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Introduction. Let M be a compact, connected, Riemannian manifold
and /eC°°(Λf) (a smooth function on M). Then we have a spectral de-
composition of /, say / = Σ ^ o / ί > where each ft is an eigenfunction
associated with the eigenvalue λ* of the Laplacian Δ of M. Certainly
/o is a constant and the sequence is convergent in ZΛ-sense.

Now if M is a submanifold in the Euclidean space Rm, one has its
position vector x — (xly , xm). So by regarding the spectral decomposition
of each xt one gets the spectral decomposition of x (see (1.1)). If such
a spectral decomposition only involves a finite number of nonzero eigen-
values, say fc, then the submanifold is said to be of A;-type (see Section 1
or [5]). From this point of view the easiest spectral behavior corresponds
to the submanifolds of 1-type which are characterized, according to a
well known result due to Takahashi [12], as minimal submanifolds in some
hypersphere of Rm whose center and radius are completely determined
from the center of mass of M into Rm and the associated eigenvalue
giving the 1-type character, respectively. Therefore if one wants to
study spectral geometry of minimal submanifolds in the sphere, then it
seems reasonable to look for the spectral behavior of the products of
coordinate functions, xt Xj, and then to deal with a very special case of
the following problem: What is the eigenvalue behavior of the products
of eigenf unctions?

In this case one can organize the product of coordinate functions to
give a new isometric immersion in the Euclidean space of symmetric
matrices over R, this is nothing but the composition of the first isometric
immersion with the second standard immersion of the sphere in the
Euclidean space according to the description given by Sakamoto [11], and
then one can study its type number. This idea was used by Ros [10] to
give a characterization for minimal submanifolds in the sphere for which
the spectral behaviors of x^xs involve exactly two different eigenvalues.
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One of the authors and Chen [2] (see also [3] for a more general case)
also exploited this idea to prove that a Clifford torus in S3 and the
Veronese surface in S4 are the only minimal surfaces in Sm which are
of2-type in the space of symmetric matrices over R. To be more precise,
if Vt denotes the eigenspace associated with λ* then

(0.1) xrxjeV + Vh+Vt2

if and only if either
(1) ίx = 2, ί2 = 3 and the surface is the Clifford torus in S3 or
(2) ίx — 1, t2 = 2 and the surface is the Veronese one in S\
Of course, xt xs e Vo + Vt if and only if t = 2 and the submanifold is

totally geodesic in the sphere.
In this paper once more we exploit this idea to get the following

step, so our Theorem 1 can be established as follows: Given a minimal
surface in the sphere Sn with coordinate functions xt in Rn+1. Then

(0.2) X t . X j e v + Vh + Vt% + Vh

if and only if either
(1) ίi = 1, ί2 = 2, ί3 = 3 and the surface is the equilateral tor usin

Sδ or
(2) tx = 2, t2 = 4, ί8 = 6 and the surface is the Veronese one in SQ.
We also take advantage of this method to derive some eigenvalue

inequalities for minimal surfaces in the sphere involving the first three
eigenvalues. The corresponding inequalities parallel the model (0.1) (see
[9] and [10]) cannot give a characterization for the Clifford torus among
all minimal surfaces in the sphere, because they only involve the first
two eigenvalues. But they give a characterization for the totally geodesic
surface and the Veronese surface (in S4) in terms of intrinsic invariants.
Therefore we shall obtain a general inequality (Theorem 2) involving an
extrinsic invariant and λ1? λ2, λ3 which allows us to give a characterization
for totally geodesic surface, Clifford torus, Veronese surface in S4 and
equilateral torus, among all minimal surfaces in the sphere. Then we
regard special properties of these four surfaces to get easier eigenvalue
inequalities giving characterizations of some of them. Namely: (1) We
observe the isotropy to have one, giving a characterization for totally
geodesic surface, Veronese surface in S4 and equilateral torus. (2) We
regard the parallelism of the second fundamental form, to get one which
characterizes the totally geodesic surface, the Clifford torus and the
Veronese surface in S4. (3) We look for codimension one to have one,
giving a characterization for totally geodesic surface and Clifford torus.
(See Corollaries 1, 2 and 3). Notice that while the first one involves an
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extrinsic invariant the other two only involve intrinsic invariants.
This work was done while the authors were visting the Department

of Mathematics, Michigan State University. They wish to thank the
Department for providing them with nice facilities. They also want to
express their thanks to B.Y. Chen for many valuable comments and
suggestions.

