ON A RESULT OF K. MASUDA CONCERNING REACTION-DIFFUSION EQUATIONS

Alain Haraux and Amar Youkana

(Received November 21, 1986)

Abstract

We give a simplified proof of a recent result due to K. Masuda concerning the global existence and asymptotic behavior of non-negative solutions to some reaction-diffusion systems. This new method also provides an analogous result under weaker growth assumptions on the nonlinear terms.

Introduction. Let Ω be an open, bounded domain of class C^{1} in \boldsymbol{R}^{n}, with boundary $\Gamma=\partial \Omega$. Let d_{1}, d_{2} be two positive constants with $d_{1} \neq d_{2}$ and $\alpha_{1}(x), \alpha_{2}(x)$ two nonnegative functions of class $C^{1}(\Gamma)$ with $\alpha_{1} \leqq 1$, $\alpha_{2} \leqq 1$. Let $\varphi \in C^{1}\left(\boldsymbol{R}^{+}\right)$be a nonnegative function. We consider the reaction-diffusion system

$$
\left\{\begin{array}{lll}
\partial u / \partial t-d_{1} \Delta u+u \varphi(v)=0 & \text { on } & \boldsymbol{R}^{+} \times \Omega \tag{1}\\
\partial v / \partial t-d_{2} \Delta v-u \varphi(v)=0 & \text { on } & \boldsymbol{R}^{+} \times \Omega
\end{array}\right.
$$

with the homogeneous boundary conditions

$$
\left\{\begin{array}{lll}
\alpha_{1} \partial u / \partial n+\left(1-\alpha_{1}\right) u=0 & \text { on } & \boldsymbol{R}^{+} \times \Gamma \tag{2}\\
\alpha_{2} \partial v / \partial n+\left(1-\alpha_{2}\right) v=0 & \text { on } & \boldsymbol{R}^{+} \times \Gamma
\end{array}\right.
$$

A basic question, initially raised by Martin in [5], is the existence of global solutions in $C(\bar{\Omega})$ for the initial-value problem associated to the system (1)-(2). This question has been studied successively by Alikakos [1] who gave a positive answer when $\varphi(v) \leqq C\left(1+|v|^{n+2 / n}\right)$, and by Masuda [6] who solved the question when $\varphi(v) \leqq C\left(1+|v|^{\beta}\right)$ with $\beta>0$ arbitrarily large without any restriction on n.

In this paper, we show that the method of K. Masuda can be generalized to handle any non-linearity $\varphi(v)$ such that

$$
\begin{equation*}
\lim _{v \rightarrow+\infty}[(1 / v) \log (1+\varphi(v))]=0 . \tag{3}
\end{equation*}
$$

Also the proof given here is slightly simpler than Masuda's argument and is therefore still interesting when $\varphi(v)=c v^{\beta}$.

1. Notation and preliminary observations. Throughout the text we shall denote by $\left\|\|_{p}\right.$ the norm in $\left.L^{p}(\Omega),\right\| \|_{\infty}$ the norm in $C(\bar{\Omega})$ or $L^{\infty}(\Omega)$
and $\left\|\|_{1, \infty}\right.$ the norm in $C^{1}(\bar{\Omega})$. The study of local existence and uniqueness of solutions to the initial-value problem for (1)-(2) in the framework of $C(\bar{\Omega})$ or $L^{p}(\Omega)$ is classical. As a consequence of the theory of analytical semi-groups the solutions are classical on $] 0, T^{*}\left[\right.$, where T^{*} denotes the eventual blowing-up time in $L^{\infty}(\Omega)$. It also follows from standard methods that if the initial data $u(0, x)=u_{0}(x)$ and $v(0, x)=v_{0}(x)$ are nonnegative, then u and v are nonnegative on $] 0, T^{*}[\times \Omega$. Finally we note that as a consequence of the methods of [2], to prove that the solutions of (1)-(2) are global it is sufficient to derive a uniform estimate of $\|u \varphi(v)\|_{p}$ on $] 0, T^{*}\left[\right.$ for some $p>n / 2$. Since $\|u(t)\|_{\infty}$ is obviously bounded by $\left\|u_{0}\right\|_{p}$, it is therefore good enough to obtain a bound on $\|\varphi(v)\|_{n}$ on $] 0, T^{*}[$. Moreover if the bound does not depend on t, it will follow from the results of [2] that $\|u(t)\|_{1, \infty}$ and $\|v(t)\|_{1, \infty}$ are bounded for $t>0$.
2. Statement and proof of the main result. The main result of the paper can be stated as follows.

