EIGENMAPS AND MINIMAL IMMERSIONS OF PROJECTIVE SPACES INTO SPHERES

Katsuya Mashimo

(Received November 29, 1986)

Introduction. In this paper we will consider the parameter spaces of eigenmaps and isometric minimal immersions of projective spaces into spheres.

A map $f:(M, g) \rightarrow S^{m} \subset \boldsymbol{R}^{m+1}$ is harmonic if f satisfies $\Delta^{(M, g)} f=2 e(f) f$, where $\Delta^{(\mu, g)}$ is the Laplacian of (M, g) and $e(f)$ is the energy density of f (cf. [5]). In particular, if $2 e(f)=\lambda$ is a constant, then $\lambda \in \operatorname{Spec}(M, g)$. Such a harmonic map is called an eigenmap [5]. By a theorem of Takahashi in [9], an eigenmap is an isometric minimal immersion if and only if it is an isometric immersion. An eigenmap $\phi: M \rightarrow S^{m}$ is said to be full if its image $\phi(M)$ is not contained in any great sphere in S^{m}. Let $\phi_{1}, \phi_{2}: M \rightarrow S^{m}$ be full eigenmaps. Then they are said to be equivalent if there exists an isometry ρ of S^{m} such that $\rho \circ \phi_{1}=\phi_{2}$.

It is a fundamental problem on isometric minimal immersions to study to what extent they exist. In [3], do Carmo and Wallach showed that the set of equivalence classes of all full isometric minimal immersions of compact symmetric spaces into spheres are parametrized by a compact convex body in some vector space. It is also natural to consider a similar problem for eigenmaps. In fact in [12], Toth and d'Ambra showed that the set of equivalence classes of all full eigenmaps are also parametrized by a compact convex body in some vector space.

Before showing further results on specific spaces, we explain the standard construction of isometric minimal immersions of a compact irreducible symmetric space (M, g) into spheres. Let $\Delta^{(M, g)}$ be the Laplacian of (M, g) with such sign that all eigenvalues are non-negative. We denote by $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$, the set of all distinct eigenvalues of $\Delta^{(\mu, g)}$, and by V^{k} the eigenspace of $\Delta^{(M, g)}$ corresponding to λ_{k}. Put $\operatorname{dim} V^{k}=m(k)+1$ and $\operatorname{dim} M=d$. For each $k \geqq 1$, define a canonical measure $d \mu$ on M normalized by $\int_{M} d \mu=m(k)+1$. Take an orthonormal base $\left\{f_{0}, f_{1}, \cdots, f_{m(k)}\right\}$ and define a mapping

[^0]$$
x_{k}: M \rightarrow \boldsymbol{R}^{m(k)+1} ; p \mapsto\left(f_{0}(p), f_{1}(p), \cdots, f_{m(k)}(p)\right) .
$$

Then x_{k} realizes an isometric minimal immersion of $\left(M,\left(\lambda_{k} / d\right) g\right)$ into the unit sphere in $\boldsymbol{R}^{m(k)+1}$, which we call the standard isometric minimal immersion.

The following theorem of do Carmo and Wallach [3] gives a description of the set of equivalence classes of all full isometric minimal immersions of compact irreducible symmetric spaces into spheres.

Theorem 0.1. (i) Assume that there exists a full isometric minimal immersion ϕ of $\left(M, c^{2} g\right)$ with a constant $c \neq 0$ into a unit sphere S_{1}^{q}. Then there exists $k \geqq 1$ such that $c^{2}=\lambda_{k} / d$ and $q \leqq m(k)$.
(ii) The set of equivalence classes of full isometric minimal immersions of $\left(M,\left(\lambda_{k} / d\right) g\right)$ into $S_{1}^{q}, q \leqq m(k)$, is parametrized by a convex body W_{M} in some vector space L_{M} in such a way that the interior points of W_{M} correspond to those $[\phi$] with $q=m(k)$ and that the boundary points of W_{M} correspond to those $[\phi]$ with $q<m(k)$.

We will give the description of W_{M} and explain how it parametrizes the set of equivalence classes of full isometric minimal immersions in $\S 2$. A similar theorem holds for eigenmaps.