1. Some preliminaries. Let M be a compact, connected, Riemannian
manifold and Δ its Laplacian acting on smooth functions in C°°(Λf). Then
Δ has an infinite sequence of eigenvalues: 0 = λ0 < λx < < Xk < t
(the spectrum of M). For each Xk, the associated eigeήspace Vk is finite-
dimensional. On C°°(M), one considers the usual inner product (/, g) =

\ f-gdV, then Σt^o^ί is orthogonal and dense in C°°(M). So for each
JM

f eC°°(M), one can talk about the spectral decomposition: / = Σαo/{)
A ft — Xtft, which is convergent in IΛsense. This decomposition can be
extended to Rm+1-valued smooth functions on M, in a natural way.

In particular if x is an isometric immersion of M into Rm+1 (we can
identify x with the position vector of M in Rm+1), then we have the
following spectral decomposition of x:

(1.1) x = xQ + Σ «* > Δ#ί = Xtxt

where xQ is a fixed point in Rm+1 which coincides with the center of mass
of M in Bm+1. If the spectral decomposition (1.1) is finite, then we will
say that x (or M) is of finite type. Namely, we will say that it is of
k-type if it involves exactly k nonzero xt's. If M is of k-type and
λPl, •••, XPk are the associated eigenvalues of its Laplacian, then the set
of natural numbers {p19 •••, pk} will be called the order of M into Rm+\
Finite type submanifolds of Rm+1 are characterized by the existence of
a nonzero polynomial, say P(t), such that P(A)H — 0 (H being the mean
curvature vector of M into Rm+1). Among all these polynomials, there
exists a unique monic polynomial, say Q(t), such that Q(A)H = 0. Fur-
thermore if k = άegQ(t), then the submanifold is of A:-type. Such a
unique polynomial is given by

(1.2) Q(t) - tk + ct*-1 + + ck_xt + ck

where
k

Cl ~ Z j Xpi* G2 == ^J% XptXpp ' * *> Ck

 == \ 1 ) Xpχ ' * * Xpk

and λPl, λPfc are the associated eigenvalues giving the A;-type character.
Consequently, because M is assumed to be compact and Ax = — nH (n
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being the dimension of M) one can say that x: M-^Rm+1 is of fc-type if
and only if

(1.3) Ak~Ή + cAk~2H + + ck_JI - -£*-(& - x0) = 0 .
n

This characterization will be used in this paper. (For more details on
this concept see [5]).

On Rm we consider the inner product < , ) given by (u, v) = u v*
for any u, v e Rm, where each vector in Rm is regarded as a row matrix
and v* denotes the transpose of v. Let r >0. Then the sphere Sm~\r) =
{u e Rm I (u, u) = r2} with the induced metric has constant sectional curva-
ture 1/r2. Let SM(m) = {Pegl(m, R)\P* = P) be the space of symmetric
mxm matrices over R endowed with the metric g(P, Q) — (l/(2r2))tr(PQ)
for P, Q e SM(m). Consider the mapping / : Sm(r)^SM(m + 1) defined by
f(u) = ul u. Then / is an isometric immersion which is actually the
second standard immersion of Sm(r). The image /(Sm(r)) is a real pro-
jective space which lies fully in an (m + m{m + l)/2)-dimensional linear
space of SM(m + 1).

