
Tδhoku Math. Journ.
39 (1987), 299-311.

A CANONICAL DECOMPOSITION OF AUTOMORPHIC FORMS
WHICH VANISH ON AN INVARIANT

MEASURABLE SUBSET

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

HIROMI OHTAKE

(Received April 14, 1986)

Introduction. Let Γ be a discrete subgroup of the real Mόbius group
PSL(2; R). We denote by Ω(Γ) the region of discontinuity of Γ. Let
σ be a Γ-invariant closed subset of the extended real line R such that
#<j ;> 3 and αs^o, and let D be the component of Ω(Γ) — σ containing
the upper half-plane U. Then D = U or D = Ω{Γ) — σ according as
a — R or not. Let E be a Γ-invariant measurable subset of D, and put
V = D — E, where if D Φ U, then E is assumed to be symmetric with
respect to R in the sense that zeE whenever zeE. Furthermore, for
an integer q ^ 2, let Lp, 1 ^ p < <*>, (resp. L°°) be the Banach space
consisting of all the p-integrable (resp. bounded) measurable automorphic
forms of weight — 2q on D for Γ, which are symmetric if D is symmet-
ric (see Section 1 for the precise definition). We denote by Ap, 1 <̂
p <; oo, the closed subspace consisting of all the holomorphic elements
in ZΛ and set LP(V) = {μeLp; μ\E = 0} and Ap\v = {Xvφ; φe Ap}, where
Xv is the characteristic function of V. For 1 ^ p < oo and p' satisfying
1/p + 1/p' = 1, Lpf is isomorphic to the dual space of ZΛ We denote by
(Ap)λ (cLp ') the annihilator of Ap.

In the present paper, we investigate conditions for E under which
(Ap)λPiLp\V) and Apt\v are closed and complementary to each other in
LP\V), and give two kinds of answers to this question (see Theorems
1 and 3 below). This problem occured in studying extremal quasiconfor-
mal mappings with dilatation bound (see, for example, Sakan [10]). Our
results can be applied to the study of quasiconformal mappings and
Teichmiiller spaces. These applications will be discussed in Ohtake [9].

Throughout this paper, as natural assumptions for the problem, we
require that V has positive measure and Ap Φ {0}. We note that if Έ
has (2-dimensional Lebesgue) measure zero, then the spaces (Ap)λ Π
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LP\V){—{APY) and Apf\v ( = Apf) are closed and complementary to each
other; this is classical and well-known.

In Section 1, we give some definitions and recall known results. In
Section 2, we state our main results on the problem mentioned above.
The proofs will be given in Sections 3 and 4.

The author would like to express his gratitude to Professor Y.
Kusunoki for his encouragement and advice, and to Doctors K. Sakan
and M. Taniguchi and the referee for their valuable comments and
suggestions.

1. Preliminaries. Let Γ, σ, D, E and V be as in Introduction and
let λ = XD be the hyperbolic metric for D with constant negative curva-
ture —4. We fix once and for all an integer q ^ 2. A measurable
automorphic form of weight —2q on D for Γ is a measurable function
μ on D which satisfies

(μ o τ)(7')9 = μ for all 7 e Γ .

Such an automorphic form μ is said to be p-integrable for p, 1 ^ p < oof

(resp. bounded), if

\\μ\\P = (\\D/rMz)2-9p\μ(z)\p\dz A dz\JP < -

(resp. Hμlloo = esssupλ(zΓ9|μ(z)| < oo) .
ZBD

We then denote by LP(D, Γ) (resp. L™(D, Γ)) the complex Banach space
consisting of all the p-integrable (resp. bounded) automorphic forms of
weight — 2q on D for Γ. For p, 1 ^ p <; oo, AP(D, Γ) denotes the closed
subspace of all the holomorphic elements in LJCD, Γ). Furthermore, if
D is symmetric with respect to R, then we define the real Banach spaces
of all the symmetric functions in LP(D, Γ) and Av

q(Df Γ) by

L>(P, Γ) s y m = {μe Lp

q(D, Γ); μ{z) = μ(z) for a.e. z e D]

and

A CD, Γ) s y m = A CA D Π L ; ( Z ? , r ) s y m ,
respectively.