Theorem 1. For any solution of (1)-(2) there exist two positive numbers ε and δ, depending only on $\|u(0)\|_{\infty}$, such that

$$
\begin{equation*}
\left.\int_{\Omega}\left\{1+\delta\left[u(t, x)+u^{2}(t, x)\right]\right\} e^{\varepsilon v(t, x)} d x \quad \text { is non-increasing on }\right] 0, T^{*}[. \tag{4}
\end{equation*}
$$

Proof. For any $f \in C^{2}\left(\boldsymbol{R}^{+}\right)$such that $f \geqq 0$ and $f^{\prime} \geqq 0$ on \boldsymbol{R}^{+}and any solution (u, v) of (1)-(2) it is straightforward to check the following inequalities.

$$
\begin{equation*}
(d / d t)\left[\int_{\Omega} f(v) d x\right] \leqq-d_{2} \int_{\Omega} f^{\prime \prime}(v)|\nabla v|^{2} d x+\int_{\Omega} u f^{\prime}(v) \varphi(v) d x \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& (d / d t)\left[\int_{\Omega}\left(u+u^{2}\right) f(v) d x\right] \leqq-2 d_{1} \int_{\Omega} f(v)|\nabla u|^{2} d x-d_{2} \int_{\Omega} f^{\prime \prime}(v)|\nabla v|^{2}\left(u+u^{2}\right) d x \tag{6}\\
& -\left(d_{1}+d_{2}\right) \int_{\Omega} f^{\prime}(v)(1+2 u) \nabla u \cdot \nabla v d x+\int_{\Omega} u\left[\left(u+u^{2}\right) f^{\prime}(v)-(1+2 u) f(v)\right] \varphi(v) d x
\end{align*}
$$

[Note that $\partial u / \partial n \leqq 0$ and $\partial v / \partial n \leqq 0$ on $] 0, T^{*}[\times \Gamma$ and (5) is an equality if $\alpha_{2} \equiv 1$, while (6) is an equality if $\alpha_{1} \equiv \alpha_{2} \equiv 1$].

We now choose in (5) $f(v)=e^{\varepsilon v}$ where $\varepsilon>0$ will be determined later on. By the Cauchy-Schwarz inequality we note that

$$
\begin{align*}
\left(d_{1}+d_{2}\right) & \int_{\Omega} \varepsilon e^{\varepsilon v}(1+2 u)|\nabla u||\nabla v| d x-2 d_{1} \int_{\Omega} e^{\varepsilon v}|\nabla u|^{2} d x \tag{7}\\
& \leqq\left[\varepsilon^{2}\left(d_{1}+d_{2}\right)^{2} /\left(8 d_{1}\right)\right] \int_{\Omega} e^{\varepsilon v}(1+2 u)^{2}|\nabla v|^{2} d x
\end{align*}
$$

and since here $f^{\prime \prime} \geqq 0$, from (7) and (6) we deduce immediately the
following inequality:

$$
\begin{align*}
& (d / d t) \int_{\Omega}\left(u+u^{2}\right) e^{\varepsilon v} d x \leqq \int_{\Omega} u\left[\varepsilon\left(u+u^{2}\right)-(1+2 u)\right] e^{\varepsilon v} \varphi(v) d x \tag{8}\\
& \quad+\left[\varepsilon^{2}\left(d_{1}+d_{2}\right)^{2} /\left(8 d_{1}\right)\right] \int_{\Omega} e^{\varepsilon v}(1+2 u)^{2}|\nabla v|^{2} d x
\end{align*}
$$

