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Introduction. A domain in Cn stable under rotations in the coordinate
axis is called a Reinhardt domain. The equivalence problem for bounded
Reinhardt domains containing the origin was solved by Sunada [7]. In
that paper, he also determined automorphisms of such domains.

In this paper, we shall give an answer to the equivalence problem
for general bounded Reinhardt domains. Further, we try to determine
automorphisms of a certain class of bounded Reinhardt domains not
containing the origin.

To each Reinhardt domain DaCn, there is associated an integer t
between 0 and n such that the value n — t measures, in a sense, how
many zero coordinates D contains (see Section 2). For example, D con-
tains the origin precisely when t = 0, while D is contained in (C*)71

precisely when t — n. We shall deal with this extreme case t — n as
well as the simplest intermediate case in which n = 2 and t = 1.

This paper is organized as follows. In Section 1, we collect notation,
terminology and basic results on bounded domains. In Sections 2 and 3,
we discuss basic concepts and results on Reinhardt domains. Section 4
deals with the equivalence problem for bounded Reinhardt domains. In
Section 5, we study the structure of a certain class of subalgebras of
the Lie algebra consisting of all holomorphic vector fields on an n-
dimensional Reinhardt domain with t = n. The result is used in Section
6 for determining automorphisms of w-dimensional bounded Reinhardt
domains with t — n. Sections 7 and 8 are devoted to the determination
of automorphisms of two-dimensional bounded Reinhardt domains with
t = 1.

Closely related results have been obtained by Bedford [2] and Barrett
[1]. Their approach is analytic, while our approach is group-theoretic.

The author would like to thank Professor Sunada who introduced
him to the study of automorphisms and equivalence of bounded Reinhardt
domains not containing the origin.
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1. Preliminaries. In this section, we collect notation, terminology
and basic results on bounded domains needed later.

The set of non-zero complex numbers is denoted by C*. For a subset
E of Cn, write £7* = EΓ\(C*)n. As usual, U(n) denotes the unitary group
of degree n. In particular, Z7(l) denotes the multiplicative group of
complex numbers of absolute value 1. If E = {• •} is a subset of a
vector space V over a field F, the linear subspace of V spanned by E is
denoted by EF = {• }F.

If M is a differentiate manifold and p is a point of M, the tangent
space to M at p is denoted by TPM. If /: ilf —> Mr is a differentiate
mapping between two differentiable manifolds M and Mf and p is a
point of M, the differential of / at p is denoted by (df)P.

An automorphism of a complex manifold M means a biholomorphic
mapping of M onto itself. The group of all automorphisms of M is
denoted by Aut(M). A complex manifold M is said to be homogeneous
if Aut(Λf) acts transitively on M. Two complex manifolds are said to
be holomorphically equivalent if there is a biholomorphic mapping between
them.

We now recall basic results on bounded domains.
If D is a bounded domain in Cn, then Aut(D) has the structure of

a Lie group with respect to the compact-open topology and acts as a
Lie transformation group on D. Moreover, if z is any point of D, then
the isotropy subgroup Aut(D), = {φe Aut(Z)) | φ(z) = z} of Aut(D) at z is
compact, and its isotropy representation Aut(D)zB φ-> (dφ)zeGL(TzD) is
faithful, where GL(TZD) denotes the group of all complex linear trans-
formations of TZD viewed as a complex vector space in a canonical
manner. The identity component of Aut(D) is denoted by G(D). For
each point z of D, the G(D)-orbit G(D)-z — {g-z\g eG(D)} of z is a sub-
manifold of D.

To each bounded domain D in Cn, there is associated a Hermitian
metric on D which is called the Bergman metric. If φ:D—>D' is a
biholomorphic mapping between two bounded domains D and D' in Cn,
then φ is an isometry with respect to the Bergman metrics of D and
D\ In particular, the Bergman metric of a bounded domain D in Cn is
invariant under Aut(JD). As a consequence, if dim G(D) z = 2n for a
point z of D, then D is homogeneous. Indeed, the condition dimGCD) 2 =
2n implies that G{D) z is an open submanifold of D. Since G(D) is a
group of isometries of D with respect to the Bergman metric, Kobayashi
and Nomizu [5, I, Corollary 4.8] shows that G(D)-z coincides with D, and
hence D is homogeneous.



BOUNDED REINHARDT DOMAINS 121

For a domain D in Cπ, we denote by X(I>) the complex Lie algebra
of all holomorphic vector fields on D with the Poisson bracket. If D is
bounded, then the set of all complete holomorphic vector fields on D is
a finite-dimensional real subalgebra of ΐ(D), and is denoted by Q(D). The
subalgebra Q(D) can be canonically identified with the Lie algebra of
the Lie group Aut(D). An application of Liouville's theorem yields that

2. Basic concepts on Reinhardt domains. In this section, we discuss
some basic concepts and results on Reinhardt domains.

For each element a = (a19 •••, an) of (C*)n, we define an element πa

of Aut(Cn) by the coordinatewise multiplication

πa(zίf . . . , z n ) = {axzιy •••, a n z n ) .

πa will sometimes be viewed as an element of Aut((C*)n). Write T —
(U(l))n. The group T acts as a group of automorphisms on Cn by

a z = πa(z) for a e T and zeCn .

For i = 1, •••,%, let 7̂  be the subgroup of T defined by

Tt = {(alf •• , α n ) 6 Γ | α y = l for all i *= ΐ} .

DEFINITION. A Reinhardt domain in Cn is a domain D in Cn which
is stable under Γ, that is, such that a DaD for every aeT.

Let D be a Reinhardt domain in C\ The group T then acts as a
group of automorphisms on D. The subgroup of Aut(D) induced by T
is denoted by T(D), or simply by T for short. Also, the subgroups of
Aut(Z>) induced by T19 , Γn are denoted, respectively, by 7\(Z)), , Tn(D),
or simply by Tlf , Γn for short. For each point z of D, the Γ(J9)-orbit
Πz : = Γ(D) 2 = {α 2;|αe Γ(D)} of 2 is a torus in D. Note that z belongs
to D* = Z)n(C*)n precisely when dimZΓ2 = w. Introduce the constant
t = minz62)dimZ?'z, the minimal dimension of the tori Πz for zeD. This
constant takes a value between 0 and n, and is a fundamental invariant
associated to the Reinhardt domain D. For example, D contains the
origin precisely when t — 0, while D is contained in (C*)71 precisely when
t — n.

DEFINITION. An algebraic automorphism of (C*)π is an automorphism
of (C*)71 whose components are given by Laurent monomials, that is, of
the form

( * )
w< = α^!α i ί *£•< , i = 1, , n ,
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where A: = (α<y) € GL(n, Z) and a : = (at) e (C*)\

The set Autaig((C*)TO) of all algebraic automorphisms of (C*)n is a
subgroup of Aut((C*)n). The group Autaig((C*)n) is a Lie group of dimension
2n with respect to the compact-open topology, and its identity component
is given by π{C*)n: = {πa\a e (C*)n}.

Let φ be an algebraic automorphism of (C*)71 and write φ{z) —
(<Pi(z)> m *><Pn(z))' I n general, the components φl9 " ,φn have zeroes or
poles along each coordinate hyperplane. If, for two domains D and D'
in Cn not necessarily contained in (C*)n, they have no poles on D and
φ\ D-+Cn maps D biholomorphically onto D'f then we say that φ induces
a biholomorphic mapping of D onto D'.

Every algebraic automorphism φ of (C*)71 has the property that

( 1 ) φTφ'1 = T .

As a consequence, if φ induces a biholomorphic mapping of a Reinhardt
domain DaCn onto a domain ΰ ' c C " , then D' is also a Reinhardt domain.
This type of transformation is a useful tool in studying automorphisms
of a Reinhardt domain, as we shall see later. Consider a biholomorphic
mapping <p:D-+D' between two Reinhardt domains D and D' in Cn.
Then φ is induced by an algebraic automorphism of (C*)n if and only if
it is equivariant with respect to the Γ-actions, or equivalently if and
only if it has the property that

(2) φT(D)φ-ί= T{Df).

Indeed, the "only if" part follows immediately from (1) applied to φ.
For the "if" part, see the corollary to Proposition 1 of the next section
and the remark after it. Biholomorphic mappings between Reinhardt
domains equivariant with respect to the T-actions may be considered as
natural isomorphisms in the category of Reinhardt domains. We are
led therefore to introducing the following equivalence relation between
Reinhardt domains.

DEFINITION. TWO Reinhardt domains in Cn are said to be algebraical-
ly equivalent if there is a biholomorphic mapping between them induced
by an algebraic automorphism of (C*)71.

The following concepts will be needed later.

DEFINITION. An algebraic (resp. linear) automorphism of a Reinhardt
domain D in Cn is an automorphism of D induced by an algebraic auto-
morphism of (C*)n (resp. complex linear transformation of Cn).

The set Autaig(Z>) (resp. GL(D)) of all algebraic (resp. linear) auto-
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morphisms of a Reinhardt domain D in Cn is a subgroup of Aut(jD).
The group Autalg(Z>) (resp. GL(D)) may be viewed as a subgroup of
Autalg((C*)n) (resp. GL(n, €)). It then follows that Autalg(£>) (resp. GL{D))
is closed in Autalg((C*)n) (resp. GL(n, C)), and therefore that Autalg(Z))
(resp. GL(D)) is a Lie group with respect to the compact-open topology.
Note that T(D) is contained in Autaig(J9).

There is a useful correspondence between Reinhardt domains and
tube domains. First recall the definition of a tube domain and fix
notation. If Ω is a domain in Rn, the tube domain TΩ = Ω + V^-ΪR71

over Ω is the domain in Cn consisting of all points ζ — ξ + V~^Λj) e Cn =
Rn + V^ΛR71 (£, 7}eRn) such that £ e β . For each element η of iϊn, we
define the translation ση 6 Aut( Γfl) by

ση(ζ) = ζ + i / = ϊ ? .

