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1. Let D be the unit disk in the complex plane and let 3D be its
boundary. We think of D as endowed with the Poincare metric ds =
(1 — I z I2)"11 dz I, z e D. By Mob(jD) we denote the group consisting of all
the fractional linear transformations which leave D invariant. A Fuchsian
group G is a discrete subgroup of Mob(D).

For two points a and β (Φa) in dD, we denote by L(α, β) the
directed geodesic line from a to β. For a point ζ in dD and point z in
D, we denote by R(z, ζ) the directed geodesic ray from z to ζ. If there
exists an infinite sequence {gn} of elements in G such that | gn(z) — a | +
19n(O — β\—>0 as w ^ ° o , then we say that the sequence {gn(R(z, ζ))}n=1

converges to L(a, β) and that {gn}n=i is a convergent sequence with
respect to R(z, ζ) and L(ay β). We also say that ζ in 3D is a transitive
point under G if, for arbitrary L(a, β) and z, there exists a convergent
sequence with respect to R(z, ζ) and L(a, β). In fact, the definition of
a transitive point is independent of the choice of z. So, in this paper,
we consider only the case z = 0, the origin of the complex plane. In
the language of the geodesic flow on the Riemann surface DIG, a
transitive point under G can be rephrased as follows. If a point ζ is
transitive under G, then the geodesic flow corresponding to R(z, ζ) is
dense on T1(D/G)f the unit tangent bundle to D/G. Let TQ be the set
of all the transitive points under G. Clearly, TG is invariant under G.
In [4], it was proved that the measure of TG is equal to 2ττ, if G is a
Fuchsian group of divergence type. By HG and PG we denote the sets
of all the hyperbolic fixed points and of all the parabolic fixed points
of (?, respectively. In this paper, we prove the following theorem on
the set of transitive points under Fuchsian groups.

THEOREM. Let Γ and G be Fuchsian groups. Suppose that G is a
subgroup of Γ of finite index. Then TΓ = TG, HΓ = HG and PΓ = PG.

We remark that TΓ, TG1 PΓ and PG may be empty sets. The existence
of Fuchsian groups Γ and G satisfying the condition of our Theorem was
discussed in [2] if Γ and G are finitely generated Fuchsian groups.
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2. Let g be a hyperbolic element of Mob(D) and let a and β be its
attractive and repulsive fixed points, respectively. By Ag we denote the
directed geodesic line L(α, β), which is often called the axis of g. Note
that g(Ag) = Ag.

LEMMA 1. Let Γ be a Fuchsian group and let g be a hyperbolic
element of Γ with Ag = L(α, β). Then there exists a subset Γg of Γ with
the following properties: (i) for each element h of Γg, there exists a posi-
tive integer N such that, for all n^ N, hgn is a hyperbolic element of
Γ and (ii) for all h in Γ\Γg and all positive integers n, hgn is not a
hyperbolic element of Γ. Moreover, if the axis Ahgn is given by L(an, βn)
for the hyperbolic element hgn, then limn^ooαn = h{a) and limrâ oo/5n = β.

PROOF. TO show the first half, by taking a suitable conjugation, we
may assume that the Fuchsian group Γ acts on the complex upper half
plane and that the representations of g and h by matrices in SL(2, R)
are

λ 0 \ Ί la b
(λ>l) and

.0 λ V \c dt

respectively. Let Eg be the subset of Γ each of whose elements satisfies
a = d = 0. If such elements do not exist, we regard Eg as empty. Each
element of Eg is an elliptic element of order two and has a fixed point
on Ag. For heEgf hgn also is contained in Eg, so hgn is not a hyperbolic
element. We set Γg = Γ \ Eg. Let h be an element of Γg. Then we
have I t r a c e d I = \axn + dx~n\. Since Γ is a discrete group, we obtain
aΦO. Hence there exists a positive integer N such that | trace hgn\ > 2
for all n ^ N. This shows that hgn is a hyperbolic element.