On the other hand from (5) we deduce

$$
\begin{equation*}
(d / d t) \int_{\Omega} e^{\varepsilon v} d x \leqq \int_{\Omega} \varepsilon u e^{\varepsilon v} \varphi(v) d x-\varepsilon^{2} d_{2} \int_{\Omega} e^{s v}|\nabla v|^{2} d x \tag{9}
\end{equation*}
$$

Let $\delta=8 d_{1} d_{2}\left(d_{1}+d_{2}\right)^{-2}\left(1+2\left\|u_{0}\right\|_{\infty}\right)^{-2}$. It follows immediately from (8) and (9), since $(1+2 u)^{2} \leqq\left(1+2\left\|u_{0}\right\|_{\infty}\right)^{2}$ that we have

$$
\begin{align*}
& (d / d t) \int_{\Omega}\left[1+\delta\left(u+u^{2}\right)\right] e^{\varepsilon v} d x \tag{10}\\
& \quad \leqq \int_{\Omega}\left\{\varepsilon+\delta\left[\varepsilon\left(u+u^{2}\right)-(1+2 u)\right]\right\} u e^{\varepsilon v} \varphi(v) d x
\end{align*}
$$

The integrand on the right-hand side of (10) is $\leqq 0$ a.e. on $] 0, T^{*}[\times \Omega$ as soon as we have $\varepsilon+\delta \varepsilon\left(\left\|u_{0}\right\|_{\infty}+\left\|u_{0}\right\|_{\infty}^{2}\right) \leqq \delta$. Hence for any $\varepsilon>0$ such that

$$
\begin{equation*}
\varepsilon \leqq \delta\left[1+\delta\left(\left\|u_{0}\right\|_{\infty}+\left\|u_{0}\right\|_{\infty}^{2}\right)\right]^{-1} \tag{11}
\end{equation*}
$$

the inequality (10) yields

$$
\begin{equation*}
(d / d t) \int_{\Omega}\left[1+\delta\left(u(t, x)+u^{2}(t, x)\right] e^{\varepsilon v} d x \leqq 0 \quad \text { on } \quad\right] 0, T^{*}[\tag{12}
\end{equation*}
$$

This clearly implies (4) and Theorem 1 is completely proved.
Corollary 2. If φ satisfies condition (3), all the solutions of (1)-(2) with nonnegative initial data u_{0}, v_{0} in $L^{\infty}(\Omega)$ are global and uniformly bounded on $] 0,+\infty[\times \Omega$.

Proof. (3) in particular implies that for any ($\left.u_{0}, v_{0}\right) \in L^{\infty}(\Omega) \times L^{\infty}(\Omega)$, there exists a constant K such that

$$
\begin{equation*}
1+\varphi(v) \leqq K e^{(\varepsilon / n) v}, \text { for all } v \geqq 0 \tag{13}
\end{equation*}
$$

where $\varepsilon=\varepsilon\left(\left\|u_{0}\right\|_{\infty}\right)$ is chosen as in the proof of Theorem 1. Then from (4) it follows in particular that $\varphi(v) \in L^{\infty}(] 0, T^{*}\left[, L^{n}(\Omega)\right)$ and therefore $u \varphi(v)$ is bounded in $L^{n}(\Omega)$ for $t \in\left[0, T^{*}[\right.$. By the preliminary remarks we conclude that the solution is global and bounded on $] 0,+\infty[\times \Omega$.

Remark 3. In [8], the problem of global existence of nonnegative solutions to (1)-(2) is studied when $\varphi(v)=e^{\alpha v}$. It turns out that global existence can be established when $n=1$ or 2 under a smallness assumption on $\left\|u_{0}\right\|_{\infty}$.
3. Behavior as $t \rightarrow+\infty$. To conclude the paper we give a simple proof of another result of [6] in the spirit of [2].