Theorem 0.2 (Toth and d'Ambra [12]). Let $\lambda \in \operatorname{Spec}(M, g)$. Then the set of equivalence classes of full eigenmaps ϕ of (M, g) into S_{1}^{q} with $2 e(\phi)=\lambda$ can be parametrized by a convex body W_{E} in some vector space L_{E}. The interior points of W_{E} correspond to those [ϕ] with $q=m(k)$ while the boundary points correspond to those $[\phi]$ with $q<m(k)$.

For specific spaces the dimensions of L_{M} and L_{E} are studied, since it is closely related to the following rigidity problem: Let ϕ be another full isometric minimal immersion (resp. eigenmap), then is it equivalent to x_{k} ?

By Theorems 1 or 2, the rigidity problem is reduced to studying whether $\operatorname{dim} L_{M}$ or $\operatorname{dim} L_{E}$ is equal to zero or not. In fact, do Carmo and Wallach showed:

Theorem 0.3 (do Carmo and Wallach [3]). Le (M,g) be the d-dimensional sphere with constant sectional curvature. Then
(i) $\operatorname{dim} L_{M} \geqq 18$ if $d \geqq 3$ and $k \geqq 4$,
(ii) $\operatorname{dim} L_{M}=0$ if $d=2$ or $k \leqq 3$.

Thus the standard isometric minimal immersion x_{k} of the d-dimensional sphere is rigid in the category of isometric minimal immersions if $d=2$ or $k \leqq 3$. Toth and d'Ambra studied the parameter space W_{E} when M
is also a d-dimensional sphere.
Theorem 0.4 (Toth and d'Ambra [12]). Let (M, g) be the d-dimensional sphere with constant sectional curvature. Then
(i) $\operatorname{dim} L_{E} \geqq 10$ if $d \geqq 3$ and $k \geqq 2$,
(ii) $\operatorname{dim} L_{E}=0$ if $d=2$ or $k=1$.

Recently Urakawa obtained results on $\operatorname{dim} L_{M}$ for complex projective spaces and the quaternion projective plane. From his proof we can get information on $\operatorname{dim} L_{E}$ for complex projective spaces if $k \geqq 2$. We state it together with his original results on $\operatorname{dim} L_{M}$.

Theorem 0.5 (Urakawa [14]). Let (M, g) be the complex projective space $\quad P^{n}(C)=S U(n+1) / S(U(1) \times U(n))$ with an $S U(n+1)$-invariant Riemannian metric g. Then
(i) $\operatorname{dim} L_{M} \geqq 91$ if $n \geqq 2$ and $k \geqq 4$,
(ii) $\operatorname{dim} L_{E} \geqq 28$ if $n \geqq 2$ and $k \geqq 2$.

Theorem 0.6 (Urakawa [14]). Let (M, g) be the quaternion projective plane $P^{2}(\boldsymbol{H})=S p(3) / S p(1) \times S p(2)$ with an $S p(3)$-invariant Riemannian metric g. Then $\operatorname{dim} L_{M} \geqq 29007$ if $k \geqq 4$.

In this paper we prove the above theorem generally for quaternion projective spaces. Namely we prove the following:

Theorem 0.7. Let (M, g) be the quaternion projective space $P^{n}(\boldsymbol{H})=$ $S p(n+1) / S p(1) \times S p(n)$ with an $S p(n+1)$-invariant Riemannian metric. Then
(i) $\operatorname{dim} L_{M} \geqq 1386$ if $n \geqq 2$ and $k \geqq 3$, $\operatorname{dim} L_{M}=0 \quad$ if $n \geqq 2$ and $k=1$.
(ii) $\operatorname{dim} L_{E} \geqq 1078$ if $n \geqq 2$ and $k \geqq 2$, $\operatorname{dim} L_{E} \geqq 42 \quad$ if $n \geqq 3$ and $k=1$, $\operatorname{dim} L_{E}=0 \quad$ if $n=2$ and $k=1$.
Furthermore we will consider a similar problem for the Cayley projective plane and prove the following:

Theorem 0.8. Let (M, g) be the Cayley projective plane $P^{2}(C a)=$ $F_{4} / \operatorname{Spin}(9)$ with an F_{4}-invariant Riemannian metric. Then
(i) $\operatorname{dim} L_{M} \geqq 107406$ if $k \geqq 3$, $\operatorname{dim} L_{M}=0 \quad$ if $k=1$.
(ii) $\operatorname{dim} L_{E} \geqq 19448$ if $k \geqq 2$,

$$
\operatorname{dim} L_{E}=0 \quad \text { if } k=1
$$

From the above theorems, the standard isometric minimal immersions x_{k} of spheres $S^{n}, n \geqq 3$, complex projective spaces $P^{n}(C), n \geqq 2$, qua-
ternion projective spaces $P^{n}(\boldsymbol{H}), n \geqq 2$, or the Cayley projective plane are rigid if $k=1$ while they are not rigid if $k \geqq 4$.