We use the following result:

PROPOSITION A. There exists a unique function F — FDtΓ on DxD
with the following properties, where cq = (2q — l)/(q — 1):

(1.1) F(z, ζ) = -F(ζ, z) ,

(1.2) F( ,C)e i?(AΓ)
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for every fixed ζ e ΰ and every p, 1 ̂ p ^ oo,

(1.8) \\DΓλ(ζΓ'|F(z, ζ)|\dζ A dζ\ ^ c,

(1.4) ίK«) = (( X(ζy-*F(z, Qφ(Qdζ A dξ
JJD/Γ

for every φeAp(D, Γ), 1 ̂  p ^ °°, αwd ever]/

The uniqueness of FDtΓ above follows from (1.1), (1.2) and (1.4). In
fact, let Fx and F2 have these three properties. Then we have

F&f 0 = (S X(w)2-2qF2(z, w)F1(w9 ζ)dw A dw
JJD/ΓD/Γ

= \[ X(wf-2qF2(w, »)ί\(ζ, w)dw A
JJD/Γ

Λ

For a proof of the assertion except the uniquess of FDtΓ, see Kra [5, p.
89 and p. 101]. In [5, p. 101] D is assumed to be conformally equivalent
to the unit disk, but we can easily check that the argument is applicable
to our case.

For μeLp

g(D, Γ), 1 ̂  p ^ oo, define

= \\ λ ( ζ Γ 2 ί F ( z , ζ)μ(ζ)dζ A d ζ y z e D .
JJD/Γ

Then β is a bounded projection of Lp

q(D, Γ) onto AP(D, Γ), of norm <; cq

(see [5, p. 90 and p. 101]). When D is symmetric with respect to R,
(1.1), (1.2) and (1.4) imply

F(z, ζ) = -F{z, ζ) ,

since

F(z, ζ) = I \ X(w)2~2qF(z, w)F(w9 ζ)dw A dw
JJD/Γ

= (( X(w)2-2qF(z, w)F{w, l)dw A dw
JJD/Γ

= (( X(w)2-2qF(w, z)F{l, w)dw A dw
JJD/Γ

= F(ζ, z) = -F(z, ζ) .

Hence we see that β[μ] e AP(D, Γ) s y m whenever μ e LP(D, Γ) s y m, since we
have
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d Λ

MO(zf ζ)μ(ζ)dζ Λdζ = β[μ](z) .
D/Γ

This implies that the integral operator β above is also a bounded projec-
tion of L*(D, Γ) 8 y m onto A*(D, Γ) 8 y m of norm ^ cr

For simplicity we often write Lp (resp. A3*) instead of LP{D, Γ) (resp.
ΛJ(A Γ)) when D = 17, and L'q(D, Γ) s y m (resp. 4JCD, Γ)sym) when Z? =* tf.
We set

{μeLp; μ\M = 0} ,

and

where Xx stands for the characteristic function of a measurable subset
X of D. In what follows, we assume that the numbers p and p' satisfy
1 ^ p < oo and 1/p + 1/p' = 1 (l/oo = 0).

For μeLp and veLpf, we define the Petersson scalar product (μ, y)
of jtβ and v by

(1.5) (ft v) = SS λ(sΓ27WG0 |ώ Λ (S| .

Obviously we have

(1.6) Kft iOI ^ I M U M I P ' .

We note that (ft v) above is i times (ft v) in [5, p. 88]. We adopt (1.5),
however, because for symmetric μ and v, we have

(ft v) = 2Re (( \D(z)*-^(z)V(z)\dz Λdz\eR.
JJU/Γ

This scalar product establishes isometric isomorphisms between Lp/ and
(Lp)*, and between LP\V) and LP(F)*, where X* stands for the dual
space of a normed vector space X. These isomorphisms are anti-linear
when D = U. By (1.1) and Fubini's theorem, we have

(1.7) (β[μ], v) = (ft /3M) for μ eLp and v e L p t .

For a subset S oί Lp, we set

S-1 = {v eL^'; (ft v) = 0 for all μeS} .

Since β is a projection satisfying (1.7), we see

(1.8) (ker β) Π Lpt = {y - /3[v]; v e Lp'} = (A2')1 .
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2. Statements of the main results. In this section we state our
results on the problem in Introduction.