For each point ueSm(r), the normal space of Sm(r) in SM(m + 1) at
u (or more precisely at f(u)) is given by

(1.4) Ti(Sm(r)) = {Pe SM(m + 1) | u P = μu for some μ e R} .

In particular, we have f(u) e Ti(Sm(r)).

We will denote by D and V the Riemannian connections on SM(m + l)
and Sm(r) respectively. Also σ and A will denote the second fundamental
form and the Weingarten map of / respectively. The following properties
of / are well known (see for instance [10]):

It has parallel second fundamental form satisfying

(1.5) g(σ(X,Y),σ(V,W))

\ (X,V)(Y,W) + <
r2

(1.6) A-σiX,Y)V=:±{2(X,Y)V+ <X,V)Y+ (Y,V)X) ,
r2

(1.7) g(σ(X, Y), f{u)) = - <X, Γ>, g(σ(X, Y), /) = 0

where X,Y,V,We Tu(Sm(r)) and / is the identity matrix.
Sm(r) is immersed by / as a minimal submanifold of a hypersphere

of SM(m + 1) centered at (r2/(m + 1))I and with radius (r2m/2(m + 1))1/2.

2. Some examples. In this section we give some examples of compact
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minimal surfaces in Sn(l) which are of finite type in the second standard
immersion of Sπ(l) in SM(n + 1).

(1) Consider x: S\l) -> S3(l) totally geodesic. Then φ = f x: S2(l) -+
SΛf(4) is of 1-type and its order is {2}. This is the only minimal surface
in Sn(l) which is of 1-type in SM(n + 1).

(2) Let x:M->S\l) be the Clifford torus. Then <p = f x:M^>
SΛf(4) is of 2-type and its order is {2, 3}.

( 3) Let x: M-*S\1) be the Veronese surface. Then φ = f x: ikf—>
SM(β) is of 2-type and its order is {1, 2}.

(4) We define an isometric immersion y from R2 into Sδ(l) by

(2.1) y(θ9 τ) = -y=(cosθ, sin#, cosτ, sinr, cos(0 + τ), sin(0 + r)) .
v 3

The first fundamental form is given by g = (0<y) with #n = g22 = 2/3 and
gr12 = 1/3. Therefore y induces an isometric immersion from T — R2/Λ
into S5(l), Λ being the lattice in R2 generated by {(ι/lf/2, V/'6"/6);
(0, i/ΊΓ/i/ΊΓ)}. Such an immersion will be denoted by x: T->S\1). Ac-
cording to (2.1), the Laplacian of T is given by Δ = ~2(d2/dθ2 -d2/dθdτ +
d2jdτ2) and so x is minimal in S5(l). Namely it is defined in Re by means
of eigenfunctions of Δ associated with the eigenvalue x1 = 2. It is
usually called the equilateral flat torus or the generalized Clifford torus
of index 2 (see [7], [8] for more details).

The dual lattice of Λ is given by

(2.2) Λ * = {(l/ΊΓft - (i/T/2)fc; (ι/ΊΓ/i/ΊΓ)fc) \h,keZ}

and so the spectrum of T is

(2.3) {2h2 + 2k2 -2hk\h,keZ} = {0, 2, 6, 8, 14, 18, •} .

It is not difficult to see that the spectral behaviors of the products
of the coordinate functions of x are given by

x2-—eV8 l ^ i ^ 6
6

X1 ' X2'y X$ ' X^] Xδ ' XQ £ VQ

xk x3- G V2 + V6 otherwise

where V2,V6 and V8 denote the eigenspaces associated with the eigenvalues
λi = 2,, λ2 = 6 and λ3 = 8 respectively. As a consequence, we can say
that φ = f x: T-~>SM(β) is a 3-type immersion of order {1, 2, 3}. Fur-
thermore its center of mass is nothing but φ0 = (l/6)Iβ (Jβ being the
identity matrix of degree six).