After the author completed this work, Professor H. Urakawa informed him of the result of Z. Yiming [16], which states the following:

Theorem. Let (M, g) be the quaternion projective space $P^{n}(\boldsymbol{H})=$ $S p(n+1) / S p(1) \times S p(n)$ with an $S p(n+1)$-invariant Riemanian metric. Then x_{k} is rigid if $k=1$. If $k>1$ then $\operatorname{dim} L_{m} \geqq 84$.

But no proof of the key Lemma 4.2 in [16] is given. Lemma 4.2 in [16] is proved as (4.6) in this paper. We cannot say anything about the case $k=2$ by using the theory of do Carmo and Wallach.

Thanks are due to Professor H. Urakawa for sending him a copy of Yiming's paper and to Professor G. Toth for pointing out some mistakes in the first draft.

1. The standard isometric minimal immersions. In this section we explain the construction of standard isometric minimal immersions.

Let $M=G / K$ be a d-dimensional irreducible Riemannian symmetric space of compact type and let g be a G-invariant Riemannian metric on M. We denote by $\Delta^{(M, g)}$ the Laplacian on (M, g) and by

$$
0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots
$$

the set of all eigenvalues of $\Delta^{(\mu, g)}$. We denote by V^{k} the eigenspace of $\Delta^{(M, g)}$ corresponding to the eigenvalue λ_{k} and denote its dimension by $\operatorname{dim} V^{k}=m(k)+1$. Let $d \mu$ be the canonical measure on M normalized by $\int_{M} d \mu=m(k)+1$ and let $\left\{f_{0}, f_{1}, \cdots, f_{m(k)}\right\}$ be an orthonormal base of V^{k} with respect to the L^{2}-inner product. Define a mapping x_{k} by

$$
x_{k}: M \rightarrow \boldsymbol{R}^{m(k)+1} ; p \mapsto\left(f_{0}(p), f_{1}(p), \cdots, f_{m(k)}(p)\right) .
$$

The action of G on M naturally induces an action of G on V^{k} by $(\sigma \cdot f)(p)=f\left(\sigma^{-1} \cdot p\right)$ for $\sigma \in G, p \in M$. Let $v_{0}=\sum_{i=0}^{m(k)} f_{i}(p) f_{i} \in V^{k}$. Then

$$
\sigma \cdot v_{0}=\sum_{i=0}^{m(k)} f_{i}(p)\left(\sigma \cdot f_{i}\right)=\sum_{i=0}^{m(k)} f_{i}(\sigma \cdot p) f_{i} .
$$

Thus we may regard x_{k} as

$$
x_{k}: M \rightarrow S_{1} \subset V^{k} ; \sigma K \rightarrow \sigma \cdot v_{0} .
$$

Since G preserves the L^{2}-inner product, the image $x_{k}(M)$ is contained in a sphere centered at the origin. Furthermore by integrating $\left\langle x_{k}(p)\right.$, $\left.x_{k}(p)\right\rangle$ on M, we have

$$
(m(k)+1)\left\langle x_{k}(e K), x_{k}(e K)\right\rangle=\int_{M}\left\langle x_{k}(p), x_{k}(p)\right\rangle d \mu
$$

$$
\begin{aligned}
& =\int_{M} \sum_{j=0}^{m(k)}\left(f_{j}(p)\right)^{2} d \mu \\
& =m(k)+1 .
\end{aligned}
$$