For each point ζ of TΩ, write J ζ = (σ̂ (ζ)\τj eRn}. Now, define the mapping
ord:(C*)n->Λn by

ordfe, ••-,«„) = (-(2τr)-1log 1̂ 1, , -(2τrΓ1log |«J) .

Clearly ord is an open mapping. If E is a subset of Cn, the image of
E* under ord is called the logarithmic image of E. To each Reinhardt
domain D in (C*)n, there is associated a tube domain TΩ over the logarith-
mic image Ω : = ord(D) of D. TΩ naturally becomes a covering manifold
of D. Indeed, introduce the covering vf: Cn —> (C*)n defined by

tar(Ci, •••,£«) = (exp(-2ττζ1), , exp(-2ττζj) .

Then we have T^ = vf~\D), and the restriction tsr: Γβ —> J9 is a covering
projection. The covering transformation group for tar is given by
azn\— {σv\rjeZn}. For each point ζ of TΩ, we have Σζ = vf'^Π^^y and
the restriction *&: Σζ-> 11*^ is a covering projection. The tube domain
TΩ is called the covering tube domain of D and the covering projection
vf: TΩ—>D is called the canonical covering projection.

Here are some observations about the relations between Reinhardt
domains and their logarithmic images. First, if we denote by GL(n, Z)-Rn

the group of all affine transformations of Rn whose linear parts belong
to GL(n, Z), then there is a group homomorphism of Autalg((C*)71) onto
GL(n,Z)-Rn which associates to each element φ 6 Autalg((C*)n) written
in the form (*) the element φeGL(n, Z)-Rn defined by

(3 ) φ(ς) = ςA + ord(α) .

It follows that if an algebraic automorphism φ of (C*)n induces a biholo-
morphic mapping φ\Ό-±Df between two Reinhardt domains D and Df
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in C\ then φ(D*) = D'* and

( 4 ) φ(ord(£*)) = ord(D'*) .

Secondly, if D is a Reinhardt domain in Cn, then D is bounded if and
only if

for some constants clf " ,cn. Thirdly, if ΰ is a Reinhardt domain in
(C*)71, then D is algebraically equivalent to a bounded Reinhardt domain
if and only if the logarithmic image ord(D) of D has the convex hull
containing no complete straight lines. This is a consequence of the
observations above and the fact that if an open subset Ω of Rn has the
convex hull containing no complete straight lines, then there exists an
element / of GL(n, Z)-Rn such that

f(Ω)d{(ξlf ••.,fn)6Λ»|f1>0, •• , f n > 0 } .

Finally, if an algebraic automorphism φ of (C*)71 maps a Reinhardt domain
DczCn whose logarithmic image has the convex hull containing no com-
plete straight lines biholomorphically onto a Reinhardt domain D'(zCn,
then (4) applied to φ implies that the logarithmic image of D' also has
the convex hull containing no complete straight lines.

LEMMA 1. Let D be an open subset of Cn whose logarithmic image
has the convex hull containing no complete straight lines. If a is an
element of (C*)71 such that πa{D) = D, then ae T.

PROOF. If we write Ω = ord(Z)*), and if πa is the translation of Rn

defined by πa(ξ) = ξ + ord(α), then the assumption πa(D) = D implies that
πa(Ω) = Ω (cf. (3), (4)). If Ω is the convex hull of Ω, then πa(Ω) = Ω.
Since Ω contains no complete straight lines, it follows that ord(α) = 0,
and hence that a e ord'^O) = T. q.e.d.

COROLLARY. If D is a Reinhardt domain in Cn whose logarithmic
image has the convex hull containing no complete straight lines, then
the identity component of Autaig(.D) coincides with T(D).

PROOF. This follows from the fact that the identity component of
Autaig(JD) coincides with that of {πa eπ{C*)n\πa(D) = D}.

The following result is well-known (cf. Narasimhan [6]).

THEOREM. If D is a Reinhardt domain in Cn, then every holomorphic
function f on D can be expanded into a "Laurent series"

f(z) = Σ
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which converges absolutely and uniformly on any compact set in D, where
zι/ = zlι zu

n

nfor the coordinate z=(z19 , zn) of Cn and v = {vu , v j e Zn.
Moreover, the coefficients ajs are uniquely determined by f.

COROLLARY. Suppose that a holomorphic function f on a Reinhardt
domain D in Cn satisfies

(5 ) f{zιy , zt_lf azi9 zi+ι, , zn) = akf(z)

for an integer k and for every ae U(l) and every z — (z19 •••, zn)eD.
Then f has the form

f(z) = g(z19 , zt_19 zi+ί, , zn)zk

t

for some holomorphic function g on the Reinhardt domain in Cn~ι given
as the image of the domain D under the projection

p:CnBz-+ (zlf , *,_!, zi+1, , zn) e Cn~ι .

PROOF. Let f(z) = Σ . e z ^ / be the Laurent expansion of /. Substi-
tuting this into (5) and applying the uniqueness assertion of the above
theorem, we see that

aHav = aka» for every a e 17(1) and every v = (v19 , vn) eZn .

Hence, if the coefficient au of the Laurent expansion of / is not equal
to 0, then aH~k — 1 for every ae £7(1), so that vt — fc. We obtain the
desired result, since f{z)\z\ is then a holomorphic function on D independent
of the variable zi9 that is, f{z)\z\ has the form f{z)\z\ = g(p(z)) for some
holomorphic function g on p(D). q.e.d.

LEMMA 2. Let G be a group of automorphisms of a Reinhardt domain
D in Cn. If the center of G contains the subgroup

Tk+1(D) Tn(D) = {a{k+1) aM\a{k+1) 6 Tk+ί(D), , a{n) e Tn(D)}

of T(D), and if Δ is the Reinhardt domain in Ck given as the image of
the domain D under the projection

p:Cns(zlf •••,*„) — (*!, - ,zk)eCk ,

then, to each element φ of G, there correspond an automorphism τ(φ) of
A and a holomorphic mapping Ί{φ) of Δ into (C*)n~fc for which φ has
the form

φ:DB(z',z")->(w',w")eD,
9 - τ{φ){zf) ,

where zf,w' e Ck and z"9 w" e Cn~k. Further, the map τ: G-> Aut(J) sending
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φ to τ(φ) is a group homomorphism. If the logarithmic image of D has
the convex hull containing no complete straight lines, then the kernel
ker τ of τ coincides with Tk+ι(D) Tn(D).

PROOF. Let φ be any element of G. In terms of the coordinates
in C \ w r i t e φ{z) = (φ^z), "',φn(z))f w h e r e φ19 -- ,φn a r e h o l o m o r p h i c

functions on D. Since φ commutes with every element of Tk+1(D) Tn(D),
the functions φlf , φn satisfy

<Pi(zlf , zk, ak+1zk+1, , anzn) — <pt(z) , i = 1, , k ,

<Pi(z19 - ,zk, ak+1zk+1, , anzn = a&te) , i = fc + 1, , w ,

for every (ak+1, , an) e (U(l))n~k and every z = (^, • • • ,£„ )€ !> . Hence,
by a successive use of the above corollary, we see t h a t they have the
form

9>i(s) = Qi(Zi, ι Sfc) i i = 1, , fc ,

for some holomorphic functions &, •••, flrn on J . Write

τ(^) = (Λ, , 9k) and

To prove the first assertion, it suffices to prove that τ(φ) gives an auto-
morphism of Δ, while Ί{φ) gives a mapping into (C*)n~fc. The fact that
7(<p) gives a mapping into (C*)71"* is immediate from the fact that φ is
an automorphism of D. To prove that τ{φ) gives an automorphism of
Δ, note first that τ{φ)(Δ)<zΔ. This follows from the relation poφ = τ(φ)°p.
Now, let φ9 be any element of G and consider τ(φ') and τ(φφ'). Then
we have τ(φ')(Δ)CLΔ and τ{φφf)(Δ)c:Δ, as noted above, and it is readily
verified that

( 6 ) τ(φφ') = τ{φ)τ{φ')

on Δ. If we take φ~ι as φ', then (6) implies that

) = r(id) = id

on Δ, where id denotes the identity mapping. Since a similar argument
shows that τiφ'^τiφ) = id on Δ, it follows that τ(φ) gives an automorphism
of Δ, which proves the first assertion.

The first half of the second assertion is an immediate consequence
of (6). It remains to prove the latter half of the second assertion. It
is obvious that Tk+1(D) Tn(D) is contained in ker τ. To show the
reverse inclusion, let φ be any element of kerτ. Then φ has the
form



BOUNDED REINHARDT DOMAINS 127

φ: DB {Z\ Z") -> (w\ w") eD ,

w" =

for the holomorphic mapping y(φ) = (gk+ly , gn) of Δ into (C*)n"Λ where
z', w' eCk and 2", w" eCn~k, and flrΛ+1, --•> gn are nowhere-vanishing holo-
morphic functions on Δ. Fix any point 2' of J* and define an open subset
Ώz, of £*-* by

Dz, = {z"eCn~k\{zr, 2")e£>}.

As a consequence of (7), we have πrm{zf){Dzf) = D^. Since the assumption
that the logarithmic image of Z) has the convex hull containing no
complete straight lines implies that the logarithmic image of Dz, has
the convex hull containing no complete straight lines, it follows from
Lemma 1 that Ί{&){zf) e Γ = (17(1))"-*, that is, that \g^z9)\ = 1, i =
k + 1, , n. Since this holds for every point z' of the non-empty open
subset J* of Δ, we see that gk+1, -•-, gn are constants of absolute value
1. Therefore, in view of (7), φ belongs to Tk+1(D) Tn(D), so that
kerr is contained in Tk+1(D) Tn(D), which proves the latter half of
the second assertion. q.e.d.

