ni(r, 0, goh) =< 4N(r, 0, b') = 4T(r, h) + S(r, h) .

Let {w;} be the set of distinet zeros of g. For an arbitrary but fixed
number ¢ it follows from Nevanlinna’s second fundamental theorem that

(3.3)

(3.4) N(r, 0, goh) > Z:‘i N(r, w;, k) > (@ — 1)T(r, k) + S(r, h) .

So we deduce from (3.8), (8.4) and (II) in this lemma that
(3.5) (@ —85)T(r, ) + S(r, h) < N*(r, 0, goh) < N(r, 0, goh) .

For any K > 0 choosing ¢ such that ¢ > K + 6, we obtain (III) from (3.3),
(8.5), (II) and the property of S(», k). q.e.d.

Next we prove:

LeEMMA 3.2. Suppose that the polynomials h(z) = a,z” +-+- and k(z) =
b,2» + -+, la,| = |b,| # 0, belong to H(R, S). Then there exists r, >0
such that in |2| > r, each of the p branches of + = k™'oh is regular,
except for the pole at z = «. Moreover, G(4(z,)) = 0 holds for any 2z, such
that G(z,) = 0 and |z,| > 7, and for any branch of .

PrOOF. Since h and k belongs to (R, S), it follows from Theorem
A that h satisfies one of the following functional equations

fu(@)G(2) = g((z)) and fi,(2)°G(2)" = 9(h(2)) ,

where (fu, f3.) satisfies the property (A), and %k satisfies one of the func-
tional equations
fu(2)’G(2) = g(k(2)) and fi.(2)°G(2)" = 9(k(2)) ,

where (f., fi.) satisfies the property (A). Since % and k are also poly-
nomials, there exists », > 1 such that in |2| > », we have h'(z) # 0, k'(z) # 0
and (1/2)]a,|r? < |h(z)], |k(z)| < 2]|a,|r* (r = |z|). Hence each branch
of the inverse function k= of k is regular in |z| > r,, except for the pole
at o, while all roots of h(z) = @ and k(z) = a for |a|> 2|a,|r? are of
simple order. Hence the zeros of goh and gok in |z| > 4r, are all simple
or double. Therefore, it follows from the above equations that they are
also zeros of G. Conversely, the zeros of G in |z| > 47, are also zeros of
goh and gok. q.e.d.

4. Proof of Theorem 2. Assume that h(z) = a,2* + -+ + @, (a, # 0)
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and k(z) = b2? + -+ + b, (b, # 0) belong to $(R, S). Then it follows
from Theorem A that A satisfies one of the functional equations

(4.1) Fu@)PG(z) = g(h(z)) and fi,(2)°G(2)* = g(h(2)) ,

where (f;., fi,) satisfies the property (A), and k satisfies one of the func-
tional equations

(4.2) fu(@'G(z) = 9(k(z)) and fi.(2)’G(2) = 9(k(2)) ,

where (f,., fi.) satisfies the property (A).

We contrarily suppose that ¢ > p. For any fixed ¢ (0 < ¢ < 1) there
exists 7, > 0 such that

la,|r* (1 — &) < |h(2)| < |a,|r*1 + ¢) ,

*.3) by 7L — &) < [k(@)] < [Be 7L+ ) ,
(4.4) W) #0, k() +0,
(4.5) (12, /1B DI + (L — emsvarssil < pocs

are valid for all » > r,, » = |2|. Then it follows from Lemma 2.1 and (I')
of Lemma 3.1 that

qii(| by | (1 — €), 0, 9) — 2(¢ — 1) < @, 0, G) < pa(la,|r*(1 + ¢), 0, 9)
and so
n(la,| *(1 + ), 0, g) — W(|b,| (1 —¢), 0, 9) + 2 = (2/q) .
Hence, since |a,|r*(1 + &) < |b,| (1 — &) from (4.5), we obtain
(4.6) 7(|by| (1 — ), 0, 9) — %(|a,|r*(1 +€),0,9) =0 or 1
for all » > r,.
Let {w;}3, be the set of zeros of g satisfying |[w;| > |b,|7i(1 + ¢)

without considering their multiplicities and assume that |w,| < |w,| < ---.
We set