A closed subspace Xx of a Banach space X is said to split in X if
there exists a closed subspace X2 of X, complementary to Xlf that is,
-Xi + Xt = X and -XiΠX8 = {0}.

THEOREM 1. Let 1 ^ p < °° αtid p' satisfying 1/p + 1/p' = 1, and

b = sup | |Z^| |P/| |/3[^] | |P ,
0 6AP

feere and in w/ιa£ follows, we conform to the convention:

0/0 = 0 , and a/0 = + oo i/ a > 0 .

(I) Then the following four conditions are equivalent to each other.
(a) The subspaces (AP)LC)LP'(V) and Ap'\v of the Banach space

LP'(V) are closed and complementary to each other. In particular,
{Ap)Lΐ\Lp\V) splits in LP\V).

(b) There exists a bounded linear mapping βv of LP\V) onto Apf

such that

(2.1) ker βv = (Apy n Lp\ V) = {v - Xvβr[v\; v 6 Lp\ V)} .

(c) The number b is finite and

(2.2) Ap'\vf)(Apy = {0}.

(d) The number b is finite and

(2.3) /2[AP|F] = {β[Xrφ\; φe Ap} is dense in Ap .

(II) In (I) we have the inequality

(2.4) b £ \\βv\\ £ cqb .

REMARK. It follows from Taylor [12, §4.8] that the condition (a) of
Theorem 1 is equivalent to the following:

(a') There exists a bounded projection of LP\V) onto Apt\v with
kernel (Ap)Lf]Lp\V).

We can easily see that, for βv in the condition (b), Xvβv is a bounded
projection with the property in (a') above. A bounded projection in (a')
is unique ([12, §4.8]), and Xv: Apf -• Ap'\v is bijective. Hence, when (b)
holds, a bounded linear mapping βv = Xvι(Xvβr) is uniquely determined,
and satisfies

(2.5) βyXy = id. on Apf .

In particular, βv is none other than β whenever E is a null set.
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We note that an operator similar to βv has been studied from a
different point of view, for example, in Schiffer-Spencer [11] and Komatsu-
Ozawa [4],

THEOREM 2. Suppose that one of the four conditions of Theorem 1
holds for 1 ^ p < °o and pf satisfying 1/p + 1/p' = 1. If D = U (resp.
D Φ U), then an anti-linear (resp. linear) isomorphism between Ap'\v and
(Ap\v)* is established by the Petersson scalar product. Furthermore, if
le(Ap\v)* corresponds to XvψeAp'\v under this isomorphism, then

lull ^ \\χvψ\\p, ^ \\χvβv\\ \\ι\\.

Finally we give a sufficient condition for E under which (c) of
Theorem 1 holds. To simplify the statements, we use the following
notation:

(2.6) W(z, ζ) = λ(zΓ«λ(ζ)-' \F(z, ζ)| , z, ζ e D ,

(2.7) M(ζ) = sup W(z, ζ) ,
zeD

and

dA(z) = \{zf\dz A dz\ .

THEOREM 3. When p = 1 and pf — oo, suppose that

(2.8) ( M2dA < oo ,
JE/Γ

and

(2.9) Area(#/Γ) = ( dA < oo .
JE/Γ

When l < p < 2 < p ' < o o o r l < p ' < 2 < p < o o 9 suppose that

(2.10) ( W(z, zYdA(z) < oo for t = p/2 and p'β ,

(2.11) ( MdA < oo .
JE/Γ

When p = p' = 2, suppose that

W(z, z)dA{z) < o[
JE/Γ

Then we have (2.2) and

(2.12) sup \\φ\\P/\\β[Xvφ]\\P < - .
φAP
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In particular, (c) of Theorem 1 holds.

Here we note that (2.8) and (2.9) imply (2.11).
It is obvious that W( , •) is continuous and M is lower semi-continu-

ous. Moreover, from results due to Bers [1], Earle [2], Lehner [6, 7],
and Metzger and Rajeswara Rao [8], we can derive an estimate for M
and a condition under which M is bounded. Namely, we have the
following:

PROPOSITION 1. For each real t > 1 and a fixed (holomorphic)
universal covering p: Δ = {\w\ < 1} —> D, we have

M(z) ^ Cinf{(l - M 2 Γ ; w e p'\z)} ,

where the constant C depends on q, t, p and Γ.