Proposition 4. Let (u, v) be any non-negative solution of (1)-(2) such that u and v belong to $C_{B}(] 0,+\infty[\times \bar{\Omega})$. Then as $t \rightarrow+\infty$ we have

$$
\begin{align*}
& \left\|u(t)-u^{*}\right\|_{\infty} \rightarrow 0 \tag{14}\\
& \left\|v(t)-v^{*}\right\|_{\infty} \rightarrow 0 \tag{15}
\end{align*}
$$

where u^{*} and v^{*} are two real nonnegative constants such that $u^{*} \varphi\left(v^{*}\right)=0$.
Proof. We have the obvious inequalities

$$
\begin{align*}
(d / d t) \int_{\Omega} u d x & =d_{1} \int_{\Omega} \Delta u d x-\int_{\Omega} u \varphi(v) d x \tag{16}\\
& =d_{1} \int_{\Gamma}[\partial u / \partial n] d \sigma-\int_{\Omega} u \varphi(v) d x \leqq 0 \\
(d / d t) \int_{\Omega}(u+v) d x & =d_{1} \int_{\Gamma}[\partial u / \partial n] d \sigma+d_{2} \int_{\Gamma}[\partial v / d n] d \sigma \leqq 0 \tag{17}
\end{align*}
$$

and the equality

$$
\begin{align*}
(d / d t) \int_{\Omega} u^{2} d x & =d_{1} \int_{\Omega} \Delta u \cdot u d x-\int_{\Omega} u^{2} \varphi(v) d x \tag{18}\\
& =-d_{1} \int_{\Omega}|\nabla u|^{2} d x+d_{1} \int_{\Gamma} u[\partial u / d n] d \sigma-\int_{\Omega} u^{2} \varphi(v) d x
\end{align*}
$$

In particular the following functions of t :

$$
\int_{\Gamma}|\partial u / d n| d \sigma, \int_{\Gamma}|\partial v / d n| d \sigma, \int_{\Omega} u \varphi(v) d x, \int_{\Omega}|\nabla u|^{2} d x \text { and } \int_{\Omega}|\nabla v|^{2} d x
$$

are in $L^{1}\left(\boldsymbol{R}^{+}\right)$. Therefore $[\operatorname{meas}(\Omega)]^{-1} \int_{\Omega} u(t, x) d x$ and $[\operatorname{meas}(\Omega)]^{-1} \int_{\Omega} v(t, x) d x$ tend to a limit respectively denoted by u^{*} and v^{*}.

Then by using the above inequalities [together with an additional formula for the t-derivative of the spatial integral of v^{2}] in conjunction with Poincare's inequality, the conclusion follows easily.

Remark 5. The only case where (u^{*}, v^{*}) can be different from (0,0) is the case of Neumann boundary conditions for both u and v, i.e., when $\alpha_{1} \equiv \alpha_{2} \equiv 1$. In this case all nonnegative constants (u^{*}, v^{*}) such that $u^{*} \varphi\left(v^{*}\right)=0$ are stationary solutions of (1) and therefore the result of Proposition 4 is then optimal.

References

[1] N.D. Alikakos, L^{p}-bounds of solutions of reaction-diffusion equations. Comm. P.D.E. 4 (1979), 827-868.
[2] A. Haraux et M. Kirane, Estimations C^{1} pour des problèmes paraboliques semi-linéaires, Ann. Fac. Sci. Toulouse 5 (1983), 265-280.
[3] S. L. Hollis, R. H. Martin, Jr. and M. Pierre, Global existence and boundedness in reaction-diffusion systems, to appear.
[4] M. Kirane et A. Youkana, Existence globale et comportement à l'infini des solutions d'un système de réaction-diffusion, to appear.
[5] R. H. Martin, Jr., private communication.
[6] K. Masuda, On the global existence and asymptotic behavior of solutions of reactiondiffusion equations. Hokkaido Math. J. 12 (1983), 360-370.
[7] M. Pierre, Global existence in some reaction-diffussion systems, to appear.
[8] A. Youkana, Thèse de 3ème cycle, chapitre 3, Université Paris 6 (1986).
Analyse Numérique, Tour 55-65, 5ème étage
Universite Pierre et Marie Curie, 4, Place Jussieu
75252 Paris Cedex 05
France

