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0. Introduction. A complete simply connected Riemannian manifold
with non-positive sectional curvature, called an Hadamard manifold and
denoted by H, is diffeomorphic to an ^-dimensional Euclidean space,
where n is the dimension of H. In [5], Eberlein and O'Neill defined
points at infinity, denoted by H(oo)9 of H and investigated geometry
and isometries of the manifold H. They showed that isometries of an
Hadamard manifold satisfying the visibility axiom (cf. § 1) share many
of the properties of linear fractional transformations. If all the sectional
curvatures of H are smaller than a negative number, than H satisfies
the visibility axiom. On the other hand, using the Gauss-Bonnet formula,
Eberlein [4] and Shiohama gave examples of complete two-dimensional
Riemannian manifolds of negative Gaussian curvature, not necessarily
simply connected, which do not satisfy the visibility axiom. We shall
prove a condition expressed in terms of the growth rate of the lengths
of Jacobi fields Y such that F(0) = 0, for an Hadamard manifold to satisfy
the visibility axiom.

Recently, Gromov introduced the Tits metric on points at infinity
H(oo) and described geometric properties of H(°°) in terms of the metric.
He proved that an Hadamard manifold satisfies the visibility axiom if and
only if the Tits distance of any pair of distinct points at infinity is
infinite (cf. [1, Lemma 4.14]). Using the result one can get the same
result as ours.

Any point 0 in an Hadamard manifold H is a pole of H. Let (x, r)
be the geodesic polar coordinates around 0, where x is a point of the
unit sphere S in the tangent space at 0 and r is a positive real number.
Then in these polar coordinates S x {r} is the geodesic sphere in H of
radius r with center 0. Thus the Riemannian metric on the geodesic
sphere induces a Riemannian metric on S, denoted by φ( , ;r). Then

(d exprίC(rf), d exprflJ(r)?)> = φ(ξ, η\ r) ,

where < , > is the Riemannian inner product of H and ξ, Ύ] are tangent
vectors at x. Let TS be the tangent bundle of S. We define a function
F on ΓSx(0, oo) by
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ξ, r) = [f(ζ, ξ; r)] 1 / 2 ,

that is, F(ξ, r) is the length of the Jacobi field Y along the geodesic
exp0 tx such that Γ(0) = 0 and F'(0) = ξ. Thus

lim F(ξ, r) = 0 and lim ψ(ξ, r) = || ξ \\0 ,

where || ||0 denotes the norm induced by the Riemannian metric of S.

THEOREM. An Hadamard manifold H satisfies the visibility axiom
if and only if there exists a point OeH such that, for every Lipschitz
curve c: [α, b] —> S with non-zero length, we have

S b βjp
—(c(s), r)ds = oo .

a dr

Using the theorem, we can produce many Hadamard manifolds which
satisfy the visibility axiom and whose sectional curvatures tend to zero
as the distance from a point OeH increases to infinity. For example,
if, for every unit tangent vector ζ of the unit sphere in the tangent
space at 0,

—-(£, r)~r or —-(ξ, r)~logr ,
dr or

as r tends to infinity, then the Hadamard manifold satisfies the above
condition. Greene and Wu proved that the Riemannian manifold of non-
positive sectional curvature is flat if the sectional curvature goes to
zero rapidly as the distance from a fixed point goes to infinity (cf. [6,
Theorems 2 and 4]). Therefore we would like to explain how to get
these metrics. Let hx and h2 be non-decreasing C°°-functions which we
obtain by smoothing the following functions hι and h2 on (0, °o), re-
spectively:

hx{r) = 1 for r e (0, 1) and hλ{r) = r for r e [1, ©o)

and

%2{r) — 1 for r 6 (0, e) and K2(r) = log r for r e [e, oo) .

Let F^ζ, r) = (\(ί)dί and F2(ξ, r) = Vh2(t)dt. Using the equation 7.9, (3)
Jo Jo

in [2], we see that the metrics satisfy the required properties. Especially,
a two-dimensional Hadamard manifold with a Riemannian metric of the
form

ds2 = dr2 + r log rdθ2 for r ^ 2

is not hyperbolic (cf. [7]) but satisfies the visibility axiom.