K(r) = {z; |a,| r*(1 + &) < |z] < |b,| (1 — ¢)} .
The equation (4.6) means that the number of elements of {w;} belonging
to K(r) is at most one for all > 7.
We take r, so that |a,| (1 + ¢) = |w,| for some w,. Then (4.6) im-
plies
(4.7) |wisa] > b 7{(1 — ¢€) .

Let z,; (=1, ---,p) be p roots of the equation A(z) = w,. It follows
from (4.3) that

(4.8) 10| (L — &) < [k(zi)| < [Bg] {1 + €)/(1 — &)}*(1 + ¢)
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and so from (4.5) that all k(z;;) (j =1, -+, p) belong to K(r;), where r] is
a number satisfying |a,|7*(1 + ¢) = |b,| r{(1 — ¢). Therefore (4.6) implies
that all k(z,;) take the same value, say, k(z;;) = w; (j = 1,---, p). Since z;
are zeros of G by (4.1) and (4.4), (4.2) implies that w; is a zero of g. If
w, # w;,,, then it follows from (4.7) and (4.8) that |w;| = |w;;, ], and conse-
quently that w} and w,,, belong to K(r;), which contradicts (4.6). Hence
we have w) = w,,,. Since k is a polynomial of degree g (>p), thereis a
root 2’ of the equation k(z) = w,,, different from z; (=1, ---, p). It
follows from (4.4) that 2’ is a simple root and so from (4.2) that 2z’ is a
zero of G. Hence w' = h(z') is a zero of g(w) and w’ # w, because of 2’ =
zi; =1, -+, p). On the other hand, since w,,, belongs to the ring (4.8),
we deduce from (4.3) that

la, | 7H{1 — &)/ + "L — &) < [w'| < |a,| {1 + &)/ — "1 +¢) .

Hence it follows from (4.5) that two elements w’ and w, of {w,} belong
to the ring K(»'), where »’ is a number satisfying |a,|'*(1 +¢) =
la, | {1 — &)/(1 + €)}**(1 — ¢). This contradicts (4.6). Hence we obtain
q £ p. Similarly, we also have p < q. Therefore we obtain p = ¢, that
is, all the degrees of polynomials belonging to $.(R, S) are the same ».

q.e.d.

5. Proof of Theorem 4. Since % and k belong to 9(R, S), h satisfies
one of the following functional equations:

(5.1) Fu(2)’G(2) = g(h(2)) ,
(5.2) Fu(2)°G(2) = g(h(2)) ,

where (fi, fi.) satisfies the property (A), and k satisfies one of the follow-
ing functional equations:

(5.3) Fu(2)’G(z) = 9(k(2)) ,
(5.4) fu(2)G(2) = 9(k(2)) ,

where (fi., fi.) satisfies the property (A). For e > 0 satisfying |a,|(1+¢)*<
|b,| (1 — €)%, there exists a large number », such that

(5.5) la,|r*(1 — &) < |h(2)| < |a,|r*(1 + ¢) ,
(5.6) [b,|r*(1 — &) < |k(2)| < |b,|r*(1 + ¢) ,
(5.7) W(z)#0 and k(z) 0

are valid for all » > », r = |z]|.
Let {w;};=, be the set of zeros of g satisfying |w;| > |b,|r2(1 + ¢)
without considering their multiplicities and assume that |w,| < |w,| < -+ -.
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Then from an argument similar to that in the proof of our Theorem 2
we deduce that

(5-8) ﬁ(|bp[7'p(1 - 5)! 0’ g) - %(la’pl/"p(l + 5)1 09 g) =0orl
for all » > r, and consequently

la,| (1 + &)
< 2 1
=T 0=e) ©

Hence the exponent of convergence of the sequence {w;} is zero. Since
the zeros of g are of order at most two, we have p(N(r, 0, g)) = 0, that
is, p(g) = 0. From (II) of Lemma 3.1 we also have o(G) = 0 because of
Oo(N(r, 0, goh)) = 0 for a polynomial . Thus we obtain (a).

