ON A RESULT OF K. MASUDA CONCERNING REACTION-DIFFUSION EQUATIONS

ALAIN HARAUX AND AMAR YOUKANA

(Received November 21, 1986)

Abstract. We give a simplified proof of a recent result due to K. Masuda concerning the global existence and asymptotic behavior of non-negative solutions to some reaction-diffusion systems. This new method also provides an analogous result under weaker growth assumptions on the nonlinear terms.

Introduction. Let Ω be an open, bounded domain of class C^1 in \mathbb{R}^n , with boundary $\Gamma = \partial \Omega$. Let d_1 , d_2 be two positive constants with $d_1 \neq d_2$ and $\alpha_1(x)$, $\alpha_2(x)$ two nonnegative functions of class $C^1(\Gamma)$ with $\alpha_1 \leq 1$, $\alpha_2 \leq 1$. Let $\varphi \in C^1(\mathbb{R}^+)$ be a nonnegative function. We consider the reaction-diffusion system

$$(1) \qquad egin{array}{lll} \partial u/\partial t - d_{\scriptscriptstyle 1}\Delta u + uarphi(v) = 0 & ext{on} & {m R}^+ imes arphi \ \partial v/\partial t - d_{\scriptscriptstyle 2}\Delta v - uarphi(v) = 0 & ext{on} & {m R}^+ imes arphi \end{array}$$

with the homogeneous boundary conditions

(2)
$$\begin{cases} \alpha_1 \partial u / \partial n + (1 - \alpha_1)u = 0 & \text{on } \mathbf{R}^+ \times \Gamma \\ \alpha_2 \partial v / \partial n + (1 - \alpha_2)v = 0 & \text{on } \mathbf{R}^+ \times \Gamma \end{cases}$$

A basic question, initially raised by Martin in [5], is the existence of global solutions in $C(\overline{\Omega})$ for the initial-value problem associated to the system (1)-(2). This question has been studied successively by Alikakos [1] who gave a positive answer when $\varphi(v) \leq C(1 + |v|^{n+2/n})$, and by Masuda [6] who solved the question when $\varphi(v) \leq C(1 + |v|^{\beta})$ with $\beta > 0$ arbitrarily large without any restriction on n.

In this paper, we show that the method of K. Masuda can be generalized to handle any non-linearity $\varphi(v)$ such that

(3)
$$\lim_{v \to \infty} \left[(1/v) \text{Log}(1 + \varphi(v)) \right] = 0.$$

Also the proof given here is slightly simpler than Masuda's argument and is therefore still interesting when $\varphi(v) = cv^{\beta}$.

1. Notation and preliminary observations. Throughout the text we shall denote by $\| \|_p$ the norm in $L^p(\Omega)$, $\| \|_{\infty}$ the norm in $C(\overline{\Omega})$ or $L^{\infty}(\Omega)$

and $\| \|_{1,\infty}$ the norm in $C^1(\overline{\Omega})$. The study of *local* existence and uniqueness of solutions to the initial-value problem for (1)-(2) in the framework of $C(\overline{\Omega})$ or $L^p(\Omega)$ is classical. As a consequence of the theory of analytical semi-groups the solutions are *classical* on]0, $T^*[$, where T^* denotes the eventual blowing-up time in $L^{\infty}(\Omega)$. It also follows from standard methods that if the initial data $u(0, x) = u_0(x)$ and $v(0, x) = v_0(x)$ are nonnegative, then u and v are nonnegative on]0, $T^*[\times \Omega$. Finally we note that as a consequence of the methods of [2], to prove that the solutions of (1)-(2) are global it is sufficient to derive a uniform estimate of $\|u\varphi(v)\|_p$ on]0, $T^*[$ for some p > n/2. Since $\|u(t)\|_{\infty}$ is obviously bounded by $\|u_0\|_p$, it is therefore good enough to obtain a bound on $\|\varphi(v)\|_n$ on]0, $T^*[$. Moreover if the bound does not depend on t, it will follow from the results of [2] that $\|u(t)\|_{1,\infty}$ and $\|v(t)\|_{1,\infty}$ are bounded for t > 0.