HADAMARD MANIFOLDS 29

Furthermore, in the proposition in Section 2, we get the following:
Let H be an Hadamard manifold and let 7 be a geodesic in H. Then
the angular length of 7 with respect to any point 0 is at most π.

The author would like to thank the referees for suggesting many
improvements.

1. Notation and Preliminaries. In this paper H will always denote
an Hadamard manifold, that is, a complete, connected, simply connected
Riemannian manifold of non-positive sectional curvature.

The following two facts are well known (cf. [5]).

FACT 1. The length of a Jacobi field along a geodesic of H is a
convex function.

FACT 2. Let y1 and 72 be geodesies of H. Then d{Ίx(t), 72(ί)) is a
convex function with respect to the variable t, where (Z(71(ί)> 72(*)) is the
distance between Ύ^t) and 72(ί).

Thus the function F(ξ, r) is a convex function with respect to the
variable r. Let 0, P and Q be points in H. The angle subtended by
P, Q at 0, denoted by <̂ G(P> Q)9 is defined as the angle subtended by
Tp(0)> 7Q(0) at 0 in the tangent space of H at 0, where ΎP and 7Q are
geodesies from 0 to P and from 0 to Q, respectively. For a point # in
S and for a real number ε with 0<ε<τr, the set {PeH: ^Co(7β(l), P)<ε},
denoted by C(x, ε), is called the cone of vertex 0, axis x and angle ε.

DEFINITION 1 (cf. [5]). An Hadamard manifold H is said to satisfy
the visibility axiom if, for a point 0 in H and for a positive number ε,
there exists a positive real number R depending only on 0 and ε with
the following property: If τ is a geodesic with d(τ, 0) ^ R, then ^C0(̂ (ti)>
τ(*2)) < £ for all real numbers ίx, ί2.

PROPOSITION A (cf. [5, Proposition 4.4]). An Hadamard manifold H
satisfies the visibility axiom if and only if, for two different geodesies
7i and 72 with 7X(O) = 72(0), there exists a positive real number R such
that d(0, τt) < R for all real numbers t, where τt is the geodesic segment
joining Jx{t) and 72(ί).

By Proposition A, we have the following fact: An Hadamard mani-
fold H satisfies the visibility axiom if and only if any pair of distinct
points at infinity can be joined by a geodesic of H.

DEFINITION 2. A continuous curve in a Riemannian manifold is
called a Lipschitz curve if all its local coordinates are locally Lipschitz
functions.
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Since the local coordinates of a Lipschitz curve are differentiable
almost everywhere, we can define the length of the curve.

2. Angular length. Let 0 be a point in an Hadamard manifold H
and S the unit sphere in the tangent space of H at 0. Then S is a
Riemannian manifold with the induced metric. Let 7 be a geodesic of
H with unit speed such that 7(0) is the point which attains the distance
between 0 and 7. Let c: (—oo9 oo)—> S and r: (--°°, oo) -»(0, oo) be
curves such that τ(ί) = expor(ί)c(ί). We call the length of c the angular
length of 7 at 0.

PROPOSITION. Set p: = d(O, 7) = d(O, 7(0)). Then

(1) pA" F(c(s), p)ds £ π.
J-oo

(2 ) Angular length (c) <; π.

PROOF. Let β be the angle as in Figure 1. We have

F(c(s), r(s)) = sin β .

7(0)

Compare the triangle in Figure 1 with the triangle in the Euclidean
plane whose sides have the same length, see Figure 2. The angle β in
Figure 2 satisfies β <; β <; π/2 (cf. [3, Corollary 6.4.3]) and has

sin β S P/r(s) (see Figure 2) .

Thus

F(c(s), r(s)) ^ p
r(s) - (r(s)Y '

Since the function F(c(s), r)/r is non-decreasing in r,
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F(c(s), p)
P

F(c(s),
r(s)

The cosine inequality applied to the triangle in Figure 1 gives

Thus

F(c(s), p)
p - (O2 + S2 '

Integrating with respect to s, we have (1). Using the equality

F(c(s), r)ds ,
— oo

we have (2). q.e.d.