Thus x_{k} is a map of M into the unit sphere in $\boldsymbol{R}^{m(k)+1}$ centered at the origin. An irreducible representation V of G is said to be of class one if it contains a non-zero K-fixed vector. We remark that V^{k} is irreducible when M is of rank one. The (0,2)-tensor $x_{k}^{*} g_{0}$ on M induced from the standard Euclidean metric g_{0} on $\boldsymbol{R}^{m(k)+1}$ is G-invariant. Thus by the irreducibility of M, x_{k} must be an isometric immersion with respect to $c^{2} g$ for some constant $c \neq 0$. Since $\Delta^{\left(\mathbb{M}, c^{2} g\right)} x_{k}=\left(\lambda_{k} / c^{2}\right) x_{k}$, a theorem of Takahashi [9] implies that x_{k} realizes an isometric minimal immersion of ($M, c^{2} g$) into a sphere of radius $\left(d c^{2} / \lambda_{k}\right)^{1 / 2}$ Thus we have $c^{2}=\lambda_{k} / d$.

Let \mathfrak{g} and \mathfrak{l} be the Lie algebras of G and K, respectively. Let \mathfrak{p} be the orthogonal complement of \mathfrak{f} in g with respect to an $\operatorname{Ad}(G)$-invariant inner product in \mathfrak{g}. Then the tangent space $x_{k}^{*}\left(T_{\sigma K}(M)\right)$ is

$$
\begin{equation*}
x_{k}^{*}\left(T_{\sigma K}(M)\right)=\{\sigma(X \cdot v) ; X \in \mathfrak{p}\} \tag{1.1}
\end{equation*}
$$

2. Classification theorem. In this section, we give a brief summary of the classification theorem of do Carmo and Wallach [3], and that of Toth and d'Ambra [12] stated in the introduction.

Let $\phi=\left(\phi_{0}, \phi_{1}, \cdots, \phi_{q}\right):(M, g) \rightarrow S_{1}^{q} \subset R^{q+1}$ be a full eigenmap of an irreducible Riemannian symmetric space (M, g) into the unit sphere S_{1}^{q} with $\Delta^{(M, g)} \phi=\lambda_{k} \phi, \lambda_{k} \in \operatorname{Spec}(M, g)$. Since ϕ is a full eigenmap, $\phi_{0}, \phi_{1}, \cdots, \phi_{q}$ are linearly independent, i.e., $q \leqq m(k)$. Thus there exists a matrix A of size $(m(k)+1) \times(m(k)+1)$ such that ($\left.\phi_{0}, \phi_{1}, \cdots, \phi_{q}, 0, \cdots, 0\right)=\left(f_{0}, f_{1}\right.$, $\left.\cdots, f_{m(k)}\right) A$. Taking the polar decomposition of A, we see that $i \circ \phi$ is equivalent to $S \circ x_{k}$, where i is the canonical inclusion $S^{q} \subset S^{m(k)}$ and S is a symmetric positive semi-definite matrix of size $(m(k)+1) \times(m(k)+1)$.

We identify the symmetric tensor product $S^{2}\left(V^{k}\right)$ with the space of all symmetric linear endomorphisms on V^{k} by

$$
u \cdot v(t)=(\langle u, t\rangle v+\langle v, t\rangle u) / 2, \quad u, v, t \in V^{k} .
$$

The inner product (,) on $S^{2}\left(V^{k}\right)$, induced from the inner product \langle, on V^{k} under the above identification, is $(A, B)=$ trace $A B$ for $A, B \in S^{2}\left(V^{k}\right)$. The induced action of G on $S^{2}\left(V^{k}\right)$ is $\sigma \cdot A=\sigma A \sigma^{-1}$ for $\sigma \in G, A \in S^{2}\left(V^{k}\right)$. Furthermore, we have $\langle A(u), v\rangle=(A, u \cdot v)$ for $A \in S^{2}\left(V^{k}\right), u, v \in V$.

