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Introduction. A domain in C” stable under rotations in the coordinate
axis is called a Reinhardt domain. The equivalence problem for bounded
Reinhardt domains containing the origin was solved by Sunada [7]. In
that paper, he also determined automorphisms of such domains.

In this paper, we shall give an answer to the equivalence problem
for general bounded Reinhardt domains. Further, we try to determine
automorphisms of a certain class of bounded Reinhardt domains not
containing the origin.

To each Reinhardt domain DcC®, there is associated an integer ¢
between 0 and n such that the value » — ¢ measures, in a sense, how
many zero coordinates D contains (see Section 2). For example, D con-
tains the origin precisely when ¢t =0, while D is contained in (C*)
precisely when ¢ = n. We shall deal with this extreme case ¢ = n as
well as the simplest intermediate case in which n =2 and ¢t = 1.

This paper is organized as follows. In Section 1, we collect notation,
terminology and basic results on bounded domains. In Sections 2 and 3,
we discuss basic concepts and results on Reinhardt domains. Section 4
deals with the equivalence problem for bounded Reinhardt domains. In
Section 5, we study the structure of a certain class of subalgebras of
the Lie algebra consisting of all holomorphic vector fields on an =n-
dimensional Reinhardt domain with ¢ = ». The result is used in Section
6 for determining automorphisms of #n-dimensional bounded Reinhardt
domains with ¢ = n. Sections 7 and 8 are devoted to the determination
of automorphisms of two-dimensional bounded Reinhardt domains with
t=1.

Closely related results have been obtained by Bedford [2] and Barrett
[1]. Their approach is analytic, while our approach is group-theoretic.

The author would like to thank Professor Sunada who introduced
him to the study of automorphisms and equivalence of bounded Reinhardt
domains not containing the origin.
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1. Preliminaries. In this section, we collect notation, terminology
and basic results on bounded domains needed later.

The set of non-zero complex numbers is denoted by C*. For a subset
E of C*, write E* = EN(C*)". As usual, U(n) denotes the unitary group
of degree n. In particular, U(l) denotes the multiplicative group of
complex numbers of absolute value 1. If EF = {---} is a subset of a
vector space V over a field F, the linear subspace of V spanned by FE is
denoted by Er = {---}r.

If M is a differentiable manifold and p is a point of M, the tangent
space to M at p is denoted by T,M. If f: M— M’ is a differentiable
mapping between two differentiable manifolds M and M’ and p is a
point of M, the differential of f at p is denoted by (df),.

An automorphism of a complex manifold M means a biholomorphic
mapping of M onto itself. The group of all automorphisms of M is
denoted by Aut(M). A complex manifold M is said to be homogeneous
if Aut(M) acts transitively on M. Two complex manifolds are said to
be holomorphically equivalent if there is a biholomorphic mapping between
them.

We now recall basic results on bounded domains.

If D is a bounded domain in C*, then Aut(D) has the structure of
a Lie group with respect to the compact-open topology and acts as a
Lie transformation group on D. Moreover, if z is any point of D, then
the isotropy subgroup Aut(D), = {p € Aut(D)|p(z) = z} of Aut(D) at z is
compact, and its isotropy representation Aut(D),> ¢ — (de), e GL(T,D) is
faithful, where GL(T,D) denotes the group of all complex linear trans-
formations of T,D viewed as a complex vector space in a canonical
manner. The identity component of Aut(D) is denoted by G(D). For
each point 2z of D, the G(D)-orbit G(D)-z = {g-z|g € G(D)} of z is a sub-
manifold of D.

To each bounded domain D in C®, there is associated a Hermitian
metric on D which is called the Bergman metric. If ¢: D— D’ is a
biholomorphic mapping between two bounded domains D and D’ in C",
then @ is an isometry with respect to the Bergman metrics of D and
D’'. In particular, the Bergman metric of a bounded domain D in C" is
invariant under Aut(D). As a consequence, if dim G(D)-z = 2n for a
point z of D, then D is homogeneous. Indeed, the condition dim G(D)-z =
2n implies that G(D)-z is an open submanifold of D. Since G(D) is a
group of isometries of D with respect to the Bergman metric, Kobayashi
and Nomizu [5, I, Corollary 4.8] shows that G(D)-z coincides with D, and
hence D is homogeneous.
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For a domain D in C", we denote by X(D) the complex Lie algebra
of all holomorphic vector fields on D with the Poisson bracket. If D is
bounded, then the set of all complete holomorphic vector fields on D is
a finite-dimensional real subalgebra of X(D), and is denoted by g(D). The
subalgebra g(D) can be canonically identified with the Lie algebra of
the Lie group Aut(D). An application of Liouville’s theorem yields that
a(D) NV =1g(D) = {0}.

2. Basic concepts on Reinhardt domains. In this section, we discuss
some basic concepts and results on Reinhardt domains.

For each element a = (av;, -+, a,) of (C*)", we define an element =z,
of Aut(C") by the coordinatewise multiplication

Tta(zl! ) zn) = (alzl) ) a’nzn) .

7w, will sometimes be viewed as an element of Aut((C*)*). Write T =
(UQ1))". The group T acts as a group of automorphisms on C™ by

az=m,2) for ae€T and ze€C".
For i =1, .-+, n, let T, be the subgroup of T defined by
T.={a, - ,a,)eTla;=1 for all 37 = 1}.

DEFINITION. A Reinhardt domain in C” is a domain D in C™ which
is stable under T, that is, such that a¢-DcD for every ac T.

Let D be a Reinhardt domain in C*. The group T then acts as a
group of automorphisms on D. The subgroup of Aut(D) induced by T
is denoted by T(D), or simply by T for short. Also, the subgroups of
Aut(D) induced by T,,---, T, are denoted, respectively, by T«(D),---, T.(D),
or simply by T, ---, T, for short. For each point z of D, the T(D)-orbit
II,:= T(D)-z = {a-z|a e T(D)} of zis a torus in D. Note that z belongs
to D* = DN(C*)" precisely when dimII, = n. Introduce the constant
t = min,., dim I7,, the minimal dimension of the tori II, for ze D. This
constant takes a value between 0 and %, and is a fundamental invariant
associated to the Reinhardt domain D. For example, D contains the
origin precisely when ¢t = 0, while D is contained in (C*)" precisely when
t=n.

DEFINITION. An algebraic automorphism of (C*)" is an automorphism
of (C*)" whose components are given by Laurent monomials, that is, of
the form

(C*)na(zu ) zn)_')(wl) ) wn)e(C*)n ’
wizaizfli...zzm, i:l’...,n,

(%)
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where A: = (a,;) €GL(n, Z) and a:= (a;) € (C*)".

The set Aut, ((C*)") of all algebraic automorphisms of (C*)* is a
subgroup of Aut((C*)*). The group Aut,, ((C*)") is a Lie group of dimension
2n with respect to the compact-open topology, and its identity component
is given by m = {m.|]a € (C*)"}.

Let @ be an algebraic automorphism of (C*)" and write ¢(z) =
(pi(2), +++, p,(2)). In general, the components ¢, -+, @, have zeroes or
poles along each coordinate hyperplane. If, for two domains D and D’
in C™ not necessarily contained in (C*)", they have no poles on D and
@: D— C* maps D biholomorphically onto D’, then we say that ¢ induces
a biholomorphic mapping of D onto D’.

Every algebraic automorphism ¢ of (C*)" has the property that

(1) pTe™ =T.

As a consequence, if @ induces a biholomorphic mapping of a Reinhardt
domain DcC" onto a domain D'cC", then D’ is also a Reinhardt domain.
This type of transformation is a useful tool in studying automorphisms
of a Reinhardt domain, as we shall see later. Consider a biholomorphic
mapping @: D — D’ between two Reinhardt domains D and D’ in C™.
Then @ is induced by an algebraic automorphism of (C*)" if and only if
it is equivariant with respect to the T-actions, or equivalently if and
only if it has the property that

(2) PT(D)p~ = T(D') .

Indeed, the “only if” part follows immediately from (1) applied to o.
For the “if” part, see the corollary to Proposition 1 of the next section
and the remark after it. Biholomorphic mappings between Reinhardt
domains equivariant with respect to the T-actions may be considered as
natural isomorphisms in the category of Reinhardt domains. We are
led therefore to introducing the following equivalence relation between
Reinhardt domains.

DEFINITION. Two Reinhardt domains in C™ are said to be algebraical-
ly equivalent if there is a biholomorphic mapping between them induced
by an algebraic automorphism of (C*)=.

The following concepts will be needed later.

DEFINITION. An algebraic (resp. linear) automorphism of a Reinhardt
domain D in C™ is an automorphism of D induced by an algebraic auto-
morphism of (C*)" (resp. complex linear transformation of C™).

The set Aut, (D) (resp. GL(D)) of all algebraic (resp. linear) auto-
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morphisms of a Reinhardt domain D in C"™ is a subgroup of Aut(D).
The group Aut, (D) (resp. GL(D)) may be viewed as a subgroup of
Aut, ((C*)") (resp. GL(n, C)). It then follows that Aut,, (D) (resp. GL(D))
is closed in Aut, ((C*)") (resp. GL(n, C)), and therefore that Aut,, (D)
(resp. GL(D)) is a Lie group with respect to the compact-open topology.
Note that T(D) is contained in Aut,(D).

There is a useful correspondence between Reinhardt domains and
tube domains. First recall the definition of a tube domain and fix
notation. If 2 is a domain in R", the tube domain T, =2 + /—1R"
over 2 is the domain in C" consisting of all points { =& + 1/ —1peC" =
R" + V' —1R" (& n € R") such that cc2. For each element 7 of R", we
define the translation o, € Aut(7T,) by

o) =C+1V—17.