Now we shall prove (b). From a discussion similar to that in the
proof of Theorem 2, we can deduce that the images under k of all roots
of the equation Ah(z) = w; must be w;,,. Hence we have

(5.9) k(2) = (by/ap)h(2) + wjs — (byla,)w;  for all j=2.

By setting A = w;,, — (b,/a,)w; we obtain (b).

Next we shall prove (¢). Let h,(z) be an arbitrary element belonging
to 9(R, S). Then it follows from Theorems 2 and 8 that H(R, S) =
9-(R, S) and h,(z) is a polynomial of degree p. We put h,(z) =¢,2° + -+ +
¢ (¢, #0). If |e,| <|b,|, then, by the above argument, we deduce
that

0< | X
Wit

for all 7.

k(Z) = (bp/cp)hl(z) + Wiy — (bp/cp)w:r‘ fOI‘ all .7 > jl g 2
and so using (5.9) we have
/e, — L/a)w; = hy(2)[c, — h(2)/a,  for all j>j,.
Therefore we have ¢, = a, and consequently h,(2) = h(2). If |¢,| = |b,],
then we similarly deduce that
hi(2) = (cp/ap)h<z) + Wiy — (cp/ap)w:i forall j>j,=2
and so
(l/cp - 1/bp)wj+1 = hl(z)/cp - k(z)/bp for all .7 > jz .

Hence we have ¢, = b, and so h,(2) = k(z). Thus we have proved (c).
Next we shall prove (d) and (e¢). We now note that k(z) = AMh(2) + A,
where A = b,/a, and A = w;,, — Mw; for all j = 2, and that all roots of
the equations h(z) = w; and k(z) = w; are simple. We consider the follow-
ing two cases (A) and (B):
(A) The case where w; is a simple zero of g. Suppose that the func-
tional equation (5.1) is valid. Then the roots z;; (=1, -+, p) of the
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equation h(z) = w; are simple zeros of G and k(z;) = vw; + A = Wiy,

If w;,, is a simple zero of g, then, since z; are simple zeros of g-k,
the functional equation (5.3) must be valid. Since the roots z;.,, of the
equation h(z) = w;,, are also simple zeros of G, it follows from (5.3) that
k(2j41,) = wj,, is a simple zero of g.

If w;,, is a double zero of g, then z; are double zeros of gok. Hence
the functional equation (5.4) must be true. Since the roots z;.,,; of the
equation k(z) = w;,, are double zeros of G(z), (5.4) implies that k(z;,,,) =
Wi, 1S a simple zero of g.

Next suppose that the functional equation (5.2) is valid. Then the
roots z; I =1, --+, p) of the equation k(z) = w; are double zeros of G.

If w;,, is a simple zero of g, then z; are simple zeros of gok. Hence
the functional equation (5.4) must be true. Since the roots z;,,,; of h(z) =
w;,, are double zeros of G, (5.4) implies that k(z;.,,) = w;,, is a simple
zero of g.

If w;,, is a double zero, then z; are double zeros of gok. Hence the
functional equation (5.3) must be valid. Similarly we deduce that w;,, is
a simple zero of g.

(B) The case where w; is a double zero of g. From a discussion
similar to that for (A) we can deduce that if (5.1) is valid and w;,, is
simple, then (5.4) is valid and w;,, is double; if (5.1) is valid and w;,, is
double, then (5.3) is valid and w;,, is double; if (5.2) is valid and w;,, is
simple, then (5.3) is valid and w;,, is double; finally if (5.2) is valid and
w;., is double, then (5.4) is valid and w;,, is double.