PROPOSITION 2. If A1(zAco, then M is bounded. In particular, if a
Fuchsian model G of Γ satisfies the condition*.

(2.13) inf{ | trace </|; g is hyperbolic and in G) > 2 ,

then M is bounded.

We regard the condition (2.13) above to hold, when G contains no
hyperbolic elements. Note that the left hand-side of (2.13) is independent
of the choice of G. By Theorem 3 and Proposition 2, we easily obtain:

THEOREM 4. Suppose that Are&(E/Γ) < °° and A'cA00. Then, for
1 ^ p < oo and pΫ satisfying lip + 1/p' = 1, (2.2) and (2.12) hold.

3. Proofs of Theorems 1 and 2. We use the following result due
to Bers [1]:

PROPOSITION B. For 1 ^ p < oo with 1/p + 1/p' = 1, the Petersson
scalar product induces an isomorphism between Apf and (Ap)*, and this
isomorphism is anti-linear if Ό—JJ. Furthermore, for ψeAp/ and
le(Ap)* corresponding to each other under this isomorphism, we have

(3.1) 11.111̂  I W I , ' ^ c f | | I | | .
Proposition B follows fromL emma 1 below.

LEMMA 1. Let X be a Banach space, A a subspace of X, and c the
inclusion map of A into X. Let p be a bounded projection of a Banach
space Y onto a closed subspace B of Y, and let τ be an isometric isomor-
phism of Y onto X*. Suppose that

(3.2) τ(ker p) = {I e X*; l{a) = 0 for all aeA} .

Then there is an isomorphism τ of B onto A* such that c*τ = τp9 where
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c*: X* —• A * is the conjugate mapping of c, and

\\Ϊ(V)\\£\\V\\£\\P\\\\Ϊ(V)\\ for ally e B .

PROOF. Since ί*(i)e4* is the restriction of leX* to A, (3.2) implies
ker p = ker(ί*r). Hence the existence of τ is trivial. Note that c* is
surjective by the Hahn-Banach theorem. Since p{y) = y for every y eB,
we have \\τ(y)\\ = \\c*τ(y)\\ ^ ||y|| for y e B. Let VeX* be one of the
norm-preserving extensions of l = τ(y)eA*f yeB, by the Hahn-Banach
theorem. Then ||y|| = \\pτ'\V)\\ ^ \\p\\ \\V\\ = \\p\\ | |ί| |. Q

Let X = Lp, A = A\ p = β, Y= Lpf and B = Ap', and let τ be the
isomorphism induced by the Petersson scalar product. Since (1.8) implies
(3.2), we obtain Proposition B.

PROOF OF THEOREM 1. (a)«=>(b): By Remark following Theorem 1,
it suffices to show that (a') implies (b). Suppose that (a') holds. Then,
since (a') is equivalent to (a), the subspace Ap'\v is closed in L9'(V), thus
Apf\γ is a Banach space. Then, by Taylor [12, Theorem 4.2-H], Xv is an
isomorphism of Apf onto Ap'\v. Hence we can take Xγιπ to be βr in (b),
where π is the bounded projection in (a')

(2.2) ~ (2.3) (hence (c) <=> (d)): Suppose that (2.3) does not hold. Then
there is a non-zero £e(Ap)* such that ker lz>β[Ap\r]. It follows from
Proposition B that there is a non-zero ψeApf for which ϊ( ) = ( , ψ).
Thus by (1.7) we see that for all φeAp, 0 = (β[Xvφ\, ψ) = (XrΦ, β[ψ]) =
(Xvφ, ψ) = (<5, XFf). Hence AP'\VΓ\(AP)L Φ {0}. Conversely, let Xvψe
ApΊrΓΊ(Ap)\ Then we see that 0 = (φ, Xvf) = (/3[ZFί5], t ) for all φeAp.
By (2.3) and Proposition B, we have ψ = 0.