For each point { of T,, write 3, = {¢,({)|7 € R"}. Now, define the mapping
ord: (C*)" — R" by

ord(z, + -+, z,) = (—@2m)"log |z,], -+, —(27)"" log |z,]) .

Clearly ord is an open mapping. If E is a subset of C”, the image of
E* under ord is called the logarithmic image of E. To each Reinhardt
domain D in (C*)", there is associated a tube domain T, over the logarith-
mic image 2 := ord(D) of D. T, naturally becomes a covering manifold
of D. Indeed, introduce the covering w:C" — (C*)* defined by

W(Ch ) Cn) = (eXp("‘ZTCCI), R eXp(_ann)) .

Then we have T, = w™(D), and the restriction w: T, — D is a covering
projection. The covering transformation group for w is given by
o= {o,|meZ"}. For each point { of T,, we have 3, = w ' (Il4), and
the restriction w: X, — I is a covering projection. The tube domain
T, is called the covering tube domain of D and the covering projection
w: T, — D is called the canonical covering projection.

Here are some observations about the relations between Reinhardt
domains and their logarithmic images. First, if we denote by GL(n, Z)-R"
the group of all affine transformations of R" whose linear parts belong
to GL(n, Z), then there is a group homomorphism of Aut,, ((C*)*) onto
GL(n, Z)-R" which associates to each element ¢ € Aut, ((C*)") written
in the form (x) the element @ € GL(n, Z)-R" defined by

(3) P(8) = A + ord(a) .

It follows that if an algebraic automorphism ¢ of (C*)" induces a biholo-
morphic mapping @: D — D’ between two Reinhardt domains D and D’
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in C*, then @(D*) = D'* and
(4) @(ord(D*)) = ord(D'*) .

Secondly, if D is a Reinhardt domain in C*, then D is bounded if and
only if

ord(D*)C{(¢, -+, &) ER" & > ¢y + 0, & > €0}

for some constants ¢, -+, ¢,. Thirdly, if D is a Reinhardt domain in
(C*), then D is algebraically equivalent to a bounded Reinhardt domain
if and only if the logarithmic image ord(D) of D has the convex hull
containing no complete straight lines. This is a consequence of the
observations above and the fact that if an open subset 2 of R" has the
convex hull containing no complete straight lines, then there exists an
element f of GL(n, Z)-R" such that

f(‘Q)C{(El’ R} En)GR"IEL >0, Tty Sn> 0} .

Finally, if an algebraic automorphism @ of (C*)" maps a Reinhardt domain
DcC™ whose logarithmic image has the convex hull containing no com-
plete straight lines biholomorphically onto a Reinhardt domain D'cC",
then (4) applied to @ implies that the logarithmic image of D’ also has
the convex hull containing no complete straight lines.

LeMMA 1. Let D be an open subset of C" whose logarithmic image
has the convex hull containing mo complete straight lines. If « is an
element of (C*)* such that w (D) = D, then ac T.

Proor. If we write 2 = ord(D*), and if 7, is the translation of R”
defined by 7.(¢&) = & + ord(a), ‘then the assumption 7. (D) = D implies that
T.(2) :—1‘9 (cf. (8), (4)). If £ is the convex hull of 2, then 7 ,(R) = Q.

Since 2 contains no complete straight lines, it follows that ord(a) = 0,
and hence that a €ord™*(0) = T. q.e.d.

COROLLARY. If D is a Reinhardt domain in C™ whose logarithmic
image has the convex hull contaiming mo complete straight lines, then
the identity component of Aut, (D) coincides with T(D).

Proor. This follows from the fact that the identity component of
Aut, (D) coincides with that of {z, € mcyn|m (D) = D}.

The following result is well-known (ef. Narasimhan [6]).

THEOREM. If D is a Reinhardt domain in C™, then every holomorphic
function f on D can be expanded into a “Laurent series”

f) = 3 a2
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which converges absolutely and uniformly on any compact set in D, where
=2+ 22 for the coordinate z=(z,, +++, z,) of C" and v=(y,, *++, v,) EZ".
Moreover, the coefficients a,’s are uniquely determined by f.

COROLLARY. Suppose that a holomorphic function f on a Reinhardt
domain D in C™ satisfies
(5) Sz vy 2oy Q24 Bigy * 00, 20) = Af(2)
for an integer k and for every ac UQ) and every z = (2, -++, 2,) €D.
Then f has the form

fz) = g(zyy + =+, 20y Sitny * zn)z]:
for some holomorphic function g on the Reinhardt domain in C™* given
as the image of the domain D under the projection
p: C'az— (zu trty Ry Ry 0 zn) eC .

ProOOF. Let f(2) = >, ez @,2° be the Laurent expansion of f. Substi-
tuting this into (5) and applying the uniqueness assertion of the above
theorem, we see that

a'a, = a*a, for every a e U(l) and every v = (v, --+, v,)€Z".

Hence, if the coefficient a, of the Laurent expansion of f is not equal
to 0, then a** =1 for every ac UQ1), so that v, = k. We obtain the
desired result, since f(z)/z¥ is then a holomorphic function on D independent
of the variable z;, that is, f(2)/2¥ has the form f(z)/z¥ = g(p(z)) for some
holomorphic funection g on p(D). q.e.d.

LEMMA 2. Let G be a group of automorphisms of a Reinhardt domain
D im C". If the center of G contains the subgroup

Tors(D) « -+ Tu(D) = {a™* + - a™ |a*™ € Tyyu(D), +++, a™ € T(D)}

of T(D), and if 4 is the Reinhardt domain in C* given as the image of
the domain D wunder the projection

P:C*2(2y o+, 2,) > (2 +++, 2) ECH,

then, to each element @ of G, there correspond an automorphism t(p) of
4 and a holomorphic mapping Y(®) of 4 into (C*)** for which ¢ has
the form
p:Ds (', 2")— W', w')eD,
w = 7(p)?) ,

’

w = Ty (z')(z”) ’

where 2, w' € C* and 2", w” e C**. Further, the map 7: G— Aut(d4) sending
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@ to () s @ group homomorphism. If the logarithmic tmage of D has
the convexr hull containing mo complete straight lines, then the kernel
ker ¢ of t coincides with T,..(D)--- T, (D).

PrROOF. Let @ be any element of G. In terms of the coordinates
in C*, write 9(z) = (9,(?), *++, ®,(2)), where @, ---, ¢, are holomorphic
funetions on D. Since ¢ commutes with every element of T,.,(D)--- T.(D),
the functions ¢, -, @, satisfy

P21y * Ry QprBiany 0y R,) = Pu(2) 1=1, -+, k,
q)i(zu tety By Opyapqny 00y A2, = ai@i(z) ’ 1=k + 1: cee, M,
for every (ay.1, ***, a,) € (UQ))"* and every z = (2, -+, 2,) €D. Hence,

by a successive use of the above corollary, we see that they have the
form

¢i<z):gi(z1,"',zk), i:l,-..,k’
q)i(z)zgi(zu ct ey zk)z,,’, ’i:k—f—l’ ...,%’

for some holomorphic functions g,, ---, g, on 4. Write
T(@) = (gly ct gk) and 7(¢) = (gk+1; tt Yy g'n) .

To prove the first assertion, it suffices to prove that z(p) gives an auto-
morphism of 4, while ¥(p) gives a mapping into (C*)*"*. The fact that
v(p) gives a mapping into (C*)"* is immediate from the fact that ¢ is
an automorphism of D. To prove that 7(p) gives an automorphism of
4, note first that z(@)(4)c 4. This follows from the relation pop = ¢(@)op.
Now, let ¢’ be any element of G and consider 7z(¢') and z(¢®’). Then

we have (@' )(4)C4 and t(pp’)(4)C4, as noted above, and it is readily
verified that

(6) (pP) = t(P)r(®")
on 4. If we take ¢! as ¢, then (6) implies that

(P)e(p™) = t(pp™) = z(id) = id

on 4, where id denotes the identity mapping. Since a similar argument
shows that z(p")z(@) =1id on 4, it follows that z(p) gives an automorphism
of 4, which proves the first assertion.

The first half of the second assertion is an immediate consequence
of (6). It remains to prove the latter half of the second assertion. It
is obvious that T,,,(D)--- T,(D) is contained in kerz. To show the
reverse inclusion, let @ be any element of kerz. Then ¢ has the
form
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@:Ds(2,2")—> W', w')eD,

(7) w =2,

w" = Trpyen (@),
for the holomorphic mapping Y(®) = (¢4, -+, 9,) Of 4 into (C*)"*, where
2, weC* and 2’, w"' eC"*, and ¢,,, * -, 9, are nowhere-vanishing holo-

morphic functions on 4. Fix any point 2’ of 4* and define an open subset
D, of C** by
D, ={z"eC"*|(2, 2")eD}.

As a consequence of (7), we have ;. (D,) = D,. Since the assumption
that the logarithmic image of D has the convex hull containing no
complete straight lines implies that the logarithmic image of D, has
the convex hull containing no complete straight lines, it follows from
Lemma 1 that ¥(@)@)e T = (UQ))* that is, that |g(2")|=1, 7=
k+1,--+, n. Since this holds for every point 2z’ of the non-empty open
subset 4* of 4, we see that g,,, ---, 9, are constants of absolute value
1. Therefore, in view of (7), @ belongs to T,,.(D)-:-- T.(D), so that
kerz is contained in T,,,(D)--- T,(D), which proves the latter half of
the second assertion. q.e.d.