Therefore, from the arguments for (A) and (B) we have the following
three cases (I), (II) and (III):

(I) The case where {w;} are all simple zeros. It follows from the
reasoning for (A) that the functional equations (5.1) and (5.3) are valid
or the functional equations (5.2) and (5.4) are valid. In either case we
have the functional equation

(5.10) F(2)’9(h(2)) = 9(k(2)) ,

where F' is a rational function of degree at most p — 1 because p(goh) =
0(gek) = 0 and F has at most zeros and poles at the zeros of %' and &'
We put

0(w) = qw) [T 1 = w/wy),

where ¢ is a polynomial having only simple or double zeros which are
distinet from w; (5 = 2). Then noting that k(z) = Mh(2) + A, X\ = b,/a,
and A = w;,, — zvw; for all 7 = 2, we obtain
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o(k(2) = atkx)(1 — H2) I (1 - M) 050 = )

W, 7 =t Wity

W;

where C = I3, QWw;/w;.,). Hencg it follows from (5.10) that
F(z)* = q(k(2))(1 — k(2)/w.)/q(h(2)) ,

that is,

(5.11) Fk™(w)) = q(w)A — w/w,)/q((w — A)/N) .

We deduce from (5.11) that flw) = F(k™(w))® is a single-valued rational
function of w of the form fw) = p,(w)/p,(w), where p, and p, are mutu-
ally prime polynomials with only simple or double zeros such that deg p, =
deg p, + 1. Since F(2)® = f(k(2)), it follows from Lemma 2.2 that flw)=
B(w — a,), where B and «, are constants. Hence (5.10) implies
(5.12) Bw — a)g((w — A)/\) = g(w) ,
that is,

gOw + A) = BOww + A — a)g(w) .
Further, taking the multiplicity of zeros of both sides of (5.12) into aec-

count and noting that g(w) has only simple zeros in |w| > 7, we deduce
that

(a, — AN # oy, that is, a, = —A/(.— 1) and g{(a, — A)/N) = 0.

Thus we obtain (i) in (d). Moreover in this case, we have F(2)°* = f(k(z)) =
B(k(z) — o), and consequently (e).

(II) The case where {w;} are all double zeros. In this case, either
(5.1) and (5.3) are valid or (5.2) and (5.4) are valid. Hence in either case
we have the functional equation
(5.13) F(2)’g(h(z)) = 9(k(z)) ,

where F' is a rational function of degree at most p — 1. We put
g(w) = q(w) ,132 1 — w/w;)*,

where ¢ is a polynomial having only simple or double zeros which are
distinct from w; (j = 2). By the same procedure as in the case (I) we
deduce that

(5.14) fw) = FE™(w))* = qw)1 — w/wy)*/q((w — A)/N)

Since f is a single-valued function of w, (5.14) and Lemma 2.2 imply flw) =
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B(w — «,)?, where B and «, are constants. Hence it follows from (5.13)
that

Bw — a,)g(w — A)/N) = g(w) ,
that is,
gOww + A) = BOw + A — a,)’g(w)
is valid. Similarly, we also have
a,#—A/n—1) and g((a, — A)/A) = 0.

Thus we obtain (ii) in (d). Further, in this case we have F(z)’=
fk(2)) = B(k(z) — a,)* and consequently k(z) = a, + P(z)%, where P(z) is a
polynomial, that is, we have (e).

(III) The case where {w;} are alternately simple and double zeros.
We put

gw) = qw) T (1 — wiw))®r 22 ,

where ¢q is a polynomial having only simple or double zeros which are
distinet from w; (7 = 2). In this case, it follows from the discussions in
(A) and (B) that either the functional equations (5.1) and (5.4) are valid
or the functional equations (5.2) and (5.3) are valid.