As a special case of the above lemma, we obtain the following
corollary.

COROLLARY. Let G be a group of automorphisms of a Reinhardt
domain D in Cn. If the center of G contains the group T(D), then

3. Two propositions. Continuing our study in the preceding section,
we establish two basic results on Reinhardt domains. The first result
gives a criterion for a biholomorphic mapping between two bounded
Reinhardt domains to be induced by an algebraic automorphism of
(C*)\ The second result is about the structure of the group of linear
automorphisms of a bounded Reinhardt domain.

PROPOSITION 1. Let φ:D—>D' be a biholomorphic mapping between
two Reinhardt domains D and D' in Cn. If D or D' is holomorphically
equivalent to a bounded domain in Cn, and if there exists a point z0 of
D* such that φ(ΠZo) = Πφ{Zo)f then φ is induced by an algebraic auto-
morphism of (C*)\

PROOF. Since it follows from the relation dim ΠφiZQ) = dim φ(ΠZo) —
dim ΠZQ — n that φ(ΠZQ) = ΠψiZQ)c:Df*, we can find a Reinhardt domain Do

in Cn such that ΠZQc:Doc:D, φ(D0)czD'* and ord(D0) is simply connected.
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If TΩ is the covering tube domain of Do and vf is the canonical covering
projection, then, because of the simple connectedness of Ω = ord(Z)0),
the covering vf: TΩ —> Do is the universal covering of Do. If TΩ, is the
covering tube domain of D'* and vϊ' is the canonical covering projection,
and if φ\ TΩ -* TΩ> is a lifting of φ\ DQ —> D'* and ζ0 is a point of TΩ

such that Έr'(ζo) = £0> then the assumption φ(ΠZQ) = Πφ{ZQ) implies that

( 8 )

and we have the following commutative diagram:

( 9 )

Clearly τεr: j?Co —> /7Zo and tar': ΣfιζQ) —> ^ ^ ( ^ are the universal coverings of
the tori ΠZQ and i79(2o), respectively, and φ: Σζo-+Σφ{ζo) is a lifting of
φ:ΠZo->ΠnzQ).

We show that φ: TΩ —> 7̂ / is a complex affine mapping. Note first
that the restriction φ: Σζo —> Σ^ζQ) is an afRne mapping. Indeed, consider
the Bergman metrics of D and Dr. Since the Bergman metric of D is
invariant under Aut(D), therefore under T(D), the submanifold ΠZQ of D
with the induced Riemannian structure is a Euclidean torus. Similarly,
by means of the Bergman metric of D'9 the submanifold ΠφiZQ) of D' has
the structure of a Euclidean torus. Since the biholomorphic mapping
φ\D-^Dr is an isometry with respect to the Bergman metrics, we see
that φ\ ΠZQ —»Πφ[eo) is an isometry between the Euclidean tori ΠZQ and
Πφ{ZQ), and our assertion follows from the fact that φ: Σ:o —> Σφ{ζQ) is a
lifting of φ: ΠZQ -^ΠΨ{ZQ). Now, if Re and Im are the projections of TΩ,
into Rn defined by

Reζ = f and lmζ = η for ζ=f + l/^T^ e TQ^Ω' + I/^ΪR* (ξeΩ',ηeRn) ,

then, by (8), the mapping

/2n 9 77 -> Reφ(ζ0 + V'-iη) 6 i2n

is constant, while, by what we have noted above, the mapping

Rn 3 Ύ] -> Im φ(ζ0 + V 7 1 1 !^) 6 i?71

is affine. This implies that if, in terms of the coordinates in Cn, we
write φ(ζ19 , ζn) = (&(ζ), , φn(Q), where ζ = (d, , ζ j a n d φlf - ,φn

are holomorphic functions on TΩ, and if ^i — ζi
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i = 1, ••-,%, then the functions cfφlίQIdηβηu, i, j , k — 1, •••,%, vanish
identically on Σζo. Σζo is a totally real submanifold of TΩ of dimension
n. Thus 32^<(C)/3ζi3ζ*, i, i , fc = 1, ••-,*&, vanish identically on ΓΛf and
hence φ: TΩ-+ TΩ> is a complex aίRne mapping.

Because of the result of the preceding paragraph, φ has the form
φ(ζ) = ζA 4- /3 for some A € GL(w, C) and some /5 e C \ We show that
A belongs to_GL(w, Z). It is enough to show that ZnA = Z n . Write
A = B + V^ΛCy where I? and C are real square matrices of degree n.
Then, by (8), we have

Re 9>(Co). = Re ^(ζ 0 + V^Λrj) = -VC + Re ?>(ζ0)

for every ηeRn, so that 57C = 0 for every ηeRn, and hence C = 0.
Since this implies that, for ηeRn, ηAeRn and ^ = σηAφ, the desired
result follows from the fact that, in (9), the covering transformation
groups of the coverings vf: Σζo —> ΠZQ and tar': Σφ{ζQ) —> i7^(Z0) are given by
the restrictions of σzn to ΣζQ and -Σ?(co), respectively.

If A — (aid) and β — (βt)f then, in view of the definition of the
covering projections ^ and TΣT', it follows that φ\ Do-^D'* has the form

φ: Do 3 (z19 , zn) -> (Wi, , wn) 6 D'* ,

w4 = expC-^AK1' «;•' , i = 1, , n ,
and therefore, by analytic continuation, that <p is induced by an algebraic
automorphism of (C*)\ q.e.d.

COROLLARY. Let φ:D-*D' be a biholomorphic mapping between two
Reinhardt domains D and Dr in Cn. If D or Όf is holomorphίcally
equivalent to a bounded domain in Cn, and if φT(D)φ~1 = T(D')y then φ
is induced by an algebraic automorphism of (C*)71.

PROOF. It follows from the assumption φT^φ'1 = T(D') that
φ(Πz) = Πφw for every zeD. Therefore, for any point z0 of D*, the
mapping φ satisfies the condition of the proposition. q.e.d.

REMARK. The conclusion of the above corollary holds even if the
boundedness assumption on D, D' is removed. This more general result
can be shown by using the corollary to the theorem of the preceding
section.

PROPOSITION 2. If D is a bounded Reinhardt domain in Cn, then,
by a change of coordinates

Oi, •••, z J - ^ O i Z i , •••, rnzn)

for some positive constants rlf •••, rn, the group GL(D) is contained in

U{n).
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PROOF. We show first that GL(D) is compact. It is enough to show
that if {φ(m)\m — 1, 2, •••} is any sequence of elements of GL{D), then
there exists a subsequence of {φ{m)\m = 1, 2, •••} which converges to an
element of GL(D). Select a basis u19 , un for the complex vector space
Cn consisting of points of D. Since every element of GL(D) maps ulf- — ,un

into the fixed bounded domain D, the set of entries of elements of GL{D)
is bounded, and therefore there exists a subsequence of {φ(m) \m = 1,2, •},
denoted again by {φ{m)\m = 1, 2, •••}, which converges to some complex
square matrix φ of degree n. If φ does not belong to GL{n, C), then
φ(D) is contained in a proper vector subspace of Cn. Since the boundedness
of D implies that the set φ{m\D) approaches uniformly to the set φ(D)
as m goes to ©o, it follows that φ{m\D)ΦD for sufficiently large m.
This contradicts the assumption φ{m) eGL(D). We thus conclude that
φeGL(n, C). Since GL(D) is closed in GL(n,C), we obtain φeGL(D),
which proves our assertion.

Because of the result of the preceding paragraph, there exists a
GL(D)-invariant Hermitian inner product <#, #> on Cn. Since GL(D)
contains T, we see that

n

(10) <z, w) = Σ α^ΰ^
i=l

for some positive constants αx, , an, where 2 = (^, , zn), w = {w1, , wn) e
Cn. By a change of coordinates

Oi, , zn)

we can take α2 = = αn = 1 in (10), and then GL(D) is contained in
q.e.d.

4. Equivalence of Reinhardt domains. This section deals with the
equivalence problem for bounded Reinhardt domains.

We first present a group-theoretic characterization of T(D) and a
result from the theory of Lie groups.

PROPOSITION 1. If D is a bounded Reinhardt domain in Cn, then
T(D) is a maximal torus in G(D).

PROOF. It is obvious that T(JD) is a torus in G(D), that is, a con-
nected compact abelian subgroup of G(D). Let T" be any torus in G(D)
containing T(D). By the corollary to Lemma 2 of Section 2, T' is a torus
in 7r(C ,n. Since T(D) is clearly a maximal torus in π(C.,n, we see that T'
coincides with T(D). q.e.d.

THE CONJUGACY THEOREM (cf. Hochschild [4]). // T and T are two
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maximal tori in a connected Lie group G, then there exists an element
geG such that gTg~ι = T\

We shall now give an answer to the equivalence problem for bounded
Reinhardt domains.

THEOREM 1. If two bounded Reinhardt domains in Cn are holomor-
phically equivalent, then they are algebraically equivalent.

Note that if an algebraic automorphism of (C*)π induces a biholo-
morphic mapping between two Reinhardt domains in Cn containing the
origin, then it must be of the form

(**) . -,

where σ is a permutation of {1, « ,n} and (a19 , an) e (C*)\ Hence,
from the above theorem, we obtain the following consequence.

COROLLARY (Sunada [7]). If two bounded Reinhardt domains in Cn

containing the origin are holomorphically equivalent, then there is a
biholomorphic mapping between them induced by an algebraic auto-
morphism of (C*)n of the form (**).

To prove Theorem 1, it suffices to prove the following proposition.