To show the second half, we assume that Γ acts on D. Since Γ is
a discrete group, every heΓg satisfies h(ά) Φ β. Let / be an arbitrary
open interval on 3D with h(a) e I and β&CH, where Cl I denotes the
closure of I. Since a is the attractive fixed point of g, there exists a
positive integer M such that gn(Q>\I)ah~\I) for all n*zM. Hence we
have hgn(C\I)aI. Thus, for all n ^ max(iV, Λf), hgn has an attractive
fixed point an in Cl I (see [1, p. 96]). Since / is an arbitrary open inter-
val containing h(ά), we obtain lim^coO^ = h(a). By using the same argu-
ment for βn which is the attractive fixed point of (hgn)~\ we obtain
lim ôo/Sn = β. This completes the proof of Lemma 1.

We remark that the group (Eg) generated by Eg is an elementary
group which leaves Ag invariant unless Eg is empty.

Let Γ and G be the Fuchsian groups in the Theorem. Suppose that
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[Γ: G] — S + 1 and that the left coset decomposition of Γ with respect
to G is Γ = G U ΎλG U U ΎSG. We set G = Go and 7,G = Gt for ΐ = 1, 2,
•••, S, that is, U?=0Gi is the left coset decomposition of Γ with respect
to G. It is easy to see that, for each 7 e Γ , there exists a positive
integer n (^S + 1) such that 7n e Go and 7m g Go for all 0 < m < n.

LEMMA 2. Lei ζ be a transitive point under Γ and let g be a hyper-
bolic element of Γ. For all I (0 ̂  I <; S), ίfeere exists a sequence {gu)T=i
in Gι such that the sequence {gu(R(0, ζ))}S=i converges to Ag.

PROOF. We choose a natural number m which satisfies βgmβ~1 e G
for all /3eΓ. We set Ag = L(a, β). By Lemma 1, for heΓg and for a
sufficient large n, the element /&(/nm is hyperbolic. We set AΛffπ» = L(an, βn).
Since ζ is a transitive point under Γ, there exists a sequence {Jfeni}Π=i such
that the sequence {hni(R(0, ζ))}Γ=i converges to Ahgnm. Let {εy} be a sequence
of positive numbers satisfying \imj^Sj = 0. By Lemma 1, there exists
an n such that |Λ(α) — an\ < εy/4 and |/3 — /3j < ey/4. Fixing such an n,
we consider the sequence {̂ 7lί}Γ=i. Since the sequence {hni(R(0, ζ))}Γ=i con-
verges to L{an, βn) = Ahgnm, we can choose an hnί which satisfies |fen<(0) —
an\ < βy/4 and \hgnmhni(ζ) — βn\ < ε, /4. Since /3n is the repulsive fixed point
of hgnm, it is clear that \hni(ζ) - /3n| < \hgnmhni(ζ) - βn\. Then we obtain
IKί(0) — h(a)I + Ihni(ζ) — β\ < e, and set hni = hό. We can also obtain
\hgnmhά{Q) - Λ(α)| + \hgnmhά(ζ) - β\ < e, and set hgnmhά = λ, . Hence two
sequences {^(i2(0, ζ))}°°=1 and {̂ -(22(0, ζ))}-°=1 both converge to L(h(a\ β).