(5) Let x: S2(|/"6") -> Sβ(l) be the third standard immersion of the
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2-sphere. We will call it the Veronese surface in S6(l). The coordinate
functions of x are eigenfunctions of the Laplacian of S2(i/ 6) associated
with λ3 and so they are harmonic homogeneous polynomials of degree
three on Rz (restricted on S2(i/ 6)). The isometric immersion φ =
f-x:S\\/Ί))-*SM(7) is at least of 3-type (see [2]). Its coordinate
functions are homogeneous polynomials of degree six on RB (restricted
on S\λ/ 6)) so in their spectral decomposition cannot appear odd degree
polynomials and then φ is of 3-type and its order is {2, 4, 6}. Furthermore
it is easy to see that its center of mass in SM(7) is φ0 = (1/7)/.

Notice that the Veronese immersion of S2(i/ 3) into S4(l) is of 2-type
in SM(5) and its order is {2, 4}, but the induced imbedding of iίP2(l/3)
into S4(l) is also of 2-type in SM(5) and its order is {1, 2}. (Here R P2(l/3)
denotes the real projective plane of curvature 1/3). This was the second
example. However the Veronese surface in S6(l) (example five) is already
an imbedding from S2(l/ΊΓ) into Sβ(l).

3. Spherical minimal surfaces regarded in the space of symmetric
matrices. Let x: M—> Sn(l) be a minimal isometric immersion of a compact
surface into the unit sphere (without loss of generality we will restrict
ourselves to the unit sphere in this paper). Consider a local field of
orthonormal frames {Elf E2, f8, •••£«} on Sn(l) such that restricted to M,
Elf E2 are tangent to ikf. The following convention will be used for the
range of indices i, j , k, I, r = 1, 2; a, β, 7, d = 3, , n. We will denote
by V the Riemannian connection on M and by σ and A the second
fundamental form and the Weingarten map of x respectively. The
Weingarten endomorphism associated with ξa will be Aa. We put

/Q 1 \ /s—f Ύp Ύp \ P \ ___ JnOC / / T T ^ T N / ΊP ΊP ΊP \ F \ _ _ TnOC

\όΛ) \O\£Jt, JbjJi ξa/ = fbij , \\\G)\l!jif Jiijf Hίk), ξa) — i^ijk

Therefore, σ(Ei9 Eά) - Σah?jζa and <yσ)(Ei9 Ei9 Ek) = Σah?jkξa (where Vα
denotes the usual covariant derivative of σ).

We define a symmetric tensor Ton the normal bundle of x as follows:

So the following relations are well known

(3.3) K = 1 - J£ll
Δ

(3 4) ^ A — E — X

(3.5) - ^ Δ | < τ | 2 - |Vσ | 2 + 2 | σ | 2 - 2
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where X is any local vector field tangent to M, A and K are the Laplacian
and the Gaussian curvature of M respectively and | JP| is the length of
the tensor F.

Given a point peM, let UMP be the unit sphere on TPM (the tangent
plane of M at p) and /: UMP-^R defined by f(v) = \σ(v, v)\2. We choose
Eλ e UMP to be the point at which / attains its maximum and let
E2 e UMP perpendicular to Ex. Then one has

(3.6) Aσ{El)El)E1 = λiϊΊ , Aσ{EltE2)E1 = βE2

where λ = /(£Ί) and λ ^ β ^ 0. Obviously λ — β if and only if M is
isotropic at p. Furthermore, from (3.6), one can obtain

(3.7) Σ Al(Ei>Ej)X = ΛILχ
i,j Δ

for all Xe TPM.

Let us consider the associated immersion φ = f x: M—>SM(n + 1).
The mean curvature vector H of φ is given by

(3.8) # = - 5 - Σ * ( # * , # , ) .
Δ

The Laplacian of H was computed in [10] (see also [3] for a more
general formula). So one uses (3.4) to obtain

(3.9) AH - (|σ|2 + 6)H - Σ σ(σ(Ei9 E5\ σ{Eiy E,)) .