As a special case of the above lemma, we obtain the following
corollary.

COROLLARY. Let G be a group of automorphisms of a Reinhardt
domain D in C". If the center of G contains the group T(D), then
GC?T(C&)‘IL-

3. Two propositions. Continuing our study in the preceding section,
we establish two basic results on Reinhardt domains. The first result
gives a criterion for a biholomorphic mapping between two bounded
Reinhardt domains to be induced by an algebraic automorphism of
(C*)". The second result is about the structure of the group of linear
automorphisms of a bounded Reinhardt domain.

PROPOSITION 1. Let ¢: D— D’ be a biholomorphic mapping between
two Reinhardt domains D and D' in C*. If D or D’ is holomorphically
equivalent to a bounded domain in C~, and if there exists a point 2z, of
D* such that @(l,) = I,,,, then @ 1is induced by an algebraic auto-
morphism of (C*).

ProoF. Since it follows from the relation dim I7,,, = dim @(II,) =

dim I1,) = n that o(Il,) = II,,,CD'*, we can find a Reinhardt domain D,
in C” such that /1, cD,CD, o(D,)CD'* and ord(D,) is simply connected.
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If T, is the covering tube domain of D, and @ is the canonical covering
projection, then, because of the simple connectedness of 2 = ord(D,),
the covering w: T, — D, is the universal covering of D,. If T, is the
covering tube domain of D'* and w’ is the canonical covering projection,
and if @: T, — T, is a lifting of ¢: D,— D'* and ¢, is a point of T,
such that o({,) = %, then the assumption ¢(Il,) = II,., implies that

(8) P(Fe) = 5y

and we have the following commutative diagram:

¢
ZCO Z‘;(Co)

e

H H¢(20)

Z0

Clearly w: X, — I,  and w': Y5, — Il,,, are the universal coverings of
the tori 11, and II,.,, respectively, and &: 3, — 3z, is a lifting of
P, — Iy

We show that @: T, — T, is a complex affine mapping. Note first
that the restriction @: ¥, — 35, is an affine mapping. Indeed, consider
the Bergman metrics of D and D’. Since the Bergman metric of D is
invariant under Aut(D), therefore under T(D), the submanifold I7, of D
with the induced Riemannian structure is a Euclidean torus. Similarly,
by means of the Bergman metric of D’, the submanifold I7,,, of D’ has
the structure of a Euclidean torus. Since the biholomorphic mapping
@: D— D' is an isometry with respect to the Bergman metrics, we see
that @: I, — II,,, is an isometry between the Euclidean tori I, and
II,,,, and our assertion follows from the fact that @: 2%, — X3¢, is a
lifting of @: 11, — II,,,. Now, if Re and Im are the projections of T,
into R" defined by

Rel=¢ and Im{=7 for {=&+1V —1pe Top=2+V —1R* (¢c2,7¢R"),
then, by (8), the mapping
R*37)—Re®l, +1V —1n)eR"
is constant, while, by what we have noted above, the mapping
R'579—>Im@{, + vV —1n) e R"

is affine. This implies that if, in terms of the coordinates in C", we
Write @(Cu ct Yy Cn) = (al(c)r MR @n(C)); where C = (CU tt Yy ‘C_n)_and @1, tt ﬁu
are holomorphic functions on T,, and if & =¢ + Vv =17, (&, 7.€R),
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i=1, -+, n, then the functions 3*®,{)/on0m, i, J, k=1, -+, m, vanish
identically on 3. X is a totally real submanifold of T, of dimension
n. Thus #$,0)/0¢;0C,, %, J, k=1, -++, n, vanish identically on Ty, and
hence &: T, — T, is a complex affine mapping.

Because of the result of the preceding paragraph, ¢ has the form
&) =LA + B for some AeGL(n,C) and some RcC". We show that
A belongs to GL(n, Z). It is enough to show that Z"A = Z". Write
A = B +1/=1C, where B and C are real square matrices of degree .
Then, by (8), we have

Re 3(L,) = Re &(L, + V' —19) = —7C + Re $(%,)

for every neR", so that »C =0 for every neR", and hence C = 0.
Since this implies that, for »€ R", A e R" and $o, = 0,,P, the desired
result follows from the fact that, in (9), the covering transformation
groups of the coverings w: 3, — II, and w': X3¢, — II,,, are given by
the restrictions of g, to X, and Yj3,, respectively.

If A=(a;) and B =(B;), then, in view of the definition of the
covering projections @ and w’, it follows that ¢: D,— D'* has the form

P. ‘D()9 (zl! Ct Yy zn) e (wu %y wn) eD™* ’

w; = exXP(—2x B2t « + + Zpmi 1=1 -, m,
and therefore, by analytic continuation, that ¢ is induced by an algebraic
automorphism of (C*)". q.e.d.

COROLLARY. Let ¢: D—D' be a biholomorphic mapping between two
Reinhardt domains D and D" in C*. If D or D' is holomorphically
equivalent to a bounded domain in C*, and if pT(D)p™ = T(D'"), then @
s induced by an algebraic automorphism of (C*).

Proor. It follows from the assumption @T(D)p™* = T(D’) that
o(l,) = II,,, for every ze€D. Therefore, for any point z, of D*, the
mapping ¢ satisfies the condition of the proposition. q.e.d.

REMARK. The conclusion of the above corollary holds even if the
boundedness assumption on D, D’ is removed. This more general result
can be shown by using the corollary to the theorem of the preceding
section.

ProprosITION 2. If D is a bounded Reinhardt domain in C", then,
by a change of coordinates

(R vy 2) = (142 =00, T02,)

for some positive constants r,, +--, r,, the group GL(D) is contained in

Un).
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Proor. We show first that GL(D) is compact. It is enough to show
that if {p™|m =1, 2, ---} is any sequence of elements of GL(D), then
there exists a subsequence of {™|m =1, 2, ---} which converges to an
element of GL(D). Select a basis u,, ---, u, for the complex vector space
C" consisting of points of D. Since every element of GL(D) maps u,,---,u,
into the fixed bounded domain D, the set of entries of elements of GL(D)
is bounded, and therefore there exists a subsequence of {p™|m=1,2,..-},
denoted again by {p™|m =1, 2, ---}, which converges to some complex
square matrix @ of degree n. If ¢ does not belong to GL(n, C), then
@(D) is contained in a proper vector subspace of C*. Since the boundedness
of D implies that the set @™ (D) approaches uniformly to the set (D)
as m goes to oo, it follows that ™ (D) # D for sufficiently large m.
This contradicts the assumption @™ e GL(D). We thus conclude that
@ €GL(n, C). Since GL(D) is closed in GL(n, C), we obtain ¢ € GL(D),
which proves our assertion.

Because of the result of the preceding paragraph, there exists a
GL(D)-invariant Hermitian inner product (%, #>) on C". Since GL(D)
contains 7T, we see that

n
(10) 2, wy = tZ_'; a2,
for some positive constants a,,: - -,a,, where 2=(z,,*++,2,), w=(w,,***,w,) €

C". By a change of coordinates
(zly Sty zn) - (]/azly ] l/a’_nzn) )

we can take a, = --- =a, =1 in (10), and then GL(D) is contained in
U(n). q.e.d.

4. Equivalence of Reinhardt domains. This section deals with the
equivalence problem for bounded Reinhardt domains.

We first present a group-theoretic characterization of 7(D) and a
result from the theory of Lie groups.

PROPOSITION 1. If D is a bounded Reinhardt domain in C™, then
T(D) is a maximal torus in G(D).

PrOOF. It is obvious that T(D) is a torus in G(D), that is, a con-
nected compact abelian subgroup of G(D). Let T’ be any torus in G(D)
containing T(D). By the corollary to Lemma 2 of Section 2, T" is a torus
in mweyn. Since T(D) is clearly a maximal torus in 7., we see that T”
coincides with T(D). q.e.d.

THE CONJUGACY THEOREM (cf. Hochschild [4]). If T and T’ are two
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maximal tori in a connected Lie group G, then there exists an element
g€ G such that gTg™ = T'.

We shall now give an answer to the equivalence problem for bounded
Reinhardt domains.

THEOREM 1. If two bounded Reinhardt domains in C™ are holomor-
phically equivalent, then they are algebraically equivalent.

Note that if an algebraic automorphism of (C*)* induces a biholo-
morphic mapping between two Reinhardt domains in C" containing the

origin, then it must be of the form
(C*)ro(zy, =v 0y 2,) = (wy, o+, w,) € (CH)",
W; = %45 » 1=1 - n,

(%)

where ¢ is a permutation of {1, ---, n} and (a,, ---, a,) €(C*)". Hence,
from the above theorem, we obtain the following consequence.
COROLLARY (Sunada [7]). If two bounded Reinhardt domains in C*
containing the origin are holomorphically equivalent, then there is a
biholomorphic mapping between them induced by an algebraic auto-
morphism of (C*)* of the form (xx).
To prove Theorem 1, it suffices to prove the following proposition.

PROPOSITION 2. If ¢:D— D' is a biholomorphic mapping between
two bounded Reinhardt domains D and D’ in C", then ¢ can be written
iwn the form

p=qgp",
where @' € G(D') and @" € Aut, ((C *)").