2. Statement and proof of the main result. The main result of the paper can be stated as follows.

THEOREM 1. For any solution of (1)-(2) there exist two positive numbers ε and δ , depending only on $||u(0)||_{\infty}$, such that

$$(4) \int_{a} \{1 + \delta[u(t, x) + u^{2}(t, x)]\} e^{i v(t, x)} dx \text{ is non-increasing on }]0, T^{*}[.$$

PROOF. For any $f \in C^2(\mathbb{R}^+)$ such that $f \ge 0$ and $f' \ge 0$ on \mathbb{R}^+ and any solution (u, v) of (1)-(2) it is straightforward to check the following inequalities.

$$(5) \qquad (d/dt) \left[\int_{\Omega} f(v) dx \right] \leq -d_2 \int_{\Omega} f''(v) |\nabla v|^2 dx + \int_{\Omega} u f'(v) \varphi(v) dx .$$

$$(6) (d/dt) \Big[\int_{\Omega} (u+u^2) f(v) dx \Big] \leq -2d_1 \int_{\Omega} f(v) |\nabla u|^2 dx - d_2 \int_{\Omega} f''(v) |\nabla v|^2 (u+u^2) dx \\ -(d_1+d_2) \int_{\Omega} f'(v) (1+2u) \nabla u \cdot \nabla v dx + \int_{\Omega} u [(u+u^2) f'(v) - (1+2u) f(v)] \varphi(v) dx \,.$$

[Note that $\partial u/\partial n \leq 0$ and $\partial v/\partial n \leq 0$ on]0, $T^*[\times \Gamma$ and (5) is an equality if $\alpha_2 \equiv 1$, while (6) is an equality if $\alpha_1 \equiv \alpha_2 \equiv 1$].

We now choose in (5) $f(v) = e^{\varepsilon v}$ where $\varepsilon > 0$ will be determined later on. By the Cauchy-Schwarz inequality we note that

$$(7) \qquad (d_1 + d_2) \int_{\mathcal{Q}} \varepsilon e^{\varepsilon v} (1 + 2u) |\nabla u| |\nabla v| dx - 2d_1 \int_{\mathcal{Q}} e^{\varepsilon v} |\nabla u|^2 dx$$
$$\leq [\varepsilon^2 (d_1 + d_2)^2 / (8d_1)] \int_{\mathcal{Q}} e^{\varepsilon v} (1 + 2u)^2 |\nabla v|^2 dx$$

and since here $f'' \ge 0$, from (7) and (6) we deduce immediately the

160

following inequality:

On the other hand from (5) we deduce

$$(9) \qquad (d/dt) \int_{\mathcal{Q}} e^{\varepsilon v} dx \leq \int_{\mathcal{Q}} \varepsilon u e^{\varepsilon v} \varphi(v) dx - \varepsilon^2 d_2 \int_{\mathcal{Q}} e^{\varepsilon v} |\nabla v|^2 dx .$$

Let $\delta = 8d_1d_2(d_1 + d_2)^{-2}(1 + 2 ||u_0||_{\infty})^{-2}$. It follows immediately from (8) and (9), since $(1 + 2u)^2 \leq (1 + 2 ||u_0||_{\infty})^2$ that we have

(10)
$$(d/dt) \int_{\Omega} [1 + \delta(u + u^2)] e^{iv} dx \\ \leq \int_{\Omega} \{ \varepsilon + \delta[\varepsilon(u + u^2) - (1 + 2u)] \} u e^{iv} \varphi(v) dx .$$

The integrand on the right-hand side of (10) is ≤ 0 a.e. on]0, $T^*[\times \Omega]$ as soon as we have $\varepsilon + \delta \varepsilon (||u_0||_{\infty} + ||u_0||_{\infty}^2) \leq \delta$. Hence for any $\varepsilon > 0$ such that

(11)
$$\varepsilon \leq \delta [1 + \delta (\|u_0\|_{\infty} + \|u_0\|_{\infty}^2)]^{-1}$$

the inequality (10) yields

(12)
$$(d/dt)\int_{\mathcal{Q}} [1 + \delta(u(t, x) + u^2(t, x)]e^{iv}dx \leq 0 \text{ on }]0, T^*[.$$

This clearly implies (4) and Theorem 1 is completely proved.

COROLLARY 2. If φ satisfies condition (3), all the solutions of (1)-(2) with nonnegative initial data u_0 , v_0 in $L^{\infty}(\Omega)$ are global and uniformly bounded on $]0, +\infty[\times\Omega]$.

PROOF. (3) in particular implies that for any $(u_0, v_0) \in L^{\infty}(\Omega) \times L^{\infty}(\Omega)$, there exists a constant K such that

(13)
$$1 + \varphi(v) \leq K e^{(\varepsilon/n)v}$$
, for all $v \geq 0$

where $\varepsilon = \varepsilon(||u_0||_{\infty})$ is chosen as in the proof of Theorem 1. Then from (4) it follows in particular that $\varphi(v) \in L^{\infty}(]0, T^*[, L^n(\Omega))$ and therefore $u\varphi(v)$ is bounded in $L^n(\Omega)$ for $t \in [0, T^*[$. By the preliminary remarks we conclude that the solution is global and bounded on $]0, +\infty[\times\Omega]$.