PROPOSITION 2. If φ\ D —> D' is a biholomorphic mapping between
two bounded Reinhardt domains D and Ό1 in Cn, then φ can be written
in the form

φ = φ'φ" ,

where φ'eG(D') and φ" e Autalg((C*)n).

PROOF. By Proposition 1, T(D) is a maximal torus in G(D). Since
φG(D)φ~1 — G{Dr), we see that φT(D)φ~1 is a maximal torus in G(DT)>
while, again by Proposition 1, T(D') is a maximal torus in G{Df). There-
fore the conjugacy theorem shows that there exists an element ψ e G(Df)
such that ψ(φT(D)φ-1)ψ~1 = (ψφ)T(D)drφ)-1 coincides with T(D'). It
follows from the corollary to Proposition 1 of the preceding section that
ψφe Autaig((C*)n). Putting φf — ψ~λ and φ" — ψφ, we obtain the desired
result. q.e.d.

COROLLARY. If D is a bounded Reinhardt domain in Cn, then Aut(Z))
coincides with G(D) Autaig(D).

PROOF. Apply the above proposition to the case of D = D'. q.e.d.

REMARK. All the results of this section remain true for Reinhardt



132 S. SHIMIZU

domains D such that Aut(D) has the structure of a Lie group with respect
to the compact-open topology.

We conclude this section by discussing the equivalence of annuli as
an illustration of Theorem 1.

EXAMPLE. For a real number r with 0 < r < 1, let A(r) be the
annulus in C defined by

A(r) = {zeC\r< \z\ < r" 1 } .

Consider two annuli A{r) and A(rf). Theorem 1 asserts that A(r) and
A{rf) are holomorphically equivalent if and only if there exists an element
of Autaig(C*) which maps A(r) onto A{rf). Since the group Autaig(C*) is
given by

(11) Autalg(C*) = {C*9z->αz α eC*|αeC*, a= ±1} ,

the latter condition is equivalent to r — r'. Thus we obtain a classically
known result on the equivalence of annuli.

5. Holomorphic vector fields on a Reinhardt domain. Let D be a
Reinhardt domain in C\ Then T(D) acts as a Lie transformation group
on D. The subalgebra of £(D) corresponding to T(D) is denoted by t(D).
Since the group T(D) is abelian, the subalgebra t(D) is abelian. For
ΐ = 1, —-,n, let Hi be the infinitesimal transformation of the one-
parameter subgroup

{D 3 (zu - , z J - > (z19 , «,_ lf e x p d / ^ K zi+lf ---tZjeDlθeR}

of Aut(D). Then t(D) is given by t(D) = {H1} •••, Hn}R. Also, the sub-
algebras tι{D)f , tn(D) of t(D) corresponding, respectively, to TX{D), ,
Tn(D) are given by tt(D) = {JΪJΛ, i = 1, , n. Note that the holomorphic
vector fields H19 , i ί n have the form

(12) Ht = v^-iztf/dZi) , i = 1, , w .

Suppose that D is contained in (C*)n and consider a finite-dimensional
real subalgebra g of X(D) containing t(D). In this section, we prove some
fundamental lemmas concerning the structure of g which we need in the
next section.

We begin with preliminary observations. Since D is contained in
((7*)n, it follows from (12) that the holomorphic vector fields Hlf •••, Hn

form a basis of X(-D), that is, every element X of %(D) can be written
in the form



BOUNDED REINHARDT DOMAINS 133

where f19 •••,/„ are holomorphic functions on D. For i = 1, , n, let
fi(z) — Yj^zndfz" be the Laurent expansion of fi9 and write Xv =
^ ( Σ ί - i ^ f l i ) . Then X has the expression

(13) Z=Σi

In what follows, every element of X(JD) will be expressed as above. Note
that the sum in (13) converges absolutely and uniformly on any compact
set in D, and that X = 0 precisely when Xv = 0 for all v e Zn. If
# = Σ"-iCj3*et(-D)c and X = Σ,eznX,eX(D), then it follows that

(ad H)X = [if, X] - Σ O / ^ Ί Σ <^)X> ,
veZ71 ί—i

where v = (x̂ , , vn), and hence that, for a polynomial P with complex
coefficients, we have

P(ad H)X = Σ P d / ^ l Σ c^)Xy .

LEMMA 1. There exists a positive integer N such that if X =
z»-XΊ, is any element of g, then Xv = 0 /or αiϊ y = (^, •••, v n ) e Z w

max^^n I vt I > ΛΓ.

PROOF. For ΐ = 1, •••, n, let P έ be the minimal polynomial of the
endomorphism ad Ht of g, and take a positive integer Nt such that
P / l / ^ f c ) Φ 0 for all Jfc e Z with | fc | > Nt. Then a desired integer N is
given by N = max iaί<^n JV̂ . Indeed, let X = Σvβz»-3Γy be any element of
g. Then

0 = P,(ad Ht)X = Σ P ^ l / ^ y J X , for every i = 1, ••-,%,
Z 7 1

where ^ is the i-th component of v. Thus

P^V^Λv^Xy = 0 for every i = 1, , n and every v = (yx, , v

Hence, if v — (v19 , vn) eZ", and if max l ί ;<ίw |vj > JV, so that |pj > Nt for
some i, then, since PXi/ — 1^) ^ 0, we have X,, = 0, as asserted, q.e.d.

LEMMA 2. // X = Σvez» X* is any element o/g, then Xv + X_v 6 g for
every v e Z \

PROOF. Let ΛΓ be a positive integer as in Lemma 1. For i — 0,
1, , Nf we define a polynomial P/ίc) by

Π( ),

Π(^ 2 + λ2) Π (χ2 +
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Consider first the case where v = 0. From Lemma 1 and the relations
+ ^ ^ λ ) = 0, λ = 1, , N, it follows that

P,(adfli) P0(adHn)X = Σ Pjy-lμά P0(V-lμn)Xμ = Po(O)nXo ,
μeZn

where μ = (μ19 , μn). Since P0(x) has real coefficients and P0(0) ^ O e Λ ,
we see that

χo == P0(0)-*P0(ad fΓO P0(ad Hn)XeQ .

Consider next the case where v — (v19 , v j Φ 0. If m a x l ί j i n |vj > N9

then, by Lemma 1, Xv + X_̂  = Oeg. Suppose that max^ 1 S n |v j ^ iV.
Without loss of generality, we may assume that vι Φ 0. For k = 1, , w,
write

-rr(fc) v-i -y î  -̂ -i y
-A — / i -Λ^ί/cJ ĵ "T" S i •**-(—ι>(k) ^μj ,

where v(k) = (v19 •••, v*). We show by induction on fc that X{k) Gg for
every & = 1, , n. For this, it is enough to prove the following two
assertions:

( i) X ( 1 ) eg;
(ii) If X(fc)Gg, then X(fe+1)Gg.
First we prove (i). From Lemma 1 and the relations P,Vl,(i/ —li^) =

P^i-V-ivJ and P^^V^Λx) = 0, λ = 0, , |v,\ - 1, \vγ\ + 1, , N9

it follows that

P M (ad HX)X = Σ n Pu^d/^l^JX,

= Σ P^ΛV^Λv^x^ + Σ P\Λ-VZIiv1)X^ltμ)
μeZn~ί ' μeZn~1

Since P|Vlι(ίc) has real coefficients and P i ^ / ^ ϊ v J ^ O e Λ , we see that

X(1) = P,Vl |(i/' : : :Ίv1)~1P|,1ι(adi?1)XGg ,

and the proof of (i) is complete.
Next we prove (ii). If vk+ι = 0, then, by an argument similar to the

case where v = 0 and the induction hypothesis,

X(fc+1) = P0(0ΓP0(ad Hk+l)X{k) e g .

Suppose that vk+1 Φ 0. Arguing as in the proof of (i), we see that

I TT \ V(k) p

and hence, by the induction hypothesis, that if we write as Y the right



BOUNDED REINHARDT DOMAINS 135

hand side of the above equality multiplied by P^k+1\(\/ — lvk+1)~\ then

Y = P,.Jb+1,(v^=ΊvA+1)-1Pll, jb+ll(ad Hk+1)X^ e Q .

Let H be the element of t(D) defined by

and let Q be the polynomial defined by

Q(a ) = a?2 +

From Lemma 1 and the relations

and

^ ( v / ^ ϊ d ^ - υi+1)) = Q(VΛ=Ί(-Σ vl + vk+1)) = 0

it follows that

Q(aάH)Y=

+ Σ .
μBZn-k-l

+ Σ,

+ Σ t
μeZn~k~1

= Q ί v Q ί i v ! + υ * + i ) ) ( Σ f c X(,<*+«,,, + Σ . t ^ ι l Λ )
\ \i=l // μeZn~k~1 μezn-k—l

Since Q(x) has real coefficients and since, by the assumptions vγ Φ 0 and

( ( ί )) ( g ) 0 e R ,

we see that

and the proof of (ii) is complete.
We have thus shown that X{k) eg for every k = 1, , n. In par-

ticular, X, + X_v = X(n) belongs to g. q.e.d.
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Note that {Xea\X = Xo}, {Xea\X= Xv + X_J (v Φ 0 eZ») are vector
subspaces of g. Lemma 2 asserts that g is the direct sum of these sub-
spaces.

The subalgebra t(D) is contained in {Xeq\X = XQ}. Under an addi-
tional assumption on g, they coincide:

LEMMA 3. If QΠ i/^ϊg = {0}, then t(D) coincides with {X e g | X = XQ}.

PROOF. If X is any element of g such that X = Xo, then X can be
written in the form X = Y + \Z~^ΪZ with Yet(D) and Zet(D). By as-
sumption, we get

Z = i / = ϊ ( Γ - X) e g n ^ ^ g = {0} ,

hence X = Y e t(Z>). q.e.d.