Proor. By Proposition 1, T(D) is a maximal torus in G(D). Since
pG(D)p™* = G(D'"), we see that ¢T(D)p™* is a maximal torus in G(D'),
while, again by Proposition 1, T(D') is a maximal torus in G(D'). There-
fore the conjugacy theorem shows that there exists an element « € G(D')
such that Y(eT(D)p )" = (v@)T(D)(4rp)™* coincides with T(D'). It
follows from the corollary to Proposition 1 of the preceding section that
@ € Aut, ((C*)"). Putting @’ = ' and @” = @, we obtain the desired
result. q.e.d.

COROLLARY. If D is a bounded Reinhardt domain in C*, then Aut(D)
coincides with G(D)-Aut, (D).

PrOOF. Apply the above proposition to the case of D= D'. q.e.d.

REMARK. All the results of this section remain true for Reinhardt
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domains D such that Aut(D) has the structure of a Lie group with respect
to the compact-open topology.

We conclude this section by discussing the equivalence of annuli as
an illustration of Theorem 1.

ExAmMpPLE. For a real number » with 0 <» <1, let A(r) be the
annulus in C defined by

Alr)y={zeClr <|z|<r™}.

Consider two annuli A(r) and A(+’). Theorem 1 asserts that A(r) and
A(r") are holomorphically equivalent if and only if there exists an element
of Aut,,(C*) which maps A(r) onto A(r’). Since the group Aut,(C*) is
given by

11) Aut,  (C*) ={C*22z— az*cC*|lacC* a = *+1},

the latter condition is equivalent to » = . Thus we obtain a classically
known result on the equivalence of annuli.

5. Holomorphic vector fields on a Reinhardt domain. Let D be a
Reinhardt domain in C". Then 7(D) acts as a Lie transformation group
on D. The subalgebra of X(D) corresponding to T(D) is denoted by t(D).
Since the group T(D) is abelian, the subalgebra t(D) is abelian. For
t=1,---,m, let H, be the infinitesimal transformation of the one-
parameter subgroup

{D El (zli MR zn) - (zly ety Ry exp(l/:_ia)zu Zity *° zn) € Dle € R}

of Aut(D). Then t(D) is given by t(D) ={H, ---, H,}x. Also, the sub-
algebras t,(D), -, t,(D) of t(D) corresponding, respectively, to T,(D), «--,
T (D) are given by t(D) = {H;}g, 4 =1, -+, n. Note that the holomorphic
vector fields H,, -:-, H, have the form

12) H,=1—120/32), i=1 -, n.

Suppose that D is contained in (C*)" and consider a finite-dimensional
real subalgebra g of £(D) containing t(D). In this section, we prove some
fundamental lemmas concerning the structure of g which we need in the
next section.

We begin with preliminary observations. Since D is contained in
(C*), it follows from (12) that the holomorphic vector fields H,, ---, H,

form a basis of X(D), that is, every element X of X(D) can be written
in the form

X=i2=‘41fth,
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where f;, - -+, f, are holomorphic functions on D. For ¢=1, -+, n, let
fi2) = X, emal’? be the Laurent expansion of f,, and write X, =
2, aH,). Then X has the expression

13) X=23 X.

vezn

In what follows, every element of X(D) will be expressed as above. Note
that the sum in (13) converges absolutely and uniformly on any compact
set in D, and that X =0 precisely when X, =0 for all veZ". If
H=37" c¢H et(D) and X = 3, .,» X, €X(D), then it follows that

(ad H)X = [H, X] = 3, (/=1 g cw) X,

where v = (v, *++, v,), and hence that, for a polynomial P with complex
coefficients, we have

Pad H)X = 3, (/=1 g ew)X, .

LEMMA 1. There exists a positive integer N such that if X =
Siezm X, 18 any element of g, then X, =0 for all vy = (v, +++,v,)EZ"
with max,<;<, |v;| > N.

Proor. For i =1, .-+, n, let P, be the minimal polynomial of the
endomorphism ad H; of g, and take a positive integer N, such that
P/ =1k) # 0 for all ke Z with |k| > N,. Then a desired integer N is
given by N = maX,;<, N;. Indeed, let X =3, .,» X, be any element of
g. Then

0= Pad H)X = Zz‘,n P/ —=1y)X, for every i=1, -+, m,
where v, is the ¢-th component of v. Thus
P/ =1v)X, =0 for every i=1,---,n and every v = (v,,+++, v,) € Z".

Hence, if v = (v, +++, »,) €27, and if max,,., |v;| > N, so that |y;| > N, for
some 4, then, since P, (1 —1p,) # 0, we have X, =0, as asserted. q.e.d.

LEMMA 2. If X = 3,22 X, is any element of g, then X, + X_,€g for
every yeZ™.

ProOoF. Let N be a positive integer as in Lemma 1. For 7z =0,
1, .-+, N, we define a polynomial P;(x) by

P@) =116+,

i—1 N
P(x) = LIO (@® + 7»2)11=I;[+1(w2 +A), 1#0.
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Consider first the case where y =0. From Lemma 1 and the relations
P(+V=In) =0, v =1, -+, N, it follows that

P(ad H,) -+ P(ad H )X = Z,Zn P/ =1p) -+ PV =1p)X, = P(O)X,,

where ¢ = (ft,, -+, #,). Since Py(x) has real coefficients and P,(0) # 0 € R,
we see that

X, = P(0)"P(ad H,) - - - P(ad H,) X eg .

Consider next the case where v=(y, ---, »,)# 0. If max,.,,|v/> N,
then, by Lemma 1, X, + X_, =0eg. Suppose that max,<,|v,| < N.
Without loss of generality, we may assume that v, #0. Fork=1, ---, n,
write

" _
X® = 3 kX(v(k)“,,, + 3 kX(_,,(k),#, ,

pezn— pezn—

where v* = (y,, -+, v,). We show by induction on k¥ that X* eg for
every k=1, ---, n. For this, it is enough to prove the following two
assertions:

(i) X%eg;

(i) If X® eg, then X% eg.

First we prove (i). From Lemma 1 and the relations Pl,,l;(l/ “1y) =
P,,,ll(—l/—_lvl) and Pw(il/———l)\,) =0, A=0,:-,|v,]—1, |y +1,---, N,
it follows that

P, (ad H)X = yén Plull(l/—:l-#l)X,u
= ye;‘l Plvll(l/?i-vl)X(ul,y) + pe;‘—l Plull(_]/——_]-vl)X —v1, 0
= Plvll(l/—:—_ipl)(pezz;‘_l X(ul.,u) + pe;‘l X(—-vl,/l)) = Plull(l/—;_lyl)X(l) .

Since P, (x) has real coefficients and P, (1" —1y,) = 0€ R, we see that
X0 = P|u1|(]/:—1”1)_1P|»1|(ad H)Xeg,

and the proof of (i) is complete.
Next we prove (ii). If v,,, = 0, then, by an argument similar to the
case where vy = 0 and the induction hypothesis,

X** = P(0)"Pad H,..) X" eg .
Suppose that vy,., # 0. Arguing as in the proof of (i), we see that
P[,,k+1|(ad H]H.I)X(k) = Pluk'*'ll(l/__.—lpk*_l)(#eznz‘—‘k—l X(v("),uk+1,/l)

+ Z X(u“‘),—vk.(_p/l) + X(—v("),uk+1,p) + Z X(—v(k),—vk+1,ﬂ)) ’

pezn k=1 pezn—k—1 peZn—k—1

and hence, by the induction hypothesis, that if we write as Y the right
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hand side of the above equality multiplied by P,, _H|(l/ —1v,.)", then
Y = Plvk+1|(I/Tivk+l)_lplvk+1l(ad Hk+1)X(k) eg .
Let H be the element of t(D) defined by

k
H = Z—ilel + Hk+1
and let @ be the polynomial defined by
k 2
Q) = 2 + (z‘, Vi — »,m) .
=1
From Lemma 1 and the relations

Q<l/ti(i2zl v + vk+1>) Q(l/ 1( zk] Vi u,m))

i=1

and
Qv TI( 0 — vn) = QVTI(= 28t + vi)) = 0,
it follows that

QGad H)Y = Z Q(l/ji(i v + Vk+x)>X(v‘k’,»k+1,m

eZ”"k 1 ( <Z ”l - pk'f—l))X(u(k),—qu.l,‘u)

7
k

pezn“k 1 ( ( Z‘ + vk+1>>X(——u(k},uk+1.,u)
k

l-'ezn k—1 < ( Vi — ))k+1)>X(_.y(k),_,,k+1,p)
= Q(l/—l(z v; + vkﬂ))( > Xown , + D X w4 ) -
i=1 pezn—k—1 peZn—k—1

Since Q(x) has real coefficients and since, by the assumptions v, # 0 and
Vi 7= 0,

Q(l/'——l(:; v+ »Hl)) = —4(;3 »3)»,,“ ~0cR,
we see that
x4 = Qv ZI(3t + v,)) Qad H)Yeg,

and the proof of (ii) is complete.
We have thus shown that X* eg for every k=1, ---, n. In par-
ticular, X, + X_, = X" belongs to g. q.e.d.
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Note that {Xeg|X = X}, {Xeg|X =X, + X_,} (v # 0€ Z") are vector
subspaces of g. Lemma 2 asserts that g is the direct sum of these sub-

spaces.
The subalgebra t(D) is contained in {Xeg|X = X;}. Under an addi-

tional assumption on g, they coincide:
LEMMA 8. If gNv ' —1g={0}, then t(D) coincides with {Xcg| X = X,}.
Proor. If X is any element__of g such that X = X, then X can be
written in the form X =Y + 1/ —1Z with Yet(D) and Zet(D). By as-
sumption, we get
Z=VvV=1(Y - X)egnv —1g = {0},

hence X =Y et(D). q.e.d.