REMARK 3. In [8], the problem of global existence of nonnegative solutions to (1)-(2) is studied when $\varphi(v) = e^{\alpha v}$. It turns out that global existence can be established when n = 1 or 2 under a smallness assumption on $||u_0||_{\infty}$.

3. Behavior as $t \to +\infty$. To conclude the paper we give a simple proof of another result of [6] in the spirit of [2].

PROPOSITION 4. Let (u, v) be any non-negative solution of (1)-(2) such that u and v belong to $C_{\mathcal{B}}(]0, + \infty[\times \overline{\Omega})$. Then as $t \to +\infty$ we have

$$(14) || u(t) - u^* ||_{\infty} \to 0$$

(15)
$$||v(t) - v^*||_{\infty} \to 0$$
,

where u^* and v^* are two real nonnegative constants such that $u^*\varphi(v^*) = 0$.

PROOF. We have the obvious inequalities

(16)

$$(d/dt)\int_{\Omega} u dx = d_{1}\int_{\Omega} \Delta u dx - \int_{\Omega} u\varphi(v) dx$$

$$= d_{1}\int_{\Gamma} [\partial u/\partial n] d\sigma - \int_{\Omega} u\varphi(v) dx \leq 0$$
(17)

$$(d/dt)\int_{\Omega} (u+v) dx = d_{1}\int_{\Gamma} [\partial u/\partial n] d\sigma + d_{2}\int_{\Gamma} [\partial v/dn] d\sigma \leq 0$$

and the equality

(18)
$$(d/dt) \int_{\Omega} u^2 dx = d_1 \int_{\Omega} \Delta u \cdot u dx - \int_{\Omega} u^2 \varphi(v) dx \\ = -d_1 \int_{\Omega} |\nabla u|^2 dx + d_1 \int_{\Gamma} u [\partial u/dn] d\sigma - \int_{\Omega} u^2 \varphi(v) dx .$$

In particular the following functions of t:

$$\int_{\Gamma} |\partial u/dn| \, d\sigma, \, \int_{\Gamma} |\partial v/dn| \, d\sigma, \, \int_{\Omega} u \varphi(v) dx, \, \int_{\Omega} |\nabla u|^2 \, dx \quad \text{and} \quad \int_{\Omega} |\nabla v|^2 \, dx$$

are in $L^{1}(\mathbf{R}^{+})$. Therefore $[\text{meas}(\Omega)]^{-1}\int_{\Omega} u(t, x)dx$ and $[\text{meas}(\Omega)]^{-1}\int_{\Omega} v(t, x)dx$ tend to a limit respectively denoted by u^{*} and v^{*} .

Then by using the above inequalities [together with an additional formula for the *t*-derivative of the spatial integral of v^2] in conjunction with Poincaré's inequality, the conclusion follows easily.

REMARK 5. The only case where (u^*, v^*) can be different from (0, 0) is the case of Neumann boundary conditions for both u and v, i.e., when $\alpha_1 \equiv \alpha_2 \equiv 1$. In this case all nonnegative constants (u^*, v^*) such that $u^*\varphi(v^*) = 0$ are stationary solutions of (1) and therefore the result of Proposition 4 is then optimal.

References

 N. D. ALIKAKOS, L^p-bounds of solutions of reaction-diffusion equations. Comm. P. D. E. 4 (1979), 827-868.

- [2] A. HARAUX ET M. KIRANE, Estimations C^1 pour des problèmes paraboliques semi-linéaires, Ann. Fac. Sci. Toulouse 5 (1983), 265-280.
- [3] S. L. HOLLIS, R. H. MARTIN, JR. AND M. PIERRE, Global existence and boundedness in reaction-diffusion systems, to appear.
- [4] M. KIRANE ET A. YOUKANA, Existence globale et comportement à l'infini des solutions d'un système de réaction-diffusion, to appear.
- [5] R. H. MARTIN, JR., private communication.
- [6] K. MASUDA, On the global existence and asymptotic behavior of solutions of reactiondiffusion equations. Hokkaido Math. J. 12 (1983), 360-370.
- [7] M. PIERRE, Global existence in some reaction-diffussion systems, to appear.
- [8] A. YOUKANA, Thèse de 3ème cycle, chapitre 3, Université Paris 6 (1986).

ANALYSE NUMÉRIQUE, TOUR 55-65, 5ÈME ÉTAGE UNIVERSITÉ PIERRE ET MARIE CURIE, 4, PLACE JUSSIEU 75252 PARIS CEDEX 05 FRANCE