Suppose that the sequence {hd}f=1 is contained in a coset Gz. Then
we have (KhsY\hgnmhs) = {hjιgmh5)

n e G by the definition of m so that all
the elements hgnmhβ are contained in the same left coset hGt. Hence
{hj}f=1 is a sequence in hGt. Let ε be an arbitrary positive number. Since
{hj(O)}f=1 and {/̂ (0)}5°=1 converge to h(a) and since α is the attractive fixed
point of g, for an arbitrary j 0 , there exists a positive integer p such that
I fl^ ίO) - a I < e and | flrpΛχθ) - α | < ε for j ^ j 0 . Since {fey(ζ)} °=1 and
{hj(ζ)}T=! converge to the repulsive fixed point β of g, for an arbitrary
positive integer q, there exists j(q) such that \gqhά(ζ) — β\<ε and
\g9hά(Q — β\ < e for i ^ j(q). Hence, for a sequence of positive numbers
{εr} satisfying lim^ooε,. = 0, there exist j(r) and positive integers ί(r) and
t\r) such that |flf"tίr)Λy(r)(O) - a\ + |ff" ί ( r)λ i ( r)(ζ) - /5 |< εr and | ^ ' ( r > i ( r ) ( 0 ) -
α | + l ^ m ί ' ( r ) ^ » ( ζ ) - β\ < εr. Set flf"i('}fci(r) =Λ r _and gmt'ir)hj{r) = fhr. Simi-
larly it is easy to see that {fhr}?=1c:Gι and {fhr}^i<^hGι. For all keΓg,
the sequence {fhr(R(0, ζ))}"βl converges to Aff. Note that, for arbitrary s
and I (O^s, l^-S), there exist infinitely many elements fc eΓ with Gs = fcGΣ.
Moreover, since (Eg} is an elementary group for EgΦQ), we obtain
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[Γ: (Eg)] =00. So we can choose k out of Γa. Hence if, for all heΓg,
the sequence {/Ar}~=i is contained in Gt for a unique I, then the sequence
{ΛrK°=i is contained in kGι = G8, where keΓg. Thus there exist at least
two cosets each of which contains a convergent sequence with respect to
12(0, ζ) and Ag.

Since each hgn is a hyperbolic element for heΓg and a sufficiently
large n, the above argument shows that there exist at least two cosets
each of which contains a convergent sequence with respect to 12(0, ζ) and
Ahgn. Lemma 1 shows that Ahgn converges to L(h{a), β) as n—> °o. In
the same manner as above, from the convergent sequences with respect
to 12(0, ζ) and Ahgn, we can choose a convergent subsequence with respect
to 12(0, ζ) and L(h(a), β), out of which we can make a convergent sequence
with respect to 12(0, ζ) and Ag. Hence there exist two cosets Gt and G3

(I Φ s), each of which contains a convergent sequence with respect to
12(0, ζ) and Ag. Each of the two cosets hGt and hGs also contains a con-
vergent sequence with respect to 12(0, ζ) and Ag. Considering all heΓg

as above, we can conclude that there exist at least three cosets each of
which contains a convergent sequence with respect to 12(0, ζ) and Ag.

Applying the above argument to the hyperbolic elements hgn, we
conclude that if there exist p (<£S) cosets each of which contains a con-
vergent sequence with respect to 12(0, ζ) and Ahgn, then there exist at
least p + 1 cosets each of which contains a convergent sequence with
respect to 12(0, ζ) and Ag. Hence we see that every Gz contains a con-
vergent sequence with respect to 12(0, ζ) and Ag. This completes the proof
of Lemma 2.

3. In this section, we prove the Theorem stated in §1. As was
stated before Lemma 2, for each 7 e Γ , there exists an n with ΎneG.
Since a fixed point of 7 is also a fixed point of 7ra, we obtain HΓ = HG

and PΓ = PG. Moreover, for a hyperbolic element 7, the fact Ar — Aγn

implies {Ar}reΓ = {Aa}gee.