6. Automorphisms of n-dimensional Reinhardt domains with ¢ = n.
In the study of automorphisms of bounded Reinhardt domains in C™ with
t = m, or bounded Reinhardt domains in (C*)", it is more natural to include
the domains which are algebraically equivalent to such domains in our
consideration. In view of the observations in Section 2 concerning the
relations between Reinhardt domains and their logarithmic images, we
shall deal with Reinhardt domains in (C*)" whose logarithmic images have
the convex hulls containing no complete straight lines.

The purpose of this section is to prove the following:

THEOREM 2. If D is a Reinhardt domain in (C*)* whose logarithmic
wmage has the convex hull containing mo complete straight lines, then
G(D) coincides with T(D).

Combining the above theorem with the corollary to Proposition 2 of
Section 4, we obtain the following consequence.

COROLLARY. If D is a Reinhardt domain in (C*)" whose logarithmic
image has the convex hull comtaining no complete straight lines, then
Aut(D) coincides with Aut, (D).

Before starting the proof of the theorem, we discuss an illustrative

example.
ExAMPLE. Let A(r) be the annulus defined in the example in Section
4. Then Theorem 2 and (11) show that

Aut(A(r)) = Aut, (A1) = {A(r)22z—az*c A(r)|lac UQl),a = +1} .
This is a classically known result on automorphisms of annuli.

We turn to the proof of Theorem 2. When n = 1, the assertion of
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the theorem is well-known. Hence we assume that » = 2. It is enough
to prove that g(D) coincides with t(D). Suppose on the contrary that g(D)
does not coincide with t(D). Since g(D) is a finite-dimensional real sub-
algebra of %(D) containing #(D), and since g(D) N1 —1g(D)={0}, the lemmas
of the preceding section apply to g(D). By Lemmas 2 and 8, there exists
a non-zero element v of Z" such that

pi={XegD)| X=X, + X_}+ {0}.

Let @ be an element of Aut, ((C*)") of the form (x) for which the 4-th
component of v’A™' € Z" is positive for ©=1 and equal to 0 for ¢=2,.-.,m,
where ‘A denotes the transpose of A. In view of (2) and the observations
in Section 2, by a change of coordinates ¢:(z, ---, 2,) — (w,, -+, w,), We
may assume that vy = (», 0, ---,0) and v, > 0. Moreover, by Lemma 1,
we can take v to be maximal in the sense that every element Y =
Y,+Y_,eqD) with ¢¢ = (g, 0, ---,0) and g, > v, is equal to 0. Write

g=tD)+»p.

Then g is a subalgebra of g(D). In fact, the following relations hold:
(a) [H(D), {D)]cH(D);
(b) [H(D), plch;
(e) [p plcH(D).
(a) is obvious. To show (b), it is enough to prove that (ad H,)pcp for
every 1=1,---,m. If X=X, + X_, is any element of p, then

(14) (ad H)X =1 —1p(X, — X_,) for every i=1, -+, n,

where p,; is the i-th component of yv. By the definition of p, the right
hand side of (14) belongs to p, which proves our assertion. It remains
to show (¢). If X and Y are any elements of p, and if we write Z =
[X,Y], then a straightforward computation yields that Z has the form
Z=2,+ 2Z,+ Z_,. Since, by Lemma 2, Z, + Z_,, €g(D), it follows from
the maximality of v that Z, + Z_, = 0, so that Z = Z,. Therefore, by
Lemma 3, Zet(D), as desired. Note that {H,, ---, H,}z is contained in
the center of g. Indeed, because of (14) and the fact that the subalgebra
t(D) is abelian, we have (ad H,)g = (ad H)(D) + (ad H,)p = {0} for every
T=2 ¢, M.

Consider a connected Lie subgroup G of G(D) corresponding to g.
Since the center of G contains the subgroup Ty(D):.-- T.(D) of T(D),
and since, by assumption, the logarithmic image of D has the convex
hull containing no complete straight lines, it follows from Lemma 2 of
Section 2 that if 4 is the Reinhardt domain in C* given as the image
of the domain D under the projection C"s (2, ---, 2,) — 2, €C, then there
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exists a group homomorphism z: G — Aut(4) between the groups G and
Aut(4) with kerz = Ty(D) -+« T, (D). The group Aut(d4) has the structure
of a Lie group with respect to the compact-open topology, and it is
"readily verified that z: G — Aut(4) is a Lie group homomorphism. We
observe that

(15) dim Aut(4) £ 2
and
(16) dimkerz =dim Ty(D)--- T.(D)=n — 1.

If we write J = ady;'H,, then (14) implies that Jpcp and J* = —id
on p. Consequently, the dimension of p is greater than or equal to 2.
Since the sum g = t(D) + p is direct, we see that

amn dimG = dimg = dimt(D) + dimp=n + 2.
On the other hand, since
dim G — dimker ¢ = dim z(@) < dim Aut(4) ,
it follows from (15) and (16) that
dimG = dimkert + dimAut(/) £n —14+2=n+1.
This contradicts (17). We thus conclude that G(D) = T(D).

7. Automorphisms of two-dimensional Reinhardt domains with ¢ = 1.
The remainder or this paper is devoted to the determination of auto-
morphisms of bounded Reinhardt domains in C* with ¢ = 1.

Let D be a bounded Reinhardt domain in C? with ¢t =1. Without
loss of generality, we may assume that DN{z, = 0} # @. For simplicity,
we shall write G(D) = G, g(D) = g, etc. We begin by noting that D is
inhomogeneous. Indeed, otherwise, D is holomorphically equivalent to
the ball {(z, 2,) € C*||2,|* + |2,* < 1} or the polydisk {(z, z,) € C*| |z, | <1,
|2,] < 1} (see E. Cartan [3]), so that D is homeomorphic to a cell. But
it is readily verified that H,(D, R) = 0 when DN{z, = 0} = @, while
H(D, R) + 0 when DN{z, =0} # @. Hence D is inhomogeneous. Fix
any point o = (0, b) (b # 0) of DN {2, = 0} and let M be the G-orbit of o.

LEMMA 1. The dimension of M is equal to either 1 or 3.

Proor. The fact that M contains the one-dimensional torus I7, implies
that dimM = 1. Since D is inhomogeneous, it follows (see Section 1)
that each G-orbit has dimension less than or equal to 3, so that dim M < 8.
To complete the proof of the lemma, it suffices to prove that dim M+ 2.
Suppose on the contrary that dim M = 2. Note first that, for each point
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z of D*, the dimension of the G-orbit G-z of 2z is greater than or equal
to 2, and the equality holds precisely when G-z coincides with I7,. Now,
if MND* % @, say ze MND*, then, by what we have noted above,
M = G-z = II,cD*. Since this contradicts the assumption that M con-
tains the point o€ D — D*, it follows that McD — D*, and therefore
that M is a connected open subset of DN{z, = 0}. As a consequence, M
is a complex submanifold of D. The fact that M is the union of T-
orbits implies that

M ={0,2)eC|r <|z| <R}

for some constants » and R with 0 < r < R < ~, so that M is holomor-
phically equivalent to an annulus or a punctured disk. Since every
element of G induces an automorphism of the complex manifold M, this
contradicts the fact that G acts transitively on M. qg.e.d.

Let K be the isotropy subgroup of G at the point o and let o0: K —
GL(T,D) be the linear isotropy representation. Then K contains the
one-dimensional torus T,, so that dimK =1, and M can be expressed as
the homogeneous space M = G/K.

LEMMA 2. The dimension of K is equal to 1, and consequently the
identity component of K coincides with T..

PROOF. Since o is faithful, it suffices to prove that dim o(K) = 1.
Since K is compact and has dimension greater than or equal to 1, the
identity component o(K)° of p(K) is a connected compact subgroup of
GL(T,D)=GL(2, C) and has dimension greater than or equal to 1. Therefore
o(K)° is isomorphic to U(), (UQ))? SU2) or U(2). Note that o(K),
hence o(K)°, leaves the subspace T,M of T,D stable, and that, by the
above lemma, the dimension of T,M is equal to either 1 or 3. If o(K)°
is isomorphiec to SU(2) or U(2), then it acts irreducibly on T,D. This
contradicts what we have noted above. Suppose that o(K)° is isomorphic
to (U(1))*. Then p(K)° contains the canonical complex structure of T,D.
Indeed, when GL(T,D) is viewed as GL(2, C), we see that o(K)° is con-
jugate to the subgroup

{(g‘ 0> eGL(2, C)

2

a,, O, € U(l)}

which contains the complex structure. Consequently every proper o(K)°-
stable subspace of T,D is of dimension 2. Again, this contradicts what
we have noted above. We thus conclude that o(K)° is isomorphic to
U@1), so that dim p(K) = dim p(K)° = dimU(1) = 1. q.e.d.
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We now look into the group G according to the dimension of M.
ProrosITION 1. If dim M = 1, then G coincides with T.

Proor. It follows from Lemma 2 and the assumption dim M =1 that
dimG =dimM + dimK =2 = dim T. Since G is connected, we see that
G coincides with T. q.e.d.

PROPOSITION 2. If dim M = 3, then the dimenston of G 1s equal to
4. Moreover, the center § of g is a one-dimensional subalgebra of t which
does not coincide with t,.

ProoF. By the same argument as in the proof of the above prop-
osition, we have dim G = 4, which proves the first assertion.