REMARK 1. The totally geodesic surface in Sn(l) is the only minimal
surface in Sn(l) which is of 1-type in SM(n + 1). Also a Clifford torus
in S\l) and the Veronese surface in S\l) are the only minimal surfaces
in Sn(l) which are of 2-type in SM(n + 1) (see [2] and [3]). In both cases
the center of mass of the surface in SM(n + 1) coincides with the center
of the hypersphere of SM(n + 1) in which Sn(l) minimally yields. In
this sense we will say that the surface is of mass symmetric in such a
hypersphere or by means of the second standard immersion / of the
sphere*

In order to look for minimal surfaces in S(l) which are of 3-type in
SM(n + 1), we will compute A2H in the next lemma.

LEMMA 1. Let x:M-+Sn(l) be a compact minimal surface in Sn(l)
and H the mean curvature vector of φ = f x: M-^SM(n + 1). Then
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(3.10) Δ l H r = 2 V | σ |2 + (5 [cr|4 + 4 | σ | 2 - 2 | V σ | 2 + 36)if

+ Σ {2£kKkMJh - (5 Jσ l + 2)T(ξa, ξβ)}σ(ζa, ξβ)

- 4 Σ { Σ KHMJk + <AaEh V \σ\*)}σ(Elt ξa)
l,a i,j,k,β

where V\σ\2 denotes the gradient of |σ | 2 .

PROOF. Let p be an arbitrary point of M and {Eu E2} any ortho-
normal basis in TPM. We can extend {Elf E2) to a local field of ortho-
normal frames on M, which will also be denoted by {Elf E2}, in such a
way that VEkEt = 0 and VEkVEkEt = 0 at p. In order to compute Δ2H
at p, we will use the Einstein summation convention for indices and
also we will adopt the following easier notation: σi3 = σ(Et, Es)\ (Vσ)ίJfc =
(Vσ)(Et, Ej, Ek) and (Ψσ)iύkl = (Ψσ)(Eif Ejf Ek, Eι) ((VV) being the usual
second covariant derivative of σ).

Because / has parallel second fundamental form, one uses (1.6) to get

DEkσ(σφ σtj) = -A-σ{σ.j>σίj)Ek + 2σ(VEkσiά, σiS)

= - 2 \σ\2Ek - 2σ(AσίjEk, σiά) + 2σ((Vσ)ijk, ai5)

Eiy E3), σί3) + 2σ(σ(Ei7 VEkEά\ σti) .

Now we use the minimality of x together with Vσ = 0 and (1.6) to
obtain

Aσ(σijf σi3) = -DEkDE]σ(σi3Ί σi3)

- 2V I σ i 2 + 4 I σ \Ή- 2A-σiAσijEktσίj)Ek + 2σ(yEkAσίjEk + σ(Ek, AσtiEh), σi3)

+ 2σ(AσijEk, -Aσ..Ek + (Vσ)i3k) + 2A~a,a)ijk)Oij)Ek

- 2σ(-A{Vσ)ijkEk + (Ψσ)ki3k, σi3) - 2σ((yσ)i3k, -Aσi.Ek + (Vσ)<Λ)

- 2V I σ |2 + 41 a \2H + 4σ(A{Vσ)ijkEk, σi3)

+ 2σ(σ(Ek, AσijEk), σi3) - 2σ(AσijEk, AσίjEk)

h9 σi3) - 2σ((Vσ)ί3k, (yσ)i3k) .

Now we use the Ricci identity and the minimality of x to write

Σ (V2σ)ki jk = (2 - I σ \2)σi3. + 2 Σ σ(£74, A σ i ^ ) - Σ σ(AatJEh, Ek) .
k k k

Consequently we obtain

(3.11) Agfa, σj) = 4V 1 σ |2 + 4 |σ \Ή + 2(| σ |2 - 2)σ(σ<i( σ^ )

σ«) - ^(σ(Ek, Aa.kEt), σl3)

) - 2σ(AaijEk, An.Ek)

- 2σ((Vσ)ijk, (Vσ)ίjk) + Aσ(AiVσ)tjkEk, σ{j) .
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Next by means of a straightforward computation involving (3.4), we have

σ(σ(Ek, AσtjEh), σid) - σ(σ(Ek, AσikEt)f σiS) = ±\σ\*σ(σφ σ«) .