6. Automorphisms of n-dimensional Reinhardt domains with t — n.
In the study of automorphisms of bounded Reinhardt domains in Cn with
t = n, or bounded Reinhardt domains in (C*)n, it is more natural to include
the domains which are algebraically equivalent to such domains in our
consideration. In view of the observations in Section 2 concerning the
relations between Reinhardt domains and their logarithmic images, we
shall deal with Reinhardt domains in (C*)n whose logarithmic images have
the convex hulls containing no complete straight lines.

The purpose of this section is to prove the following:

THEOREM 2. If D is a Reinhardt domain in (C*)n whose logarithmic
image has the convex hull containing no complete straight lines, then
G{D) coincides with T(D).

Combining the above theorem with the corollary to Proposition 2 of
Section 4, we obtain the following consequence.

COROLLARY. If D is a Reinhardt domain in (C*)71 whose logarithmic
image has the convex hull containing no complete straight lines, then
Aut(JD) coincides with Autalg(D).

Before starting the proof of the theorem, we discuss an illustrative
example.

EXAMPLE. Let A(r) be the annulus defined in the example in Section
4. Then Theorem 2 and (11) show that

Aut(A(r)) = Autalg(A(r)) = {A(r)3z->aza eA(r)\ae U(ΐ), a = ±1} .

This is a classically known result on automorphisms of annuli.

We turn to the proof of Theorem 2. When n — 1, the assertion of
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the theorem is well-known. Henee we assume that n^2. It is enough
to prove that g(D) coincides with t{D). Suppose on the contrary that g(D)
does not coincide with t(D). Since g(D) is a finite-dimensional real sub-
algebra of Ϊ(JD) containing t(D)f and since Q(D)ΠV/ — lg(D) = {0}, the lemmas
of the preceding section apply to Q(D). By Lemmas 2 and 3, there exists
a non-zero element v of Zn such that

p : = {Xeg(Z))|X = X, + X.J Φ {0} .

Let 9> be an element of Autaig((C*)π) of the form (*) for which the i-th
component of vtA~1 e Zn is positive for i — \ and equal to 0 for i=2, , n,
where *A denotes the transpose of A. In view of (2) and the observations
in Section 2, by a change of coordinates φ\ (zlf , zn) -> (wu , wn), we
may assume that v = (vlf 0, , 0) and vx > 0. Moreover, by Lemma 1,
we can take v to be maximal in the sense that every element Y =•
Yμ + Y-μ 6 Q(D) with μ = (μx, 0, , 0) and ^ > v± is equal to 0. Write

g = t(D) + p .

Then g is a subalgebra of g(D). In fact, the following relations hold:
(a) [t(D),t(i))]ct(D);
(b) [t(D)f p]dp;
(c) [ftt)]ct(i?)

(a) is obvious. To show (b), it is enough to prove that (ad H^pczp for
every i = 1, , n. If X = Xv + X_y is any element of £, then

(14) (ad H<)X -= V^ΛvlX, - X_u) for every i = 1, , n ,

where ^ is the i-th component of v. By the definition of p, the right
hand side of (14) belongs to p, which proves our assertion. It remains
to show (c). If X and Y are any elements of p, and if we write Z —
[X, Y], then a straightforward computation yields that Z has the form
Z = Z2» + Zo + Z_2,. Since, by Lemma 2, Z2v + Z_2v e g(D), it follows from
the maximality of v that Z2v + Z_2v — 0, so that ^ = Zo. Therefore, by
Lemma 3, Zet(D), as desired. Note that {H2, •••, Hn}R is contained in
the center of g. Indeed, because of (14) and the fact that the subalgebra
t(D) is abelian, we have (adiJJg = (adiζ)t(Z)) + (s.άH^p = {0} for every
i = 2, •••,%.

Consider a connected Lie subgroup G of G(D) corresponding to g.
Since the center of G contains the subgroup T2(D) Tn(D) of T(D),
and since, by assumption, the logarithmic image of D has the convex
hull containing no complete straight lines, it follows from Lemma 2 of
Section 2 that if A is the Reinhardt domain in C* given as the image
of the domain D under the projection Cn B (zlf , zn) —> zx e C, then there
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exists a group homomorphism τ: G —> Aut(zf) between the groups G and
Aut(J) with ker τ = Γ2(Z?) . Tn(j?). The group Aut(J) has the structure
of a Lie group with respect to the compact-open topology, and it is
readily verified that τ: G —> Aut(z/) is a Lie group homomorphism. We
observe that

(15) dim Aut(Λ) ^ 2

and

(16) dim ker τ = dim Γ2(D) Tn(D) = n - l .

If we write J = a d v r 1 ^ , then (14) implies that Jpcp and J 2 = —id
on £. Consequently, the dimension of p is greater than or equal to 2.
Since the sum Q = t(D) + p is direct, we see that

(17) dimG = dimg = dimt(jD) + dimp ^ n + 2 .

On the other hand, since

dim G — dim ker τ = dim τ{G) ^ dim Aut(J) ,

it follows from (15) and (16) that

dim G ^ dim ker τ + dim Aut(J) ^ % — l + 2 = n + l .

This contradicts (17). We thus conclude that G(D) =

7. Automorphisms of two-dimensional Reinhardt domains with ί = 1.
The remainder or this paper is devoted to the determination of auto-
morphisms of bounded Reinhardt domains in C2 with t = 1.

Let D be a bounded Reinhardt domain in C2 with t = 1. Without
loss of generality, we may assume that D^{z1 — 0} Φ 0 . For simplicity,
we shall write G{D) = •(?, g(Z?) = g, etc. We begin by noting that D is
inhomogeneous. Indeed, otherwise, D is holomorphically equivalent to
the ball {(z19 z2) eC2\ | ^ | 2 + |z2 |

2 < 1} or the polydisk {(z19 z2)eC2\\z1\<lt

\z2\ < 1} (see E. Cartan [3]), so that D is homeomorphic to a cell. But
it is readily verified that Hλ(Df R) Φ 0 when DΓ){z2 = 0} = 0, while
HΆ(D, R) Φ 0 when ΰ ί l f e = 0 } ^ 0 . Hence D is inhomogeneous. Fix
any point o = (0, b) (b Φ 0) of Dn{z1 = 0} and let ikf be the G-orbit of o.

LEMMA 1. The dimension of M is equal to either 1 or 3.

PROOF. The fact that M contains the one-dimensional torus Πo implies
that dim M 2^1. Since D is inhomogeneous, it follows (see Section 1)
that each G-orbit has dimension less than or equal to 3, so that dimikf ^ 3 .
To complete the proof of the lemma, it suffices to prove that dimΛf=^2.
Suppose on the contrary that dim M — 2. Note first that, for each point
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z of D*, the dimension of the G-orbit G z of z is greater than or equal
to 2, and the equality holds precisely when G-z coincides with Πz. Now,
if ikffΊ-D* Φ 0, say zeMf)D*, then, by what we have noted above,
M = G'Z = ΠzczD*. Since this contradicts the assumption that M con-
tains the point o e ΰ - ΰ * , it follows that MaD — D*, and therefore
that M is a connected open subset of J9flfe = 0}. As a consequence, M
is a complex submanifold of D. The fact that M is the union of T-
orbits implies that

M = { ( 0 , z2)eC2\r< \z2\ < R)

for some constants r and R with 0 ^ r < i 2 < o o > so that M is holomor-
phically equivalent to an annulus or a punctured disk. Since every
element of G induces an automorphism of the complex manifold M, this
contradicts the fact that G acts transitively on M. q.e.d.

Let K be the isotropy subgroup of G at the point o and let p: K-+
GL(T0D) be the linear isotropy representation. Then K contains the
one-dimensional torus Tlf so that dimK^ 1, and M can be expressed as
the homogeneous space M — G/K.

LEMMA 2. The dimension of K is equal to 1, and consequently the
identity component of K coincides with TΊ

PROOF. Since p is faithful, it suffices to prove that dim p(K) — 1.
Since K is compact and has dimension greater than or equal to 1, the
identity component p(K)° of p(K) is a connected compact subgroup of
GL(T0D)~GL(21 C) and has dimension greater than or equal to 1. Therefore
ρ(K)° is isomorphic to 17(1), (U(l)f, SU(2) or U(2). Note that p(K)9

hence p(K)°, leaves the subspace T0M of T0D stable, and that, by the
above lemma, the dimension of T0M is equal to either 1 or 3. If p{K)°
is isomorphic to SU(2) or £7(2), then it acts irreducibly on T0D. This
contradicts what we have noted above. Suppose that p(K)° is isomorphic
to (C7(l))2. Then p(K)° contains the canonical complex structure of T0D.
Indeed, when GL(T0D) is viewed as GL(2, C), we see that p(K)° is con-
jugate to the subgroup

0

0
€ GL(2, C) a,, a2 e 17(1)

which contains the complex structure. Consequently every proper p(K)Ό-
stable subspace of T0D is of dimension 2. Again, this contradicts what
we have noted above. We thus conclude that p(K)° is isomorphic to
Z7(l), so that dimp(K) = d i m ^ i ί ) 0 = dim 17(1) = 1. q.e.d.
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We now look into the group G according to the dimension of M.

PROPOSITION 1. If dim M= 1, then G coincides with T.

PROOF. It follows from Lemma 2 and the assumption dim M = 1 that
dimG = dimM + dimK — Ί — dim T. Since G is connected, we see that
G coincides with T. q.e.d.

PROPOSITION 2. If dimilf = 3, then the dimension of G is equal to
4. Moreover, the center $ of g is a one-dimensional subalgebra of t which
does not coincide with tx.

PROOF. By the same argument as in the proof of the above prop-
osition, we have dimG = 4, which proves the first assertion.