(d) => (b): The condition (d) implies that the bounded linear operator
β: Ap\v-+β[Ap\v]aAp has a bounded inverse β~ι which is defined on the
dense subspace /3[AP|Γ] of Ap and maps /S[AP|F] into LP(V). Then the
conjugate operator (/3"1)* of β'1 is defined on L P (F)*, which maps LP(V)*
onto (Ap)* ([12, Theorem 4.7-A]); (/T1)* is bounded, in fact,

(3.3) IIG3-ΠI = II/3"1!! = b

([12, p. 214]), and k e r ^ r 1 ) * = (A'|Γ) 1(cL'(V r)*) ([12, Theorem 4.6-C]).
We define /3F as the mapping of L p / (F) to Apf induced by (/3"1)* by means
of the isomorphism of Proposition B and the isometric isomorphism
between LP(V)* and LP\V). It is obvious that βv is a bounded surjec-
tive linear mapping whose kernel is (AP)L f)Lpf(V) = (A*\V)

L ( c L p ' ( 7 ) ) .
The estimate (2.4) follows from (3.1) and (3.3). By the definition of βv,
we have
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(3.4) (Xyφ, v) = (β[Xvφ], βvbΛ) for all φ e Ap and v e Lp\ V) .

Since (Xvφ, v) = (φ, v) and (β[Xvφ]> βv[v\) = (φ, XvβvbΛ)y we have

v - XyβvM e (Ap)L n Lp\ V) for all v e Lp\ V) .

Since (Ap)Lf)Lp'(V)(z{v - Xvβv[v]; v eLpf(V)} is obvious, we obtain (2.1).
(b) => (c): From (2.1) we obtain (3.4). This and (1.6) imply

II^F^IIP — S U P \(XvΦ> v)\l\\v\\pf = II/5[^F^]|IPII/5FII f
veLP'iV)

hence b ^ \\βv\\ < oo. Next, let Xvψe(Ap)LΠAp'\v. From (2.5) and (2.1),
we see ψ = βv[X>vΨ] = 0. Hence we have (2.2). •

Theorem 2 follows easily from Theorem 1 and Lemma 1.

4. Proofs of Theorem 3 and Propositions 1 and 2. Again we begin
by presenting some preliminary lemmas.

LEMMA 2. For 1 ^ p < oo and pf satisfying 1/p + \\p* = 1, we have

(4.1)

(4.2)

(4.3) λ(z)~9 \φ(z)\ ̂  c\/pt \\φ\\pM(z)1/p for φeAp ,

and

(4.4) λ(2)~9|0(2)| ^ ||^||2TΓ(2,2:)1/2 /or ^ e A2 .

PROOF. By Holder's inequality we have

\\F( ,z)\\P,ίί\\F(-yz)\\\'p'\\F( ,z)\\«p.

Since M{z) = λ(zΓ 9 | |F( , 2;)||oo, (4.1) follows from (1.1) and (1.3). Next,
we have

ll^( , z)\\l = ( λ(ζ)"29F(ζ, «)F(ζ, «)dA(ζ)

«F(z, ζ)F(ζ, ^)dζ Λ dζ

Hence we get (4.2) by (2.6). Finally, by (1.4), (1.1) and Holder's
inequality, we have

\φ(z)\<Z\\φ\\p\\F(.,z)\\p,.

Thus (4.3) and (4.4) follow from (4.1) and (4.2), respectively. Q

By (4.3), (4.4) and Lebesgue's convergence theorem, we have the
following:
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L E M M A 3. Let {φn}n=i be a sequence in Ap, l^p< oo, such that

{||̂ n!lp}n=i is bounded and limn-oo0» = 0 Suppose that 1 W(z, z)dA(z) < oo

if p = 2, and that [ MdA < oo if p Φ 2. Then limn-«,||Z^*n||p = 0.
JE/Γ

LEMMA 4. If φ e A2 satisfies

(4.5) β[XEφ] = Φ, i.e., β[Xyφ] = 0,

then φ = 0.

PROOF. ( λ-2?|^|2dA = (%F̂ , ψ) = (ZF^, /3[%^]) = (/3[Z^], Z^) = 0 .
Jv/r

Hence Xvφ = 0 and the assertion follows from Area( V/Γ) > 0.