Similarly, by involving (3.7), we get

σ{AOi.Ek, Aai.Ek) = \T\*H

and finally, it is not difficult to see

2σ(A{Vσ)ijkEk9 σiS) = σ(Eif σ(Et, V |σ| 2)) .

So, the equation (3.11) becomes the following:

(3.12) Aσ(σijf σid) = 4V | σ |2 + 2(2 | σ |2 - | Tf)H

- l)σ{σφ σiό) + 2σ{Eί, σ(Eif V |σ | 2))

jEk9 (Vσ)iik) - 2σ{{Vσ)ίόh, (S?σ)tik) .

On the other hand, we also use a direct computation to get

(3.13) Δ(|σ|2iϊ) = Δ\σ\Ή + \σ\2AH+ 6V|σ|2 - 2σ(Et, σ(EifV\σ\2)) .

Therefore (3.10) follows from (3.5), (3.9), (3.12) and (3.13).
The following result gives a characterization for the surfaces described

in Section 2.

THEOREM 1. Let x:M—>Sn(l) be a minimal isometric immersion of
a compact surface in the sphere, which is assumed to be full. Then the
immersion φ — f-x is of 3-type if and only if either

(1) M has constant Gaussian curvature K = 1/6 and x is the
Veronese surface in Sβ(l) or

(2) M is flat and x is an equilateral torus in S5(l).

PROOF. According to Section 2, we only need to prove the necessary
condition. From (1.3), one has

(3.14) AΉ - a AH + bH + c{φ - φQ)

where φQ is the center of mass of φ and a — Xp + Xq + λ r, b — —(XpXg +
XpXr + XqXr) and c = —XpXqXr/2 (λp, Xq, Xr B>τβ the three eigenvalues involved
in the 3-type condition).

First, we are going to prove that the Gaussian curvature K of M is
constant. We apply g(φ, —) to (3.14) and use (1.7) and (3.10) to get

- 2 \σ\2 - 36 = - 6 α - ft + iL - Cg(φ, φ0) .
Δ

Therefore for any vector field X tangent to M, one gets
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-2<7(V|σ|2, X)= -cg(X,φ0).

On the other hand we apply g(X, —) to (3.14) and use (3.10) to obtain

2g(V\σ\\ X)= -cg(X, φ0) .

Consequently V\σ\2 = 0 and so (3.3) gives the constancy for K.
So from (1.4), (3.8), (3.9) and (3.10) we see that φQ is normal to Sn(l).

Because x is full one can use an argument similar to that in [10, Theorem
2.3] to prove that φ0 = (l/(n + 1))J (7 being the identity matrix in
SM(n + 1)). Then

(3.15) Δ2i7 = aAH + bH + c(φ - —^—
\ n + 1

We apply g(σ(Er, ξr), - ) to (3.15) and use (1.5), (1.7), (3.8), (3.9) and
(3.10) to get

(3.16) Σ MMMJk = o .
i,3,k,β

Now by choosing an orthonormal basis {E19 E2) at any point p e M a s
in (3.6), (3.16) at p becomes

(3.17) (λ - β)h{n = (λ - β)h{12 = 0

and it holds for all 7. Consequently, at each point peM, we have either
(yσ)(p) = 0 or λ = β and so M is isotropic at p. If both facts happen
at the same point p, from (3.5) one gets that K = 1 or K = 1/3 and so
M is totally geodesic or M is the Veronese surface in S4(l) and it is
impossible according to Remark 1. Because we are assuming M to be
connected, it must be parallel or isotropic. If parallel, we can use a result
of [6] to find out that M is totally geodesic or a Veronese surface in
S4(l) or a Clifford torus in S8(l) and so impossible from Remark 1.
Therefore, we conclude that M is isotropic and (Vσ)(p) Φ 0 for all peM.
Then the normal bundle TLM of x admits an orthogonal bundle splitting,
say TLM = v* 0 v, where vl is the first normal space at p (which is of
dimension 2). Furthermore from the isotropy it is clear that Img(Vσ)(p)a
vp and dim(span{ImVσ(p)}) ^ 2 for all peM.