3. Proof of the theorem. We use the following lemma which we
can prove easily using the Arzela-Ascoli theorem.

LEMMA. Let ck: [0, 1] —> M, k = 1, 2, , be C^curves in a compact
Rίemannian manifold M with the following properties.

(1) The parameter s of ck is proportional to the arc length of ck

from ck(0).
(2 ) The lengths of cks are bounded by a positive number L. Then

there exist a Lipschitz curve c and a subsequence {ck.} of {ck} which
converges to the curve c pointwise.

Now we prove the theorem. Suppose an Hadamard manifold H
satisfies the visibility axiom. Let c: [α, b] -> S be as in the statement
of the theorem. We shall show the inequality

f (Φ), r)ds ^ 1 ,
dr
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for large enough r. The theorem can then be deduced by partitioning
c into an arbitrarily large number of pieces. By considering only part
of c if necessary, one may assume that ^C0(c(α), c(b)) > 0. Since H
satisfies the visibility axiom, there is R > 0 such that for any r > 0,
the geodesic σ from exporc(α) to exporc(δ) must pass within distance R
of 0. It follows that if r > R, then

/(r) : = (V(c(s), r)ds ^ dist(exp0 rc(α), exporc(6)) ^ 2(r - R)
Ja

(see Figure 3). Since f{r) is a convex function of r, it follows from
the above inequality that

¥<r) > 1
αr

for large enough r.

exporc(α)

FIGURE 3

Conversely, assume that for every Lipschitz curve c: [0, 1] —> S with
non-zero length we have

We shall show that the visibility axiom holds at 0. If not, there are
ε > 0 and a sequence {yk} of geodesies which subtend an angle greater
than ε at 0 such that distCT*, 0) goes to infinity as k tends to infinity.
Let ck: (-oof oo)—»S and rfc: (—©o, oo)—>(0, oo) be the curves in the unit
tangent sphere and in (0, oo), respectively, such that

Ύk(t) = exvork(t)ck(t) .

By the proposition in §2, ε <ί length(c t) ^ π for all k. Let ck: [0, 1J—>S
be the curve which we obtain by parametrizing ck proportionally to arc
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length. As in the above lemma, there is a Lipschitz curve c: [0, 1] —• S
which is a pointwise limit of a subsequence of {ck}f which we also denote
by {ck} for simplicity. For any fixed r the curve σr(s): = exp0 rc(s) is a
pointwise limit of σrtk(s) := exporcfc(s). Thus

length(σv) ^ lim length(σr>fc) for every r > 0 .

Set

fhix) = \ F(ck(s), r)ds — length(α r,fc)
Jo

and

/(r) : = I F(c(s), r)ds = length(σr) .

Since f{r) is a convex function with /(0) = 0 and lim r_ 0/'(r) > 0, it is
increasing for r > 0. It follows from the assumption made above that
there is r > 0 with f(R) ^ 4R. Hence fk(R) ^ SR for any large enough
k. Since each /fc is convex and fk(0) = 0, it follows that

= Γ ^ ( c f c ( s ) , i2)cίs ^ 3 for large enough k .
Jo or

Also we may assume that for all large enough k we have dist(τfc, 0) > R.
We will now show that for such k there is a length-decreasing variation
of Ύk, which will be a contradiction, since any geodesic in H is length
minimizing. Let rk(s) be the distance from O to 7k along the geodesic
defined by the vector ck(s). Define 7ky. [—ε, 1 + ε] -> H as follows (see
Figure 4):

7M(s) = expo((rfc(s) - ε - s)cfc(0)) if - e ^ s ^ 0 ,

7fc,ε(s) = expo((rfc(s) - e)ck(s)) if 0 ^ s ^ 1 ,

7fc,e(s) = expo((n(8) - ε + s - I)c4(l)) if l ^ s ^ l + ε .

c*(0)

FIGURE 4
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Since dFjdr(ξ, r) is increasing in r,

A(iength7M)U = 2 - [ψ(ck(s), rk(s))ds
de Jo dr

Jo dr

This proves the theorem.
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