To prove the second assertion, we begin with preliminary observa-
tions. Since the subspace T0M of T0D is p( Testable and of dimension
3, it follows that T0M has the form

T0M = T0P + T0Π0 (direct sum)

for the complex submanifold P — {(z19 z2) eD\z2 = b] of D and the one-
dimensional torus Πo = {(0, ab)eD\ae 17(1)} in D. Let q:G-*M be the
orbit map defined by q(g) = g-o. Note that, by Lemma 2, the kernel of
the differential (dq)e: Q -> T0M of q at the unit element e of G coincides
with tx. If we write Q' = (dq)~\T0P)9 then g' is a three-dimensional
subspace of g containing t1# Moreover, Q' is Ad^J-stable, where Ad
denotes the adjoint representation of G. Indeed, since (dq)eAd(a) = p(a)(dq)e

for all aeTxc:K, the fact that T0P is p(ΓJ-stable implies that g' is
Ad(Γi)-stable. Since Tx is compact, so that Ad(Ti) is compact, we can
find an Ad( TJ-stable subspace p of g' complementary to tx. It follows that
[tlf p]ap. Also, Ad(Γi) acts as SO(2) on the two-dimensional subspace p,
and consequently there exists an element Hx of tx such that, on the
subspace p, the endomorphism ad Hi belongs to Ad(Γx) and

(18) (adi ί , ) 2 - - i d .

By the definition of the subspace p, we have the following direct sum
decomposition of g:

(19) g = t + p .

Turning to the proof of the second assertion, let Z be any element
of 3 and write Z= X + Y, where X e t and Yep. It follows that 0 =
(ad Hλ)Z = (ad HX)X + (ad Hx) Y = (ad H,) Y. This and (18) imply that Y = 0,
so that Z = Xeί . Thus j is contained in t. Further, g is at most one-
dimensional and does not coincide with tly since, by the existence of the
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element H19 we have jΓI^ = {0}. In view of (19) and these facts, to
prove the second assertion, it suffices to prove that there exists a non-
zero element H of t such that [H, p] = {0}. If [i2, p] = {0}, then the above
assertion is obvious. Hence we assume that [t2, p] Φ {0}. We prove our
assertion in several steps.

We show that [t2, p]czp and [p, p]at. Since Ad(7\) acts trivially on
t, while it acts as SO(2) on p, there exists an element s of Ad(Γi) such
that

s(X + Y) = X-Y for Xet and Yep.

Clearly s is a Lie algebra involution of Q and the eigenspaces for the
eigenvalues 1 and — 1 of s are given by t and p, respectively. If Xet2

and Yep, then

s([X,Y]) - [s(X), 8(Y)] = [X, - Π = ~[X,F] ,

which proves [t2, t>]c£. If Xep and Ye£, then

s([X,Y]) = [s(X), 8(Γ)] - [-X, - Γ] = [X,Γ] ,

which proves [p, p]ct. Note that the triple (g, t, s) is a symmetric Lie
algebra (cf. Kobayashi and Nomizu [5, II, Chapter XI]).

The relation [t2, p]ap implies that if Xet2, then adX induces an
endomorphism of p. We show that there exists an element H2 of t2 such
that, on the subspace p, the endomorphism ad H2 coincides with an
endomorphism Ad(α0) for some element a0 of Tx. Take a non-zero element
X of t2. If a is any element of T19 then we have

Ad(α)[X,F] = [Ad(α)X, Ad(α)Γ] = [X, Ad(α)Y] for all Yep.

This means that the restriction of ad X to p commutes with the action
of Ad(ΓJ on ί>. Since AάiTJ acts as SO(2) on p, it follows that, on the
subspace p, the endomorphism ad X coincides with an endomorphism
c Ad(α0) for an element a0 of Γx and a non-negative constant c. By the
assumption [t2, p] Φ {0}, the constant c is not equal to 0. Putting H2 =
c""xX, we obtain a desired element.

We show that [p, p] Φ {0}. Suppose [p, p] = {0}. Let J denote the
canonical complex structure of D and «7Z the value of J at a point zβ D.
If u is a non-zero element of T0P, then Γ0P = {u, Jou}R. Take elements
X and 7 of )) for which (dq)e(X) = W and (dg)e(Γ) == e/0̂ » and define a
mapping f:C—*D by

/(£ + V7-1!7?) = ^(βxpίXexp97F) for f 6 R and ηeR ,

where exp denotes the exponential mapping of g into G. Then / is
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holomorphic on C. To prove this, let / denote the canonical complex
structure of C and Iζ the value of / at a point ζ e C Note first that

(20) (df\I0 = J0(df\

This is a consequence of the relations (df)Q((d/dξ)Q) = u, (df\((d/dη\) = Jou
and /0((3/3f)0) = (d/dη)0, where (3/3|)o__and (d/dη\ are the values of d/dξ and
3/3)7 a t ° Now, let ζ0 = ς0 + l/^T^o (?o> Vo £ /?) be any point of C. Since
the assumption [p} p] = {0} implies that [X, Y] = 0, and hence that
expfXexp)?F= expvjYexpξX for all £e i ί and all ηeR, we see that if
9>eAut(D) and ^eAut(C) are defined to be φ(z) = (exp ξ0Xexpη0Y)>z
and ψ(ζ) = ζ — ζ0, then / can be written in the form / = φfψ9 and
therefore

It follows from this relation and (20) that

= (dφ)0J0(dfUdf)ζQ = Jf

so that / is holomorphic on C. Since / is obviously non-constant, this
contradicts the boundedness of D. We thus conclude that [p, p] Φ {0}.

We show that (adiϊ2)
2 = — id on p. Let X be any element of p.

Since [ft p]at and adiJ2 = Ad(α0) e Ad(Tx) on p, it follows that

[X,F] - Aά(aQ)[X,Y] = [Ad(αo)X, Ad(αo)Γ] = [[H2, X], [ίί2,Γ]]

- [[[Hv XI H2],Y] + [H» [[H2, X],Y]]

= -[[H2, [H2, X]],Y] = ~[(aάH2γX,Y]

for every Yep, so that [(ad£Γ2)
2X+ X,Y] = 0 for every Γeft Since p

is two-dimensional and [p, p] Φ {0}, we see that (adiϊ2)
2X+ X = 0, which

proves our assertion.
We now prove that there exists a non-zero element H of t such that

[iί, t>] = {0}. We have seen that there exist an element Hι of tx and an
element H2 of t2 such that, on the subspace p, both endomorphisms adiϊj
and adif2 belong to Ad(Γ1)-SO(2) and (ad H,f = (adH2)

2 = -id. It is
readily verified that ad .2?!= ±(adJH"2) on p. Changing the sign of H2

suitably, we may assume that ad H1 = ad H2 on p. Then we have
(ad(i?x — H2))p = {0}. Since Hx — H2 Φ 0 et, a desired element i ί is given
by H = Ή - H2. q.e.d.

8. Automorphisms of two-dimensional Reinhardt domains with t — 1
(continued). To each bounded domain D, there is associated the constant
h = min,eZ)dim G(D) z, the minimal dimension of the orbits G(D) z for
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zeD. Note that if φ: D-> Dr is a biholomorphie mapping between two
bounded domains D and D' in Cn, then, since φG{D)φ~~ι = G(D'), we have

(21) dim G(D') φ{z) = dim φ{G{D) z) = dim G(D) z

for every zeD. As a consequence, the constant h is a biholomorphie
invariant.

We begin with a result concerning the invariant h.

THEOREM 3. If D is a bounded Reinhardt domain in C2 with t = 1,
then the invariant h is equal to either 1 or 3.

PROOF, t — 1 implies that dimG(jD) 2 ^ dim/7z ^ 1 for every zeD,
so that h ^ 1. Since JD is inhomogeneous, it follows (see Section 1) that
if we select any point z of D, then dim G(D) z ^ 3, so that h ^ 3. To
complete the proof of the theorem, it suffices to prove that h Φ 2.
Suppose on the contrary that h — 2. Then there exists a point zQ of D
such that dim G(D) z0 = 2. We see that zoeD*, since, for each point z
of D — Z)*, the dimension of the G(D)-orbit of z is equal to either 1 or
3 by Lemma 1 of Section 7. It follows from the relation dimG(D) 20 =
2 = dim ΠZQ that

(22) o

We show that Aut(D) = Autaig(jD). If φ is any element of Aut(D),
then, by (21) applied to φ, we have άimG(D)-φ(z0) = dimG(-D) 20 = 2, and
therefore, by the same argument as above, G(D)-φ(z0) = Πφ(βQ). Since
φG(D)φ~1 = G(D), it follows from (22) and this relation that

φ(ΠZQ) = φ(G(D) ZQ) = G(D)«p(z0) = Πφ{ZQ) .

Since zoeD*, Proposition 1 of Section 3 shows that φ is induced by an
algebraic automorphism of (C*)2, so that Aut(D) = Autalg(Z>).

Consequently, the identity component of Autaig(D) coincides with G(D).
On the other hand, because of our observations in Section 2, the identity
component of Autaig(D) is given by T(D). We thus conclude that G(D) =
T(D), so that t = h = 2, a contradiction. q.e.d.

THEOREM 4. If D is a bounded Reinhardt domain in C2 with t = 1
and h = 1, then G(D) coincides with T(D).

PROOF. By the assumption h = 1, there exists a point o of Z) such
that dim G(D)-o = 1. It is obvious that oeD — D*. Without loss of
generality, we may assume that o e ΰ n f e = 0}. G(Z?) coincides with
T(D) by Proposition 1 of Section 7 applied to the orbit ikf: = G(D)-o.

q.e.d.
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Combining the above theorem with the corollary to Proposition 2 of
Section 4, we obtain the following consequence.