LEMMA 5. On the same assumption as in Theorem 3, if φeAp{jAp'
satisfies (4.5) then φ = 0.

PROOF. It suffices to show φ e A2.
The case p = 1, p' = oo: Let φeA°°. Then XEφeL2 by (2.9), hence

^ = β[XEφ]£A2. On the other hand, if φeA1, then by (4.3) and (2.8) we
have

\\XEφ\\l=\ C2"\φ\2dA^\ (WφlMfdA < oo .
E/Γ JE/Γ

This implies φeA2.
The case l < p < o o , pφ2\ Let φeAp. By (4.5), Minkowski's

inequality (Hardy, Littlewood and Pόlya [3, Theorem 202]), (4.2) and
Holder's inequality, we get

= (L/r
(ζΓWζ)|((

E/Γ \JD/Γ

= \ x(ζ)-<\φ(Q\W(ζ,
JE/Γ

\JE/Γ

Hence by (2.10) we see φeA2. The same holds for φeApf, because the
assumption is symmetric for p and p\

PROOF OF THEOREM 3. First, we show (2.2). Suppose that ψeAp'
satisfies Xvψe{Ap)L. Then by (1.8) we have β[Xvf] = 0. Thus (2.2)
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follows from Lemmas 4 and 5. Next, we show (2.12). Suppose that
(2.12) does not hold. Then there is a sequence {φn}n=i in Ap such that
\\φn\\p = 1 for each n and

(4.6) ll/3[Mllp->0.

Since {φn} is a normal family, by taking a subsequence if necessary, we
may assume that φn converges to some φ in Ap, \\φ\\p <̂  1, uniformly on
compact subsets of 2λ Let Δ' be a relatively compact disk in D such
that J'Π7(J') = 0 for every Ύ eΓ — {id}, and let 1 be the characteristic
function of Γ(Δ') = LW7(J'). Then we have Ufa - 0n)X||p-»O and
llfa - βWEΦn])Ά\* ^ WβWvΦΔW, -> 0. Since \\φ - 0 j | , ^ 2, by Lemma 3 we
get

(4.7) ll/9[Z*fa - *.)]ll, ^ cg||Z^fa - 9n)llP -> 0 .

Thus we obtain ||fa - β[XEΦ])l\\P £\\(φ- Φn)l||, + IIfa. - /3[M)ZII, +
HWkfa - ^n)]||P->0, that is, φ = /3[Z^] on Γ(J'), and hence on D. By
Lemmas 4 and 5 we have φ = 0 and hence

1 = IIΛJI, ^ \\βVCvφn]\\P + ll/3[^fa, - Λ ] | | , ,

a contradiction to (4.6) and (4.7). •

For a Fuchsian group G acting on the unit disk A, we denote by
Ap

g(J,G), l^p<°°, (resp. A~{A,G)) the Banach space of all the p-
integrable (resp. bounded) holomorphic automorphic forms of weight —2q
on Δ for G. When G is the trivial group 1 = {id}, the spaces A*(Δ, 1),
1 ^ p ^ oo, can be defined for all real t > 0.

Bers [1, p. 199] has shown that A\(Δ, 1)<ZA?(Δ, 1) for all real t ^ 2,
and the inclusion map is continuous. Earle [2] has shown that for all
real ί > 1, A\(Δ, G)aA1

q+t(Δ, 1) with a continuous inclusion map.

PROOF OF PROPOSITION 1. Let G be the Fuchsian model of Γ induced
by a universal covering p: Δ —> D. The map: φ\-*(φ° p) (p')q is an isometric
isomorphism of Ap

g(D, Γ) onto Ap

q{Δ, G), 1 ^ p ^ oo. By the above results
due to Bers and Earle, we may regard this map to be a continuous
mapping of A\{D, Γ) into A~+t(J, 1) for ί > 1. In particular, we have

s u v \ Δ ( w ) - « + t ) \ F ( p w , Q\\p'(w)\< ^ C \ \ F ( . , O i k , ζ e D ,
wed

where XΔ(w) = (1 — M2)"1 is the hyperbolic metric for Δ with constant
negative curvature —4, and C is a constant depending only on q, t, p
and Γ. Hence by (2.6), (1.1) and (1.3) we see that

W(ζ, z) ^ c q C ' x Δ ( w γ , w e Δ , z = p(w) e D a n d ζ e D .
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This implies the assertion. •

For w and ξ in Δ, we set

KΔ(w, ζ) = (2g - l)i/{2ττ(l - wζ)2q} .