Suppose that (5.1) and (5.4) are valid. Then we have

(5.15) F(2y9(h(2))* = 9(k(2)) ,

where F is a meromorphic function. By the same reasoning as in the
case (I) we obtain

Fle) = Cak@)( — k@wy | ah? {JT @ - mywpo=—7}]
that is,
fw) = Fk™(w))?
(5.16) = Cq(w)(1 — w/wz)ﬁ/ [q((w — A)\)

x Tl = @ — afoavesr]].

Now we can put flw) = Q(w)/H(w)}, where @ is a rational function whose
zeros and poles are simple or double and H is an entire function having
only simple zeros which are different from the zeros of Q. Since we can
write Q(k(z)) = F\(z)®, where F, is a suitable rational function, (5.16) and
Lemma 2.2 imply Q(w) = B(w — a,) or Q(w) = Blw — a,)* and H(a,) # 0,
where B and a, are constants. Hence it follows from (5.15) that
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(5.17) Bw — a)9((w — A)/N) = Hw)g(w) ,  Hla,) # 0
or
(5.18) Bw — a)’9((w — AN = Hw)g(w) ,  H(ew) # 0.

Further, taking the multiplicity of the zeros of both sides of (5.17) and
(5.18) and H(a,) # 0 into account and noting that g(w) has only zeros of
order at most two, we deduce that o, = —A/(1 — A) and g((a; — A)/\) # 0.
Thus we obtain either (iii) or (iv) in (d). In this case we have F\(z)’=
Q(k(2)) = B(k(z) — a)) or =B(k(z) — a,)* and consequently (e).

Next suppose that (5.2) and (5.3) are valid. Then we have

(5.19) F(2)°g(h(2)) = g(k(2))*
where F' is a meromorphic function. So we can deduce that
Sflw) = Flk™(w))?
= C*q(w)' (1 — w/w,)

x = whoy fl @ = @ — /007 gt — )

= Qw)H(w)" ,

where @ is a rational function whose zeros and poles are of order at most
two and H is an entire function having only simple zeros such that the
simple zeros of @ are also zeros of H and the double zeros and poles of
@ are not zeros of H. Since we can write Q(k(z)) = F,(z)® with a suitable
rational function F,, (5.20) and Lemma 2.2 imply that Q(w) = Blw — a,),
H(a,) = 0 or Qw) = Blw — )}, H(at,) # 0, where B and a, are constants.
Hence from (5.19) and (5.20) we have

B(w — a)Hw)’9((w — A)/\) = g(w), H(a) =0

(5.20)

or
Bw — a.)Hw)g(w — A)N) = gw),  Hle) #0.

Similarly, we also have a, # —A/(1 — \) and g((a, — A)/\) # 0. Thus we
obtain either (v) or (vi) in (d). In this case we have F\(2)’ = Qk(z)) =
B(k(z) — a,) or = B(k(z) — a,)* and consequently (e). Therefore the proofs
of (d) and (e) are complete.

Now, from the equations of (i)-(vi)in (d), a, = — A/(L—1), 9((a,— A)/\) #
0 and the property of H, we can deduce that in every case {a,};>, defined
by aj, =x;+ A (j=1), that is, Ny = Mo, + O — 1DA/AV—1) (=
0,1, ---) are zeros of g, and moreover with respect to their multiplicities
and zeros of H, the corresponding one of (i)-(vi) in (f) is valid.

Let B, be a zero of g distinet from «; (j = 1). Then we deduce from
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the equations (i)-(vi) in (d) that in every case {B;}=, defined by B;,=
(B; — A)/n (F = 1), that is, B, = V778, — M1 — A7) A/(x — 1) are zeros
of g without counting their multiplicities, and the sequence {3;} converges
to —MA/(» — 1), which is a contradiction. Therefore g has no zero other
than {a;}3,. Thus we obtain (f).

Finally we shall prove (g), that is, we shall give examples of realiza-
tion of our six cases.