COROLLARY. If D is a bounded Reinhardt domain in C2 with t = 1
and h = 1, then Aut(D) coincides with Aut&lg(D).

Consider the case where h = 3. Let D be a bounded Reinhardt domain
in C2 with t = 1 and h = 3. As in the preceding section, we assume that
DO {Zi = 0} Φ 0 and fix a point o = (0, 6) (6 Φ 0) of Z>ιΊfe = 0}. In what
follows, we use the notation of the preceding section. Note first that
dimG z = 3 for every zeD. In particular, we have dimG o = 3. Now,
applying Proposition 2 of Section 7 to the orbit M:= G o, we see that
the center of g is a one-dimensional subalgebra of t which does not
coincide with tlβ This implies that the identity component Z of the
center of G is a one-dimensional subtorus of T which does not coincide
with T19 so that we may write

(23) Z={(a\aι)eT\aeU(l)} ,

where k and I are relatively prime integers and I is positive.
Let φ be any element of G. In terms of the coordinates in C2,

write φ(z19 z2) = (φ^z^ z2), φ2(z19 z2)), where φ1 and φ2 are holomorphic
functions on D. Since 97 commutes with every element of Z, the functions
φ1 and <p2 satisfy

φ2{a%, aιz2) = aιφ2(zlf z2) ,

for every a e Z7(l) and every (zlf z2) €Z). For ΐ = 1, 2, let

(25)

be the Laurent expansion of <pt. Note that, since DV\{z1 = 0} ̂  0 , we
have αjί^) = α(

(^,2) = 0 for every (vx, v2)eZ2 with ^ < 0. Substituting
(25) into (24) and applying the uniqueness assertion of the theorem of
Section 2, we get

π ( i ) xyfe^+i^ — Λ ( D ryk

α(Vl)V2)α — a{VlfVί)a ,

for every α e Z7(l) and every (v19 v2) e Z 2 .
Using the above observation, we prove the following lemma.

LEMMA 1. The integer I is equal to 1. Moreover, if Df]{z2 = 0} Φ 0 ,
then k is also equal to 1.

PROOF. Since dim G o = 3, the orbit G o contains a point a = (alf a2)
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of D for which ax Φ 0. Take an element φ of G which maps the point
0 onto the point a and, in terms of the coordinates in C2, write
φ(z19 z2) = {φx{zlf z2), φ2(z19 z2)), where φ1 and φ2 a re holomorphic functions

on D. By the observation above to φ, the coefficients of the Laurent
expansions of <pλ and φ2 satisfy (26). Now the function z2->φι(§> z2) is not
identically 0, because 9 (̂0, b) = ax Φ 0. Therefore there exists an integer
v2 such that αjί^, Φ 0. It follows from (26) that aι"2~k = 1 for every
a e U(l)f so that lv2 — k. Since the integers k and ϊ are relatively prime
and I is positive, we see that I = 1. To prove the second assertion,
suppose that DΓ\{z2 = 0} Φ 0 and select a point o' of DlΊfe = 0}. Since
dimG o' = 3, the orbit G-o' contains a point a! = (αj, αj) of JD for which
αg ̂  0. Taking an element ψ of G which maps the point o' onto the
point a! and repeating an argument similar to the above, we have kvγ —
1 = 1 for some integer vx. Since the assumption DΓ\{z1 = 0} Φ 0 implies
that vι ^ 0, it follows that k = 1. q.e.d.

We now look into the group G according as D Π {z2 = 0} is empty or
not.

Consider first the case where Df){z2 = 0}= 0. Let ψ be the algebraic
automorphism of (C*)2 defined by

ψ{zly z2) = {z&h, z2) ,

where k is the integer given in (23). Then ψ induces an automorphism
of CxC*, and, by Lemma 1, we have ψZψ~x — T2. Therefore, replacing
D by ψ(D), we may assume that Z = Γ2. Note that ψ(D) is not neces-
sarily bounded. But, in view of the observations in Section 2, the
logarithmic image of ψ(D) has the convex hull containing no complete
straight lines. Further, ψ(D) is bounded in the ^-direction, that is, ψ(D)
is contained in a set {(z19 z2) eC2\\z2\ < M} for some constant M. Note
also that ψ(0y z2) = (0, z2) implies that ψ(D) Π {zx = 0} is not empty and
contains the point o.

Since the center of G contains the subgroup T2 of T, and since the
logarithmic image of D has the convex hull containing no complete straight
lines, Lemma 2 of Section 2 shows that if Δ is the Reinhardt domain in
C containing the origin given as the image of the domain D under the
projection p: C2 3 (zlf z2) —>zίeC, then, to each element φ of G, there
correspond an automorphism τ(φ) of Δ and a holomorphic mapping Ύ(φ)
of Δ into C* for which φ has the form

φ\ D 3 (zlf z2) -* (w19 w2)eD ,

w2 =
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and the map r: G-* Aut(zf) is a group homomorphism with kerτ = T2.
Applying, if necessary, a change of coordinates (zlf z2)-+(rz19 z2) for some
positive constant r, we may assume that Δ is the unit disk B1 or the
complex plane C. The group Aut(J) has the structure of a Lie group
with respect to the compact-open topology, and it is readily verified that
r is a Lie group homomorphism. Since dim τ(G) — dim G — dim ker τ =
dim G - dim T2 = 4 - 1 = 3, it follows that τ(G) = AutCBJ when A = Blf

while τ(G) = Z7(1) C when Δ — C9 where C/(1) C denotes the group of all
complex affine transformations of C whose linear parts belong to 17(1).
As a consequence, the center Cent G of G itself coincides with T2. Indeed,
τ(Cent (?) is contained in the center of τ(G), which reduces to the identity
element, so Cent Gc kerτ = T2.

We examine the structure of the domain D. First we define a real-
analytic homeomorphism c of Δ into τ(G) as follows: In each of the cases
Δ — Bx and Δ — C, there exists a Lie subgroup K of τ(G) which acts
freely and transitively on Δ. The mapping c associates to each point zλ

of A the element / of K such that /(0) = zt. Next we define a real-
valued function s on G by s(φ) = \Ύ(φ)(Q)\. Since the mapping Gsφ^

φ(p) = <p(0, b) = (τ(φ){0), Ύ(φ)(0)b) e D is real-analytic and 7(φ)(0) ^ 0 , the
function s is real-analytic, while it is invariant under the right action
of T2 on G. Therefore s defines a real-analytic function on τ(G) = G/T2»
which we denote also by s. Now consider the projection p: D—> Δ. We
observe that

p-\0) = {(0, z2) e σ I r, < | ̂ 21 < Λif i e /}

for some constants r€, Rif is I, such that 0 ^ r< < i?ί < °o, i e / , and

{r, < |22| < iJJn{r4, < |22 | < Rv) = 0

if iΦi'f where / is a non-empty, at most countable index set. It is
readily verified that, for each point zx of Δ, the set p~~\z^ is given by

< \z2\ < sofa^R* iel} ,

hence D = U i e/A (disjoint union), where Z^, i e / , are the domains in
C2 defined by

A = ί(*i, z*) e C21 ^ G 4 βoffoto < | ̂  | < β o ^ j β j , i e / .

Since D is connected, / must consist of only one element. Hence, if we
write r — r4 and R = Rif then D has the form

D = {(zlf z2) eC2\zxeΔ, soc{z^r < \z2\ < s°t(zύR} .

By a change of coordinates (z19 z2) —> (^, R'1z2)9 we may assume that R — 1.
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Write iϊfo) = so^(^). Then the positive-valued function R(zύ on Δ is
real-analytic, and satisfies the condition that jβ(θ) = 1 and

(27) R(τ(φ)(zd) = \"t(φ)(zύ\R(zd f o r every φeG and every zx e Δ .

Hence we have

(28) ΛGzsJ = JB(^) for every a e £7(1) and every z, e Δ .

To proceed further, it is necessary to discuss the cases of Δ = Bx

and Δ — C separately.

When Δ = Blt following Thullen [8], we can show that D has the
form

D = {(*„ z2) e σ 11 Zl | < 1, r(l - | z1 \ψ2 < \ z21< (1 - | zx |
2)p/2}

for a non-negative constant p, and then G consists of all transformations
of the form

D9 (zlf z2) -> (wu w2)eD ,

where a, Ύ e 17(1) and βeB^
Suppose that Δ = C. We first determine the domain Zλ Let φ be

any element of G. Then we have τ(φ)eτ(G) =U(1)-C. If we write
7(9>)(2i) = ccz1 + /S, where α 6 £7(1) and /S e C, then <p has the form

9>: D3 (z19 z2) -> (wlf w2)eD ,

(29) J ^ - azx + β ,

and (27) applied to φ means that

(30) R{az1 + β) = |7(^)(^) I βfe) for every sx e J .

Hence we see that the function Iogi2(^) on Δ satisfies the functional
equation

logRiaz, + β) = log|7(9>)ω| + logjBfe) .

To derive a differential equation logRfa) satisfies, apply the Laplacian
L = δ2/dxl + d2/dyt on Δ to both sides of the above equation, where zx —
x1 + V~=Λyx (xlf y1eB). Then we get

(31) LilogRXaz, + β) = L(logi2)fe) ,

because log | Ί(φ){z^) \ is a harmonic function on Δ and the differential
operator L is invariant under £7(1) C The fact that τ(G) = U(l)-C implies
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that (31) holds for every ae E7(l) and every βeC. Hence, fixing ^ e J
and putting a — 1, we find that L(log R)(z1 + β) = L(log R)(z^ for every
/5eC, which leads to the differential equation

(32) LQogRXzJ = const.

in A. By (28), the function logjβfo) is invariant under 17(1). Consequent-
ly, in terms of polar coordinates zx = p exp(i/ — lθ), we have log R(zJ = Q(p)
for some real-analytic function Q on R, and (32) becomes

(33) L(Q)(p) = d2Q(p)/dp2 + p'xdQ(ρ)ldp = const.