To prove the second assertion, we begin with preliminary observa-
tions. Since the subspace T,M of T,D is o(T,)-stable and of dimension
3, it follows that T,M has the form

TM= TP+ T, (direct sum)

for the complex submanifold P = {(z, 2,) € D|z, = b} of D and the one-
dimensional torus 7, = {(0, ab)e D|a € UQ1)} in D. Let q¢:G— M be the
orbit map defined by ¢(g9) = g-0. Note that, by Lemma 2, the kernel of
the differential (dq).: g — T,M of g at the unit element ¢ of G coincides
with t,. If we write ¢ = (dg)7(T,P), then g’ is a three-dimensional
subspace of g containing t,. Moreover, ¢ is Ad(T))-stable, where Ad
denotes the adjoint representation of G. Indeed, since (dg),Ad(a)=p(a)(dq),
for all o€ T.,CK, the fact that T,P is po(T,)-stable implies that g is
Ad(T)-stable. Since T, is compact, so that Ad(T)) is compact, we can
find an Ad(T,)-stable subspace p of g’ complementary to t,. It follows that
[t, plcp. Also, Ad(T,) acts as SO(2) on the two-dimensional subspace p,
and consequently there exists an element H, of t, such that, on the
subspace p, the endomorphism ad H, belongs to Ad(7}) and

(18) (ad H,): = —id .

By the definition of the subspace p, we have the following direct sum
decomposition of g:

19) g=t+p.

Turning to the proof of the second assertion, let Z be any element
of 3 and write Z= X +Y, where Xet and Yep. It follows that 0=
(ad H)Z=(ad H)X+ (ad H)Y =(ad H,)Y. This and (18) imply that Y =0,
so that Z = Xet. Thus 3 is contained in t. Further, 3 is at most one-
dimensional and does not coincide with t,, since, by the existence of the
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element H;,, we have 3Nt, = {0}. In view of (19) and these facts, to
prove the second assertion, it suffices to prove that there exists a non-
zero element H of t such that [H, p] = {0}. If [t, p] = {0}, then the above

assertion is obvious. Hence we assume that [t, p] = {0}. We prove our
assertion in several steps.

We show that [t,, p]cp and [p, p]ct. Since Ad(T,) acts trivially on

t, while it acts as SO(2) on p, there exists an element s of Ad(T)) such
that

s(X+Y)=X-Y for Xetand Yep.

Clearly s is a Lie algebra involution of g and the eigenspaces for the

eigenvalues 1 and —1 of s are given by t and p, respectively. If Xet,
and Yep, then

s([X,Y]) = [s(X), s(V)] = [X, - Y] = —[X,Y],
which proves [t,, pjcp. If Xep and Yep, then

(X, Y] = [s(X), s(Y)] =[-X, - Y] =[X,Y],
which proves [p, pJct. Note that the triple (g, t, s) is a symmetric Lie
algebra (cf. Kobayashi and Nomizu [5, II, Chapter XI]).

The relation [t, p]Cp implies that if Xet,, then ad X induces an

endomorphism of p. We show that there exists an element H, of t, such
that, on the subspace p, the endomorphism ad H, coincides with an

endomorphism Ad(a,) for some element a, of 7,. Take a non-zero element
X of t,. If o is any element of T,, then we have

Ad(@)[X,Y] = [Ad@)X, Ad(a)Y] = [X, Ad(@)Y] for all Yep.

This means that the restriction of ad X to p commutes with the action
of AA(T,) on p. Since Ad(T,) acts as SO(2) on p, it follows that, on the
subspace p, the endomorphism ad X coincides with an endomorphism
¢-Ad(e,) for an element @, of T, and a non-negative constant ¢. By the
assumption [t,, p] #= {0}, the constant ¢ is not equal to 0. Putting H, =
¢ !X, we obtain a desired element.

We show that [p, p] # {0}. Suppose [p, p] = {0}. Let J denote the
canonical complex structure of D and J, the value of J at a point z€ D.
If 4 is a non-zero element of T,P, then T,P = {u, J,u}z. Take elements

X and Y of p for which (dg).(X) =u and (d9).(Y) = J,u, and define a
mapping f: C— D by

fle +1V—=1n) = qlexpeXexpnY) for £cR and 7eR,

where exp denotes the exponential mapping of g into G. Then f is
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holomorphic on C. To prove this, let I denote the canonical complex
structure of C and I, the value of I at a point {e€C. Note first that

(20) (df)oIo = Jo(df)o .

This is a consequence of therelations (df),((6/0¢),) = u, (df)((8/07).) = J,u
and I,((0/0¢),) = (8/0m),, where (3/0¢), and (08/07n), are the values of 9/0¢ and
9/on at 0. Now, let &, = & + 1" =17, (&, 7, € R) be any point of C. Since
the assumption [p, p] = {0} implies that [X,Y] =0, and hence that
expéXexpnY = expnYexpéX for all £e R and all e R, we see that if
@ e Aut(D) and € Aut(C) are defined to be ¢(2) = (exp s Xexp7,Y)-z
and () = — ¢, then f can be written in the form f = @fy, and
therefore

(df)e, = (dP)(df)o(dir)e, -
It follows from this relation and (20) that

(df)eyLe, = (AP)(df)o(d)e Iey = (dP)o(df oI o(dp)e,
= (dP)od o(Af (A )cy = I 12 (AP)o(Af ) Ay = J ey (A )eg 5

so that f is holomorphic on C. Since f is obviously non-constant, this
contradicts the boundedness of D. We thus conclude that [p, p] = {0}.

We show that (ad H,) = —id on p. Let X be any element of p.
Since [p, p]ct and ad H, = Ad(a,) € Ad(T)) on p, it follows that

[X,Y] = Ad(a)lX, Y] = [Ad(a) X, Ad(a,) Y] = [[H,, X], [H,, Y]]
= [[[Hm X], H2]9Y] + [sz [[sz X]r Y]]
= -—[[HZ, [H% X]]vY] = '_[(ad HZ)ZXvY]

for every Y ep, so that [(ad H,’X + X,Y] =0 for every Yep. Since p
is two-dimensional and [p, p] # {0}, we see that (ad H,*X + X = 0, which
proves our assertion.

We now prove that there exists a non-zero element H of t such that
[H, p] = {0}. We have seen that there exist an element H, of t, and an
element H, of t, such that, on the subspace p, both endomorphisms ad H,
and ad H, belong to Ad(T,) = SO(2) and (ad H,)* = (ad H,)* = —id. It is
readily verified that ad H, = +(ad H,) on p. Changing the sign of H,
suitably, we may assume that ad H, =ad H, on p. Then we have
(ad(H, — H,)p = {0}. Since H, — H,+ 0 ct, a desired element H is given
by H= H, — H,. q.e.d.

8. Automorphisms of two-dimensional Reinhardt domains with ¢t =1

(continued). To each bounded domain D, there is associated the constant
h = min,., dim G(D)-2z, the minimal dimension of the orbits G(D)-z for
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zeD. Note that if ¢: D— D’ is a biholomorphic mapping between two
bounded domains D and D’ in C*, then, since pG(D)p™* = G(D’), we have

(21) dim G(D')-p(z) = dim p(G(D)-z) = dim G(D)-z

for every 2e€D. As a consequence, the constant & is a biholomorphic
invariant.
We begin with a result concerning the invariant h.

THEOREM 3. If D 4s a bounded Reinhardt domain in C* witht =1,
then the imvariant h 18 equal to either 1 or 3.

PROOF. ¢ =1 implies that dim G(D)-2 = dim I, = 1 for every z€ D,
so that ~ = 1. Since D is inhomogeneous, it follows (see Section 1) that
if we select any point z of D, then dim G(D)-z £ 3, so that h £3. To
complete the proof of the theorem, it suffices to prove that h = 2.
Suppose on the contrary that 2~ = 2. Then there exists a point z, of D
such that dim G(D)-z, = 2. We see that z,€ D*, since, for each point z
of D — D*, the dimension of the G(D)-orbit of z is equal to either 1 or
3 by Lemma 1 of Section 7. It follows from the relation dim G(D)-z, =
2 = dim I7,, that

(22) G(D)-z = 1I., .

We show that Aut(D) = Aut, (D). If ¢ is any element of Aut(D),
then, by (21) applied to @, we have dim G(D)-9(z,) = dim G(D)-z, = 2, and
therefore, by the same argument as above, G(D)-9(z,) = II,,,. Since
PG(D)p™* = G(D), it follows from (22) and this relation that

p(Il,) = P(G(D)-2,) = G(D)-P(2,) = sy -

Since z,€ D*, Proposition 1 of Section 3 shows that ¢ is induced by an
algebraic automorphism of (C*)?, so that Aut(D) = Aut,, (D).
Consequently, the identity component of Aut,, (D) coincides with G(D).
On the other hand, because of our observations in Section 2, the identity
component of Aut, (D) is given by T(D). We thus conclude that G(D) =
T(D), so that t = h = 2, a contradiction. q.e.d.

THEOREM 4. If D is a bounded Reinhardt domain in C* with t =1
and h =1, then G(D) coincides with T(D).

PrOOF. By the assumption i = 1, there exists a point o of D such
that dim G(D)-0 = 1. It is obvious that oe D — D*. Without loss of
generality, we may assume that oe DN{z, = 0}. G(D) coincides with
T(D) by Proposition 1 of Section 7 applied to the orbit M := G(D)-o.

q.e.d.
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Combining the above theorem with the corollary to Proposition 2 of
Section 4, we obtain the following consequence.

COROLLARY. If D is a bounded Reinhardt domain in C* with t =1
and h =1, then Aut(D) coincides with Aut,, (D).