By definition, TΓ = 0 if Γ is of the second kind. Since the index
of G in Γ is finite, Γ and G are of the same kind. If one of Γ and G
is of the second kind, we obtain TΓ = TG — 0 . We thus assume both Γ
and G are of the first kind. It is clear from the definition that TGaTΓ.
So we show TGZ)TΓ. Take a point ζ in TΓ. Since G is of the first kind,
the limit set is identical with 3D. Hence, for two arbitrary open intervals
It and ί2 on 3D, there exists a hyperbolic element of G such that one
fixed point is in Ix and the other is in 12. Therefore, in order to show
that the point ζ is transitive under G, it is sufficient to show that for
an arbitrary hyperbolic element g of G, there exists a convergent sequence
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with respect to 12(0, ζ) and Ag which is contained in G. For an arbitrary
Ar with 7 e Γ , there exists a sequence {#J in Γ such that the sequence
{flft(i2(0, ζ))} converges to Ar. By Lemma 2, we can choose such a sequence
{<7j in G. Since {AΊ}reΓ = {Ag}geG, the point ζ is transitive under G. This
completes the proof.

4. First, we give a corollary to the Theorem. This is a generaliza-
tion of the Theorem in [3].

COROLLARY. Let G be a finitely generated Fuchsian group of the
first kind and let F be a convex fundamental polygon for G. Let <yK
be a tesselation of F under G, that is, ^V = {g(F)\g eG}. Suppose
that there exists an element 7 of Mob(ϋ) with Ί(^V^) — <ylr. If ζ is a
transitive point under G, then so is 7(ζ). If ζ is a hyperbolic (or
parabolic) fixed point of G, then so is 7(ζ).

PROOF. We consider the group Γ = <G, 7>. By the assumption
y(*sf) = Λ" and by the fact that F has finitely many sides, Γ has finite-
ly many elliptic fixed points in F and has at most one elliptic fixed point
on each side of F. Hence there are finitely many fixed points of elliptic
elements of Γ on each g(C\F), where g is an element of G. So the
elliptic fixed points do not accumulate in D. Hence Γ is a discrete group
(see [1, p. 201]) and [Γ: G] is finite. If ζ is a transitive point under G,
then ζ is a transitive point under Γ. So 7(ζ) is a transitive point under
Γ. By the Theorem, 7(ζ) is a transitive point under G. For hyperbolic
and parabolic fixed points, we can prove the assertion similarly.

Next, we give an example.

EXAMPLE. Let G be the Fuchsian group treated in [3] which acts
on the unit disk D : namely, the Dirichlet fundamental region F of G
with the center at the origin 0 is a non-Euclidean regular 4#-sided polygon
(g ^> 2). We label the sides of F as {sjίϊ;1 counterclockwise from a certain
side of F. The identification of {sjίl'ϊ1 is given by αi(s4ί_2) = s4i_4 and
βi(sUs) = s4ί_j for i = 1, 2, , g. By ut we denote the non-Euclidean
middle point of s<. We denote by v0 the vertex of F which lies between
s0 and s4ff_i and by vt the vertex of F which lies between sέ and s ^ for
i = 1, 2, , 4gr — 1. By wt we denote the non-Euclidean middle point
between the origin 0 and vt for i = 0, 1, , Ag — 1. Let/i be the elliptic
element of order 4# which fixes the origin 0 and let /2 be the elliptic
element of order two in Mob(D) which fixes w0. We consider the group
Γ = (G,f,f2). The set of the elliptic fixed points of Γ in Cl F is
{0, ui9 vif wjίt;1. By the argument in the proof of the Corollary, Γ is
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a Fuchsian group. Each point of {ui9 wJtK1 is an elliptic fixed point of
order two of Γ. Suppose that L(ζ19 ζ2) passes through ut (or wt). Our
Theorem shows that, if the point d is transitive under G, then so is
ζ2 while, if the point ζx is a hyperbolic fixed point of G, then so is ζ2.
By Ui (or Wi) we denote the projection of ut (or wt) on the Riemann
surface D/G. Let <pt(z, Θ) (z e D/G and θ e [0, 2ττ)) be the geodesic flow
starting at z in the direction θ. The above implies that if φt(uif θ) (or
(Pt(wif θ)) is dense in Tλ(D/G) then so is <pt(ui9 θ + π) (or ^(w*, ^ + π)).
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