Let g be the following:

g(w) = ]j 1 — wla;) in the case (i) in (d),
g(w) = _]jl(l — w/a;)? in the case (ii),

gw) = TI (1 — w/a)* "% in the cases (iii) and (vi)
J=1

and
glw) = ﬁ (1 — wja,;)evore in the cases (iv) and (v).
J=1

Here since the exponent of convergence of the sequence is zero, all the
above products converge. Let P(z) be a polynomial such that P'(z) = 0
on the set {z;2 = P '((a; — a)"®), 5 = 2,8, --+}. Put k(z) = a, + P(2)* and
h(z) = (k(z) — A)/». Then all roots of the equations k(z) = a; (1 = 2,3, -++)
and h(z) = a; (j =1, 2, ---) are simple. Hence the zeros of G,(z):= g(h(z))
are simple or double according to the order of zeros of g. Let R,, R, and
S be regularly branched three-sheeted algebroid Riemann surfaces defined
by 4* = Gi(2), ¥* = G,(2) and «* = g(w), respectively, where G, is an entire
function defined later.

First of all, we have he §(R,, S) by G,(2) = g(h(z)) and Theorem A.

Case (i). It follows from the equation (i) in (d) that

{B.P()}'G\(2) = g(k(z)) ,
where B, = B*® and consequently kc 9(R,, S) by Theorem A. Here the
zeros of G, are all simple. On the other hand, we put G,z) = g(h(z))%.

Then the zeros of G,(z) are all double and from the equation (i) in (d) we
have

{1/9(h@2)¥Gy(2)" = g(h(2)) ,  {B.P(2)/g(h(2))}’G.(2)" = 9(k(2))

and so h, ke H(R, S) by Theorem A.
Case (ii). From the equation (ii) in (d) we have

{B.P(2)'Y'G.(?) = g(k(2))
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and so ke (R, S). Here the zeros of G,(z) = g(h(z)) are all double.
Hence we can define G,(z) by g(h(z))"* with a fixed branch. Then we have

Gy(2)° = g(h(z)) and ({B.P(2)’FGy(2) = g(k(2))
and consequently h, ke Q(R,, S).
Case (iii). From the equation (iii) in (d) we have
{B.P(2) H(k(2)Y’G,(2) = 9(k(2))

and so ke (R, S). Next we put G,(2) = g(h(z))*/H(k(z))®. Then it follows
from (iii) in (f) that the zeros of G, are all simple or double and from the
definition of G, and the equation (iii) in (d) that

{Hk(2))'[9(h(2)}Gy(2)* = g(h(2)) and {B.P(2)F’Gy(2) = g(k(2)) ,

and so h, ke (R, S).
Case (iv). We have

{B.P(z)’[H(k(2))Y'G.(2)* = g(k(2))
and so ke (R, S). We put G,(z) = g(h(z)*/H(k(2))®. Then we have
{H(k(2))g(M(2)}'Gy(2) = g(h(z)) and {B.P()FGy(z) = 9(k(2)) ,
and so &, ke H(R, S).
Case (v). We have
{BIP(2) H(k(2))'|9(k(2))YG,(2) = g(k(z))
and so ke (R, S). We put G,(2) = g(h(z))*/H(h(z))®. Then we have
{H(1(2))"[9(h(2))}'G(2)" = g(R(2))
and
{B.P(2)H(k(2)"H(h(2))|9(k(2))}'Gy(2) = 9(k()) ,
and so &, ke H(R,, S).
Case (vi). We have
{BIP(2)'H(k(2))*|9(k(2))Y'G.(2)* = g(k(z))
and so ke (R, S). We put G,(z) = g(h(z))’/H(h(z))>. Then we have
{H(1(2))’[9(h(2))}'Gx(2)" = g(R(2))
and
{BiP(2)* H(k(2) H(h(2))/9(k(2))}'G(2) = 9(k(2)) ,
and so h, ke H(R, S).

Thus the proof of (g) is complete and consequently so is the proof of
Theorem 4. q.e.d.
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