Consider the case where h =38. Let D be a bounded Reinhardt domain
inC*witht=1 and »=38. As in the preceding section, we assume that
Dn{z =0} # @ and fix a point 0 = (0, b) (b # 0) of DN{z, = 0}. In what
follows, we use the notation of the preceding section. Note first that
dim G-z = 8 for every z€D. In particular, we have dimG-0 = 3. Now,
applying Proposition 2 of Section 7 to the orbit M:= G-0, we see that
the center of g is a one-dimensional subalgebra of t which does not
coincide with t,. This implies that the identity component Z of the
center of G is a one-dimensional subtorus of T which does not coincide
with T,, so that we may write

(23) Z={@" a)eTlac UL},

where k& and [ are relatively prime integers and ! is positive.

Let @ be any element of G. In terms of the coordinates in C?,
write @(z,, 2,) = (P.(2, 2.), P2, 2,)), Where ¢, and ¢, are holomorphic
functions on D. Since ¢ commutes with every element of Z, the functions

@, and @, satisfy

Pz, a'z) = a*py(zy, 2,)

patz, a'z,) = Aoz, 2,) ,

for every ae€ U(1) and every (z, 2z,)€D. For 7=1, 2, let
(25) P2y %) = D5 G200

(vq1,vg) € 22

(24)

be the Laurent expansion of ¢,. Note that, since DN{z, = 0} = @, we
have af,, =af,, =0 for every (v, v,)€Z* with », <0. Substituting

(25) into (24) and applying the uniqueness assertion of the theorem of
Section 2, we get

(1) kvitlvg — (1) k
26 a(ul,vg)a 1T = a(ul,uz)a ’
( ) (2) (2)

kvy+lvg l
a(vl,vz)a ! = a‘(ul,vg)a ’

for every a € U(l) and every (v, v,) € Z%
Using the above observation, we prove the following lemma.

LEMMA 1. The integer | is equal to 1. Moreover, if DN{z, = 0} # @,
then k s also equal to 1.
PROOF. Since dim G:0 = 3, the orbit G-o contains a point a = (a,, a,)
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of D for which a, # 0. Take an element ¢ of G which maps the point
o onto the point ¢ and, in terms of the coordinates in C?, write
P(2,, 2,) = (P2, 25), P2, 2,)), Where @, and @, are holomorphic functions
on D. By the observation above to ¢, the coefficients of the Laurent
expansions of ¢, and @, satisfy (26). Now the function z,— 9,(0, 2,) is not
identically 0, because ¢,(0, b) = a, # 0. Therefore there exists an integer
v, such that a{,, # 0. It follows from (26) that a*»* =1 for every
a € UQ), so that Iy, = k. Since the integers k and [ are relatively prime
and [ is positive, we see that [ = 1. To prove the second assertion,
suppose that DnN{z, = 0} # @ and select a point o’ of DN{z, = 0}. Since
dim G-o’ = 8, the orbit G-o’' contains a point o’ = (ai, a;) of D for which
a; %= 0. Taking an element @ of G which maps the point o' onto the
point &’ and repeating an argument similar to the above, we have ky, =
l =1 for some integer v,. Since the assumption DN {z, = 0} # @ implies
that v, = 0, it follows that k& = 1. g.e.d.

We now look into the group G according as DN {z, = 0} is empty or
not.

Consider first the case where DN {z,=0} = @&. Let + be the algebraic
automorphism of (C*)* defined by

";"(zv 22) = (zlz;ki zz) ’

where k is the integer given in (23). Then « induces an automorphism
of CxC*, and, by Lemma 1, we have Z+ ' = T,. Therefore, replacing
D by (D), we may assume that Z = T,. Note that (D) is not neces-
sarily bounded. But, in view of the observations in Section 2, the
logarithmic image of (D) has the convex hull containing no complete
straight lines. Further, ¥(D) is bounded in the z,-direction, that is, (D)
is contained in a set {(z, z,) € C*||z,| < M} for some constant M. Note
also that (0, z,) = (0, 2,) implies that +(D)N{z, = 0} is not empty and
contains the point o.

Since the center of G contains the subgroup T, of T, and since the
logarithmic image of D has the convex hull containing no complete straight
lines, Lemma 2 of Section 2 shows that if 4 is the Reinhardt domain in
C containing the origin given as the image of the domain D under the
projection p:C*?*3(z, 2,) — 2,€C, then, to each element @ of @, there
correspond an automorphism () of 4 and a holomorphic mapping v(p)
of 4 into C* for which ¢ has the form

p: D3 (2, 2,) — (w,, w,) €D,
w, = (@)(2,) ,
w, = Y(P)(2,)z, ,
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and the map 7: G — Aut(4) is a group homomorphism with kerz = T..
Applying, if necessary, a change of coordinates (z, 2,) — (rz,, 2,) for some
positive constant r, we may assume that 4 is the unit disk B, or the
complex plane C. The group Aut(4) has the structure of a Lie group
with respect to the compact-open topology, and it is readily verified that
7z is a Lie group homomorphism. Since dim 7(G) = dim G — dim ker 7 =
dimG — dim T, = 4 — 1 = 3, it follows that z(G) = Aut(B,) when 4 = B,,
while 7(G) = U(1)-C when 4 = C, where U(1):-C denotes the group of all
complex affine transformations of C whose linear parts belong to U(1).
As a consequence, the center Cent G of G itself coincides with T,. Indeed,
7(Cent G) is contained in the center of z(G), which reduces to the identity
element, so CentGCkerz = T,.

We examine the structure of the domain D. First we define a real-
analytic homeomorphism ¢ of 4 into =(G) as follows: In each of the cases
4 = B, and 4 = C, there exists a Lie subgroup K of ¢(G) which acts
freely and transitively on 4. The mapping ¢ associates to each point z,
of 4 the element f of K such that f(0) = 2,. Next we define a real-
valued function s on G by s(p) = |7(®)(0)|. Since the mapping G3 ¢ —
@(0) = (0, b) = (z(@)(0), 7(®)(0)b) € D is real-analytic and 7(®)(0) == 0, the
funection s is real-analytic, while it is invariant under the right action
of T, on G. Therefore s defines a real-analytic function on =(G) = G/T,,
which we denote also by s. Now consider the projection p: D — 4. We
observe that

p7'(0) = {(0, 2,) e C*|r, < |2,| < R, 1€}
for some constants »;,, R,, 1€, such that 0 < r, < R, < o, 1€ 1, and
{r.<lz,| <R}N{ry <|z| <R/} =0

if 2#4, where I is a non-empty, at most countable index set. It is
readily verified that, for each point 2z, of 4, the set p~i(z,) is given by

p7(2) = {(2,, 2,) € C*[s0e(2))r; < |2,] < soe(2,)R,, t €1},

hence D = U,.; D, (disjoint union), where D,, 1€ I, are the domains in
C? defined by

D, = {(z, 2,) € C*|z, € 4, soe(z)r; < |2,| < soe(z)R}, 1€el.

Since D is connected, I must consist of only one element. Hence, if we
write » = r, and R = R,, then D has the form

D = {(z, z,) € C*|z, € 4, sot(z)r < |2,| < soe(2)R} .

By a change of coordinates (z,, z,) — (z,, R™'2,), we may assume that B =1.
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Write R(z,) = so¢(z,). Then the positive-valued function R(z,) on 4 is
real-analytic, and satisfies the condition that R(0) = 1 and

27 R(z(p)(z,)) = |7(p)(z,)|R(z,) for every @ €G and every z, €4 .

Hence we have
(28) R(az,) = R(z,) for every a€ U(l) and every z,€4 .

To proceed further, it is necessary to discuss the cases of 4 = B,
and 4 = C separately.

When 4 = B,, following Thullen [8], we can show that D has the
form

D= {(zu zz) GC” |zl| < 19 T(l - |z1|2)p/2 < ]zzl < (1 - Izl |2)p/2}

for a non-negative constant p, and then G consists of all transformations
of the form

D> (z, 2z,) — (w, w,) €D ,
w, = alz, + B)1 + Bz)™*,
w, = Y1 — |BPP(1 + Bz) %, ,
where a, v € U(1) and B € B,.
Suppose that 4 = C. We first determine the domain D. Let ¢ be

any element of G. Then we have z(p)ez(G) =UQ1)-C. If we write
7(@)(z,) = az, + B, where a € U(1l) and BeC, then ¢ has the form

@: D> (2, 2,) — (w, w,) €D,
(29) w, =az, + 8,
w, = 7(P)(2)2, ,
and (27) applied to @ means that
(30) R(az, + B) = |7(p)(2,) | R(z) for every =z,e€4.

Hence we see that the function log R(z,) on 4 satisfies the functional
equation

log R(az, + B) = log |7(p)(2,)| + log R(2,) .

To derive a differential equation log R(z,) satisfies, apply the Laplacian
L = 82/_8_903_ + 0*/0y: on 4 to both sides of the above equation, where 2z, =
z, +v =1y, (x, ¥y, € R). Then we get

(31) L(log R)(az, + B) = L(log R)(z,) ,

because log |7(9)(2,)| is a harmonic function on 4 and the differential
operator L is invariant under U(1)-C. The fact that (@) = UQ1)-C implies
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that (31) holds for every a € U(l) and every ge€C. Hence, fixing 2z €4
and putting « = 1, we find that L(log R)(z, + B8) = L(log R)(z,) for every
B eC, which leads to the differential equation
(32) L(log R)(2,) = const.

in 4. By (28), the function log R(z,) is invariant under U(1). Consequent-
ly, in terms of polar coordinates z, = p exp('—16), we have log R(z,) = Q(0)
for some real-analytic function @ on R, and (32) becomes

(33) L(Q)(p) = 3"Q(0)/op* + 07'9Q(p)/dp = const.