Now we apply g(β(ζr, ξδ), - ) to (3.15) and use (1.5), (1.7), (3.8), (3.9)
and (3.10) to obtain

(3.18) (5|<7|2 + 2-α)7Xfr, ξδ)-2
i
Σ JMJ ( k |

Moreover 2 \σ|2 + 36 — 6α — b + c/2 is nonzero because (Vσ)(p) ^=0. So if
one chooses ξrevp which is perpendicular to Img(Vσ)(p), then the formula
(3.18) implies that ζr = 0. As a consequence n ^ 6.
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On the other hand one can compute the normal curvature to be KL —
|σ|2/2 (see [1] for details), and then from [1, Theorem 3] we have that
K = 1/6 and M is the Veronese surface in S6(l) or K = 0, n — 5 and x
is one of the immersions described in [7]. But among those immersions
only that corresponding to the equilateral torus is isotropic.

4. Some integral inequalities. Let φ:M->Rm be an isometric im-
mersion of a compact surface in the Euclidean space with mean curvature
vector H. Then we combine (1.1) with Aψ = — 2H, to get

-2H = Σ XtΨt and -2AH =

Consequently one has

Ϊ (AH, AH)dv =
f

<Δiϊ,
(4.1)

4\ {H,
JM

-2( (H, φ)dv -

where α4 = I (<pu φt)dv.

Now from (4.1), we have

A {AH, AH)dv - 4(λ! + λ2 + λ3)( (AH,H)dv
JM JM

)\ <H, i ϊ > ^ + 2x^X8( (H, φ)dv
JM JM

λiλ3 + λ2λ

— Σ λt(λt — λJίλi
t

Therefore, one obtains:

LEMMA 2. Let φ:M—>Rm be an isometric immersion of a compact
surface in the Euclidean space with mean curvature vector H. If xί9 λ2

and λ3 are the first three eigenvalues of the Laplacian of M, then

(4.2) 4( (AH, AH)dv - 40w+ λ2 + λ3)( (AH, H)dv
JM JM

+ 4(λxλ2 + λΛβ + λ2λ3)ί (H, H)dv + 2λ1λ2λ3( (H, φ)dv ^ 0 .
JM JM

Furthermore, the equality holds if and only if either:
(1) φ is of 1'type and its order is {1}, {2} or {3}, or
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(2) φ is of 2-type and its order is {1, 2}, {1, 3} or {2, 3}, or
(3) φ is of 3-type and its order is {1, 2, 3}.

Now we have the following:

THEOREM 2. Let M be a minimal compact surface in the unit sphere
Sn(l). Then

(4.3) ( I T\*dv + 2( K2dv + (λx + λ2 + λ3 - 16)( Kdv
JM JM JM

+ Γl4 - (λx + λ2 + λ3) ~ (λi~6)(λ2-6)(λ3-6) Ί v o l ( M ) ^ 0 m

Moreover, the equality holds if and only if either
(1) M is totally geodesic, or
(2) M is the Clifford torus in S3(l), or
(3) M is the Veronese surface in S4(l), or
(4) M is the equilateral torus in S5(l).

PROOF. Consider the isometric immersion φ: M->SM(m + 1), φ — f-x,
(x being the immersion of M into Sn(l)). Then its mean curvature vector
H satisfies

<iJ, H) = 3
(4.4)v ; (AH, H) = |σ|2 + 18

(AH, AH) = \σ\* + 12|σ|2 + 2 |Γ | 2 + 108.