Note that Q(0) = log i2(0) = 0. Let Q(ρ) = ΣΓ=i α^" be the Taylor ex-
pansion of Q. Substituting this into the differential equation (33), we
get

oo

Σ v2avp*~2 — const.

Therefore we see that αv Φ 0 only if v = 2, so that Q(/o) = cp2 for some
real constant c. In view of the definition of Q(p)9 this implies that

) = c\zy\
2, or R(zλ) = exp(c|^|2), and we conclude that D has the

form

D = {(*,, 2;2) e C21 r exp(c | z, | 2 ) < | ̂ 21< exp(c | zx |
2)} .

Since D must be holomorphically equivalent to a bounded domain, it is
necessary that c=£θ. Conversely, each domain of the above form with
is algebraically equivalent to a bounded domain under the transformation
(zlf z2) —> (ZjZζ, zi), where a = 1 when c < 0 and a = — 1 when c > 0. In
our situation, D is bounded in the ^-direction, so c < 0. By a change
of coordinates (zlf z2)—>(\/ — czlf z2)9 we may assume that c — —1.

We now determine the group G. If we write any element φ of G
in the form (29), then, by (30),

Since R(zt) = exp(— I2J2), it follows from this relation that

where Rec denotes the real part of a complex number c. Therefore the
function Ί(φ)(z^) has the form

y(ψ)(ti) = 7 e x p { - ( 2 α ^ + \β\2)}

for some element 7 of £7(1), and we conclude that G consists of all trans-
formations of the form
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D 3 (zlf Z2) -> (wίf W2)eD ,

(w± = az, + β ,

\w2 = 7 [ e x p { - ( 2 α ^ + \β\2)}]z2 ,

where a, Ί e U(l) and βeC.
Consider next the case where D Π {z2 = 0} Φ 0 . To determine the

group G, we show first that every element of G is induced by a complex
linear transformation of C2. Let φ be any element of G. In terms of
the coordinates in C2, write <p(zlf z2) = (?>i(«i, £2)> Ά-fo, ^))> where φ1 and
<p2 are holomorphic functions on D. Apply the observation before Lemma
1 to φ. Then, because of Lemma 1, we see that, for k — I = 1, the
coefficients of the Laurent expansions of φx and φ2 satisfy (26). Thus,
if a{i\tV2) Φ 0, then vx + v2 = 1. On the other hand, since DΠ{z1 = 0} Φ 0
and ί ) n f e = 0} Φ 0 , we get vλ ^ 0 and v2 ^ 0 if α^fV2, ^ 0. Therefore
we have all^ Φ 0 only if (vlf v2) = (1, 0) or (vlf v2) ~— (0, 1), so that ψ is
induced by a complex linear transformation of C2.

It follows from what we have shown above that G coincides with the
identity component of GL(D). Proposition 2 of Section 3 shows that, by
a change of coordinates (zlf z2) —> {χxzx, r2z2) for some positive constants
r± and r29 the group G is contained in Z7(2). Since dim G = 4 = dim £7(2),
we see that G coincides with Z7(2). As a consequence, we have
Cent G = Z= {(α, α) e Γ | α e 17(1)}.

In view of the connectedness of D, the fact that G = Z7(2) implies
that D has the form

D = { ( ^ ^ 2 ) G C 2 | r < | ^ | 2 + | ^ | 2 < i 2 }

for some constants r and R with 0 ^ r < J ? < o o . By a change of coor-
dinates (z19 z2) —> (R~1/2zlf R~ι/2z2), we may assume that R = 1, and then G
still coincides with Ϊ7(2).

Summarizing our results, we obtain the following theorem.

THEOREM 5. Every bounded Reίnhardt domain in C2 with t — 1 and
h = 3is algebraically equivalent to one of the domains listed in (i)-(iii) below.

(ii) {(«„
(iii) { fe^

Further, for the domains D above, the groups G(D) are given as follows:
For a domain D of type (i), G(D) consists of all transformations of

the form
D 9 (zlf z2) -> {wly w2)eD ,

(w, = a(z, + β)(l + βz,)-1 ,
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where a, 7 6 U(l) and βeBλ.
For a domain D of type (ii), G(D) consists of all transformations of

the form

D 9 (z19 z2) -> (w19 w2)eD ,

(w, = az, + β 9

\w2 = τ[exp{-(2α^1 + \β\2)}]z2 ,

where a, Ύ e U(l) and β e C.
For a domain D of type (iii), G(D) coincides with 17(2).

COROLLARY. Lei D be a bounded Reinhardt domain in C2 with ί = 1
cmeZ A = 3. If D is a domain of type (i) with p = 0 αwcϊ r ^ 0, ίfcew
Aut(I>) = G(#)U^G(D), ^/terβ θ: D3 (z19 z2)-+ (z19 rz2

ι) eD. If D is not
holomorphically equivalent to any such domain, then Aut(D) = G(D).

This is an immediate consequence of the above theorem, the corollary
to Proposition 2 of Section 4 and the following proposition.

PROPOSITION. For the domains D of types (i)-(iii) defined in Theorem
5, the groups Autaig(D) are given as follows:

If D is a domain of type (i), then Autalg(Z7) = T(D) when p Φ 0 or
p = 0 and r = 0, while Autalg(Z)) = T(D)\JΘT(D) when p = 0 αwcZ r =£ 0,
where θ is as in the corollary above.

If D is a domain of type (ii), then Autaig(D) = T{D).
If D is a domain of type (iii), then Autalg(jD) = T(D)\JσT(D), where

σ:DB (zl9 z2) -* (z2, zλ) e D.

To prove the proposition, we begin with two lemmas. The proof of
Lemma 2 below is straightforward, and is omitted.

LEMMA 2. Let D be a Reinhardt domain in C2 and let <p: D 3 (z19 z2)—>
(wί9 w2)eDbe an element of Autalg(D). If DΓ){zί = O}Φ0 and ΰ ί l f e = 0} =
0 , then φ has the form

(34) \Wί = ™* '
[w2 = a2z2 ,

where beZ,d= ±1 and (αlf a2) e (C*)2. If DΠ fe = 0}^ 0 and £>n{^=0}^ 0 ,
then φ has the form

(35)
[W2 = OL2Zτ{2) ,

where τ is a permutation of {1, 2} and (aί9 a2) e (C*)2.

LEMMA 3. Lei D be a Reinhardt domain in C2 such that
0} Φ 0 αw<2 DίΊ{z2 = 0} = 0 , that DΓi{z1 = 0} is bounded, and that, for
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every ceΔ, the set Df]{z2 = c} is bounded, where Δ is the domain in C
given as the image of the domain D under the projection C2 3 (zlt z2) —*
z2 eC. If φ is an element of Autaig(2?) written in the form (34), and if
d = l, then φe T(D).

PROOF. It suffices to prove that 6 = 0 and lαj = \a2\ — 1. If we
write DQ = {z2eC\(0, z2)eD}, then, by assumption, DQ is a bounded open
subset of C. Since the restriction φ\ Df]{z1 = 0} ->DΠ{z1 = 0} induces an
automorphism Do3 z2 -> a2z2 eDQ of Do, it follows that \a2\ = 1. If, for
every ceJ, we write Dc = {^eClfe, c)eZ)}, then, by assumption, Dc is
a bounded open subset of C. Since the relation | a21 = 1 implies that the
restriction φ: DΠ {z2 = c} —> DΠ {z2 — a2c} induces an automorphism Dc 3 zx—»
aίc

bz1eDc of Z)c, it follows that lα^l = 1. Since this holds for every
ceΔ, we see that 6 — 0 and | α j = 1. q.e.d.

Turning to the proof of the proposition, let D be as in the proposition.
Suppose first that D is of type (i) with pΦθy of type (i) withp = 0

and r — 0, or of type (ii). We observe that D satisfies the conditions
of Lemma 3. Let φ be any element of Autaig(Z)). By Lemma 2, ψ has
the form (34). Since, for every ε > 0, there exists a point (zlf z2) of D
such that \z2\ < ε, it follows that d = l, and hence, by Lemma 3, φ e T(D),
so that Autalg(D) = T(D).

Suppose next that D is of type (i) with p = 0 and rΦO. We observe that
D satisfies the conditions of Lemma 3. Let φ be any element of Autalg(Z>).
By Lemma 2, φ has the form (34). If d — 1, then, by Lemma 3, φ 6 T(D).
Assume that d = —1. If we write Δ — {z2eC\r < \z2\ < 1}, then the
restriction φ:Df\{zλ = 0}-*Dp\{z1 = 0} induces an automorphism Δ3z2-+
a^eΔ of the annulus Δ. This implies that \a2\ = r. Since, for every
c 6 Δ, the restriction φ:D^{z2 — c} -> D f] {z2=a^1} induces an automorphism
B13z1-+a1c

bz1GB1 of the unit disk B19 and therefore | ̂ ^ 1 = 1, it follows
that 6 = 0 and 1̂ 1 = 1. We thus conclude that Autalg(Z>) = T(D)\JΘT(D).

Suppose finally that D is of type (iii). We observe that Df){z1 = 0}Φ
0 and DPi{z2 — 0} Φ 0 . Let ψ be any element of AutaigCD). By Lemma
2, φ has the form (35). If r = id, then it follows from the boundedness
of D that φ e T(D). If τ Φ id, then the consideration of σφ yields that
φeσT(D), where σ is as in the proposition. We thus conclude that
Autαig(-D) = T(D)\JσT(D), and the proof of the proposition is complete.
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