Note that Q(0) = log R(0) = 0. Let Qo) = D>, a,0* be the Taylor ex-
pansion of Q. Substituting this into the differential equation (33), we
get

> via,0*"* = const.
v=1

Therefore we see that a, = 0 only if vy = 2, so that Q(p) = cp* for some
real constant ¢. In view of the definition of @Q(0), this implies that
log R(z,) = ¢z, or R(z,) = exp(c]|z,]*), and we conclude that D has the
form

D = {(z, 2,) € C*|r exp(c| 2, [*) < |z,] < exp(c|z,[)} .

Since D must be holomorphically equivalent to a bounded domain, it is
necessary that ¢#0. Conversely, each domain of the above form with ¢#0
is algebraically equivalent to a bounded domain under the transformation

(2, 2,) — (2,25, 23), where a =1 when ¢ < 0 and a = —1 when ¢ > 0. In
our situation, D is bounded_in the z.-direction, so ¢ < 0. By a change
of coordinates (z, z,) — (' —cz, 2,), we may assume that ¢ = —1.

We now determine the group G. If we write any element @ of G
in the form (29), then, by (30),

[7(P)(2) | = Blaz, + B)[E(z,) .
Since R(z,) = exp(—|z,[*), it follows from this relation that
|7(@)(2,)] = exp{—(laz, + B — |2}
= exp{—(2ReapBz + |B[")} = exp Re{—(2aBz, + |8} ,

where Rec denotes the real part of a complex number ¢. Therefore the
function 7(®)(z,) has the form

Y(p)(z) = 7 exp{—(2aBz, + |B[)}

for some element v of U(1), and we conclude that G consists of all trans-
formations of the form
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Do (2, 2,) = (w, wy) €D,
w, =02 +8,
w, = Y[exp{—(2aBz, + |8}z ,
where «, Y€ U(1l) and geC.

Consider next the case where DN{z, =0} @. To determine the
group GG, we show first that every element of G is induced by a complex
linear transformation of C®. Let @ be any element of G. In terms of
the coordinates in C?, write ¢(z, 2,) = (P,(2,, 2.), P2, 2,)), Where ¢, and
@, are holomorphic functions on D. Apply the observation before Lemma
1 to @. Then, because of Lemma 1, we see that, for k=1 =1, the
coefficients of the Laurent expansions of ¢, and ¢, satisfy (26). Thus,
ifal ,, 0, then v, + vy, =1. On the other hand, since DN{z, = 0} # @

(vy,ve)

and DN{z, =0} # @, we get v, =0 and v, = 0 if af),, # 0. Therefore
we have af),, # 0 only if (v, »,) = (1, 0) or (v, v,) = (0, 1), so that ¢ is
induced by a complex linear transformation of C2.

It follows from what we have shown above that G coincides with the
identity component of GL(D). Proposition 2 of Section 3 shows that, by
a change of coordinates (z, z,) — (72, 7,2,) for some positive constants
r, and r,, the group G is contained in U(2). Since dim G = 4 = dim U(2),
we see that G coincides with U(2). As a consequence, we have
CentG = Z = {(a, ) € Tl € U(1)}.

In view of the connectedness of D, the fact that G = U(2) implies
that D has the form

D= {(zu zz)eczlr < !zllz + !22|2 < R}
for some constants » and B with 0 £ »r < R <. By a change of coor-
dinates (z,, z,) = (R™*z,, R™"%2,), we may assume that R =1, and then G
still coincides with U(2).

Summarizing our results, we obtain the following theorem.

THEOREM 5. FEwery bounded Reinhardt domain in C* with t = 1 and
h=3 1s algebraically equivalent to one of the domains listed in (i)-(iii) below.

(1) {(z 2) € C*| |2 |<1, r(1—|2, P <|2,| <A~ [)*?} (p=0, 0=r<1).

(i) {(2, 2) € C*|r exp(—|2,[) <|2.|<exp(—|z, [} (0=r<1).

(i) {(zy 2 € C*lr<|z.*+]|2,*°<1} (0=r<]).

Further, for the domains D above, the groups G(D) are given as follows:

For a domain D of type (1), G(D) consists of all transformations of
the form

D> (z, 2,) — (w, w)) €D,
w, = a(zl + B)(l + Ezl)_l ’
w, = 7<1 - ]Blz)p/z(l + B%)ﬁpzz ’
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where a, 7Y€ U(l) and B€B,.

For a domain D of type (ii), G(D) consists of all transformations of
the form

D> (z, z,)— (w,, wy)eD,
w,=az + 8,
w, = Y[exp{—(2aBz, + |5}z,
where «, 7Y€ UQ) and BeC.
For a domain D of type (iii), G(D) coincides with U(2).

COROLLARY. Let D be a bounded Reimhardt domain in C* with t =1
and h =38. If D is a domain of type (i) with p =0 and r # 0, then
Aut(D) = G(D)UOG(D), where 0: D> (2, z,) — (2, r2;2)eD. If D 1is mot
holomorphically equivalent to any such domain, then Aut(D) = G(D).

This is an immediate consequence of the above theorem, the corollary
to Proposition 2 of Section 4 and the following proposition.

PROPOSITION. For the domains D of types (i)-(iii) defined in Theorem
5, the groups Aut, (D) are given as follows:

If D is a domain of type (i), then Aut, (D) = T(D) when p # 0 or
p=0 and r =0, while Aut,,,(D) = T(D)UOT(D) when p =0 and r # 0,
where 0 is as in the corollary above.

If D is a domain of type (ii), then Aut. (D) = T(D).

If D is a domain of type (iii), them Aut, (D) = T(D)UaT(D), where
0: D> (z, 2,) — (2, 2,) € D.

To prove the proposition, we begin with two lemmas. The proof of
Lemma 2 below is straightforward, and is omitted.

LEMMA 2. Let D be a Reinhardt domain in C* and let ¢: D 3 (z, z,)—
(w,, w,) € D be an element of Aut, (D). If DN{z,=0}*0 and DN{z,=0}=
@, then @ has the form

— b
(34) {wl alz;z2 ,
W, = 0%y
where be Z, d=+1 and (a,, a,) € (C*):. If DN{z,=0}+* @ and DN{z,=0}* O,
then @ has the form
- o=
Wy = QaRz9) »
where T 18 a permutation of {1, 2} and (a,, a,) € (C*).
LEMMA 3. Let D be a Reinhardt domain in C* such that DN{z, =
0} =@ and DN{z, =0} = @, that DN{z, = 0} is bounded, and that, for
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every c€ 4, the set DN{z, = ¢} is bounded, where 4 is the domain in C
given as the image of the domain D under the projection C?3 (z, 2,) —
z,€C. If ¢ is an element of Aut, (D) written in the form (34), and if
d =1, then @€ T(D).

Proor. It suffices to prove that 6 =0 and |a,| = |a,| = 1. If we
write D, = {2,€C|(0, z,) € D}, then, by assumption, D, is a bounded open
subset of C. Since the restriction ¢: DN {2, = 0} — DN {z, = 0} induces an
automorphism D, z, — a,2,€ D, of D,, it follows that |a,| = 1. If, for
every ced, we write D, = {z,€C|(z, ¢) € D}, then, by assumption, D, is
a bounded open subset of C. Since the relation |a,| = 1 implies that the
restriction @: DN{z,=c} — DN{z, = a,c} induces an automorphism D, 3 z,—
actz,eD, of D,, it follows that |a,c®| = 1. Since this holds for every
ced, we see that b = 0 and |q,| = 1. q.e.d.

Turning to the proof of the proposition, let D be as in the proposition.

Suppose first that D is of type (i) with p+#0, of type (i) with p=0
and r =0, or of type (ii). We observe that D satisfies the conditions
of Lemma 3. Let ¢ be any element of Aut, (D). By Lemma 2, ¢ has
the form (84). Since, for every ¢ > 0, there exists a point (z, 2,) of D
such that |2z, <e, it follows that d =1, and hence, by Lemma 3, ¢ € T(D),
so that Aut, (D) = T(D).

Suppose next that D is of type (i) with p=0 and r+0. We observe that
D satisfies the conditions of Lemma 3. Let ¢ be any element of Aut, (D).
By Lemma 2, @ has the form (34). If d =1, then, by Lemma 3, ¢ € T(D).
Assume that d = —1. If we write 4 ={2,eC|r < |z,] < 1}, then the
restriction @: DN {z, = 0} = DN {2, = 0} induces an automorphism 43z,—
a2t € 4 of the annulus 4. This implies that |a,| = . Since, for every
c € 4, the restriction @: DN {z,=¢} - DN {z,=a,¢c™} induces an automorphism
B, 32, — a,ctz, € B, of the unit disk B,, and therefore |a,c*| =1, it follows
that b=0 and |a,|=1. We thus conclude that Aut,, (D)= T(D)U6T(D).

Suppose finally that D is of type (iii). We observe that DN {z, =0} =+
@ and DN{z, = 0} + @. Let @ be any element of Aut,. (D). By Lemma
2, @ has the form (35). If r = id, then it follows from the boundedness
of D that pe T(D). If v #id, then the consideration of o yields that
@ eoT(D), where ¢ is as in the proposition. We thus conclude that
Aut,, (D) = T(D)UeT(D), and the proof of the proposition is complete.
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