For a Fuchsian group G acting on Δ9 define

aΔ{w, ξ) = Σ

Metzger and Rajeswara Rao [8] has proved that A\(Δ, G)aA~(Δ, G) if and
only if svuρweΔxΔ(w)~2q\aΔ(w, w)\ < °°, for an arbitrary Fuchsian group G.
Lehner [6, 7] has proved that if a Fuchsian group G satisfies the condi-
tion (2.13), then A\{Δy G)aA~{Δ, G).

PROOF OF PROPOSITION 2. Let p: Δ-^D be a universal covering
which induces the Fuchsian model G of Γ. As in the proof of Proposi-
tion 1, p induces an isometric isomorphism of AJ(J9, Γ) onto Ap

q(Δ, G),
1 ^ V ^ °°. Obviously, A'cA 0 3 if and only if Aι

q(Δ, G)aA~(Δ, G). Hence
it suffices to show that

(4.8) aΔ(w, w) = FD>Γ(pw, pw) \p\w)\2q , w e J ,

a n d

( 4 . 9 ) sup M{z) ^ sup W(z, z) .
zeD zeD

By [5, p. 101] we see that aΔ(-, ξ)e Π^p^ A^(Δf G) and aΔ possesses the
properties corresponding to (1.1) and (1.4), that is,

aΔ(w, ξ) = -άΔ(ξ, w)

and

φ(w) = (( XΔ(ξY-2qaΔ(w, ξ)φ(ξ)dξ A dξ
JJJ/G

for every φeAζ(Δ,G), l ^ p ^ ° ° , respectively. Define aD{z,ζ), z and
ζ e A via

« D ( ^ , pζ)p\w)ψ{ξ)q = aΔ(w, ξ) .

Then aD is well-defined and satisfies (1.1), (1.2) and (1.4). Since such a
function is unique, we see aD = i* 7^. Hence we obtain (4.8).

Next, we have

Thus it follows from (1.6) and (4.2) that

W(z,ζYtZ W(z, z)W(ζ, ζ) .
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This inequality yields (4.9). •

REFERENCES

[ I ] L. BERS, Automorphic forms and Poincare series for infinitely generated Fuchsian
groups, Amer. J. Math. 87 (1965), 196-214.

[2] C. J. EARLE, A reproducing formula for integrable automorphic forms, Amer. J. Math.
88 (1966), 867-870.

[3] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge Univ. Press,

London and New York, 1934.
[4] G. KOMATSU AND S. OZAWA, Variation of the Bergman kernel by cutting a hole, Osaka

J. Math. 22 (1985), 1-20.
[5] I. KRA, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Mass., 1972.
[6] J. LEHNER, On the boundedness of integrable automorphic forms, Illinois J. Math. 18

(1974), 575-584.
[7] J. LEHNER, Automorphic forms, in Discrete Groups and Automorphic Functions, (W. J.

Harvey, ed.), Academic Press, London and New York, 1977, 73-120.
[ 8 ] T. A. METZGER AND K. V. RAJESWARA RAO, On integrable and bounded automorphic

forms, Proc. Amer. Math. Soc. 28 (1971), 562-566.
[9] H. OHTAKE, On deformations of Fuchsian groups by quasiconformal mappings with

partially vanishing Beltrami coefficients, to appear.
[10] K. SAKAN, On extremal quasiconformal mappings compatible with a Fuchsian group

with a dilatation bound, Tδhoku Math. J. 37 (1985), 79-93.
[II] M. SCHIFFER AND D. C. SPENCER, Functionals of finite Riemann Surfaces, Princeton Math.

Ser., No. 16, Princeton Univ. Press, Princeton, N. J., 1954.
[12] A. E. TAYLOR, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.

DEPARTMENT OF MATHEMATICS

KYOTO UNIVERSITY

KYOTO 606

JAPAN