In order to get it, we only need to use (1.7), (3.8), (3.9) and (3.10). Now
from (4.2) and (4.4) we have

(4.5) -(λx - 6)(λ2 - 6)(λ3 - 6)vol(ΛΓ) + 2[ \σ\*dv + 4( | T\2dv
JM JM

+ 2(12 - (λx + λ2 + λs))( \σ\2dv ^ 0 .
JM

Then (4.3) follows from (3.3) and (4.5). Certainly the four surfaces listed
in the statement of the theorem satisfy the equality in (4.3). Conversely
if the equality in (4.3) holds, then we apply Lemma 2 to get either:

(1) φ is of 1-type which automatically implies that x is totally
geodesic (in this case the order of φ is {2}), or

(2) φ is of 2-type and so from [2] (see also Remark 1), x(M) is the
Clifford torus in S3(l) or x(M) is the Veronese surface in S4(l) (in these
cases the order of φ is {2, 3} and {1, 2} respectively), or

(3) φ is of 3-type with order {1, 2, 3} and so from Theorem 1 and
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the examples given in Section 2, we know that x(M) is the equilateral
torus in S5(l) (recall that the Veronese surface in Sβ(l) has order {2, 4, 6}
in SM(7)).

After this general inequality and because the extrinsic behavior of
the examples listed in the statement of the last theorem are well known,
we can give the following consequences in which we look at special
properties, namely: isotropy, parallel second fundamental form and co-
dimension one.

COROLLARY 1. Let M be a minimal compact surface in the unit
sphere Sn(l). Then

(4.6) 2( I T\2dv ̂  Γ( λ i- 6X λ2-6)(λ 3-6) + λ l + χ2 + χ3 _ l2]vol(ikT)
jΛf L 4 J

+ (12 - (λi + λ2 + λ8))( Kdv .
JM

Moreover the equality holds if and only if either
(1) M is totally geodesic^ or
(2) M is the Veronese surface in S4(l), or
(3) M is the equilateral torus in S5(l).

PROOF. It is not difficult to see that for any minimal surface in the
sphere, we have

(4.7) |α | 4 ^2 |Γ | 2 equality holding if and only if the surface is isotropic.

Now, by using (3.3), (4.7) is equivalent to

(4.8) 2K2 ^ I T\2 + 4:K— 2 equality holding if and only if the surface is isotropic.

Then (4.6) follows from (4.3) and (4.8). The equality in (4.6) holds if and
only if the equality in (4.3) holds and the surface is isotropic.

COROLLARY 2. Let M be a minimal compact surface in the unit
sphere Sn(l). Then

(4.9) 4 (JBΓ - 1)(1OJS: - 18 + X, + λ2 + X3)dv ^ (λx - 6)(λ2 - 6)(λ3 - 6)vol(Jlf)
JM

Furthermore the equality holds if and only if either
(1) M is totally geodesic, or
(2) M is the Clifford torus in S3(l), or
( 3) M is the Veronese surface in S4(l).

PROOF. From (3.5), we have

(4.10) ( \T\*dv^2\ ( M 4 - \σ\2)dv
JM J M
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and the equality in (4.10) holds if and only if x has parallel second
fundamental form. Now (4.9) follows from (3.3), (4.3) and (4.10). The
equality in (4.9) holds if and only if the equality in (4.3) holds and x
has parallel second fundamental form.

COROLLARY 3. Let M be a minimal compact surface in the unit
sphere Sn(l). Then

(4.11) 4( (K- l)(fiK- 18 + λχ + λ2 + Xs)dv ^ (\ - 6)(λ2 - 6)(λ3 - 6)vol(Jlf)
JM

Moreover the equality holds if and only if either
(1) M is totally geodesic, or
(2) M is the Clifford torus in S3(l).

The proof follows from an argument similar to that in the above
corollary, by using the following fact:

\T\2 <* |<714 and the equality holds if and only if x has codimension
one.
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