Since $i \circ \phi$ is a map of M into the unit sphere, we have $\left\langle S\left(x_{k}(p)\right)\right.$, $\left.S\left(x_{k}(p)\right)\right\rangle=1$ for $p \in M$, i.e.,

$$
\left\langle S\left(x_{k}(\sigma K)\right), S\left(x_{k}(\sigma K)\right)\right\rangle=\left(S^{2}, \sigma \cdot v_{0}^{2}\right)=1, \quad \sigma \in G .
$$

Since $\left(I, \sigma \cdot v_{0}^{2}\right)=1$, we have

$$
\left(S^{2}-I, \sigma \cdot v_{0}^{2}\right)=0
$$

Let $W_{0}=\left\{\left\{G \cdot v_{0}^{2}\right\}\right\}$ be the R-linear span of $G \cdot v_{0}^{2}$ in $S^{2}\left(V^{k}\right)$ and let L_{E} be its orthogonal complement $L_{E}=\left\{C \in S^{2}\left(V^{k}\right) ; C \perp \sigma \cdot v_{0}^{2}, \sigma \in G\right\}$. Then $C=$ $S^{2}-I$ is contained in L_{E}. Let $W_{E}=\left\{C \in L_{E} ; C+I\right.$ is positive semi-definite\}. Then the correspondence

$$
W_{E} \ni C \mapsto(C+I)^{1 / 2} x_{k}
$$

gives a parametrization of the set of equivalence classes of full eigenmaps. This is an outline of the proof of Theorem 0.2 stated in the introduction.

Lemma 2.1 (do Carmo and Wallach [3]). If each irreducible K-submodules of V^{k} has multiplicity one, then W_{0} is the sum of all class one submodules of (G, K) in $S^{2}\left(V^{k}\right)$.

For the proof of Lemma 2.1, we refer to do Carmo and Wallach [3] or Toth [11]. Although do Carmo and Wallach [3] proved Lemma 2.1 only for the case $M=S^{n}$, their proof works well under the assumption of Lemma 2.1.

Remark 2.2. The assumption of Lemma 2.1 is satisfied if M is a symmetric space of compact type and of rank one (cf. [8] and [11]).

Now we consider the case where an eigenmap $S \circ x_{k}$ is an isometric immersion. In this case, $S \circ x_{k}$ is an isometric minimal immersion. By (1.1), $S \circ x_{k}$ is an isometric immersion if and only if

$$
\left\langle S\left(\sigma\left(X \cdot v_{0}\right)\right), S\left(\sigma\left(X \cdot v_{0}\right)\right)\right\rangle=\left\langle\sigma\left(X \cdot v_{0}\right), \sigma\left(X \cdot v_{0}\right)\right\rangle \text { for } \quad \sigma \in G, \quad X \in \mathfrak{p} .
$$

By an argument similar to that on eigenmaps, the equivalence classes of full isometric minimal immersions of $\left(M,\left(\lambda_{k} / d\right) g\right)$ into spheres are parametrized by the convex set $W_{M}=\left\{C \in L_{M} ; C+I\right.$ is positive semi-definite $\}$ in $L_{M}=\left\{C \in S^{2}\left(V^{k}\right) ; C \perp \sigma\left(X \cdot v_{0}\right)^{2}, \sigma \in G, X \in \mathfrak{p}\right\}$.

Let $x_{k}: M \rightarrow S_{1} \subset V^{k}$ be the k-th standard isometric minimal immersion and let $V_{1}=\left\{X \cdot v_{0} ; X \in \mathfrak{p}\right\}$. Then $S^{2}\left(V_{1}\right)$ is contained in $S^{2}\left(V^{k}\right)$ in a natural manner. Let L_{M}^{\prime} be the sum of all G-submodules of $S^{2}\left(V^{k}\right)$ which do not contain any K-irreducible factors of $S^{2}\left(V_{1}\right)$. Then we have:

Lemma 2.3 (do Carmo and Wallach [3]). L_{M}^{\prime} is contained in L_{m}.
3. Irreducible characters of compact Lie groups. In this section we explain the way to express irreducible characters of a compact Lie group as polynomials of fundamental irreducible characters.

Let G be a simple simply connected compact Lie group and T be a maximal torus of G. We denote by g and t the Lie algebras of G and T, respectively, and we denote by \langle,$\rangle a G$-invariant inner product on g. Define and fix once for all a lexicographic order $<$ in t . Let $\Sigma^{+}(G)$ be the set of all positive roots of g^{c} with respect to t^{c} and $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ be the set of all simple roots, where n is the rank of g. We put

$$
D(G)=\left\{H \in \mathrm{t} ;\langle\alpha, H\rangle \in \boldsymbol{Z} \quad \text { for some } \quad \alpha \in \Sigma^{+}(G)\right\}
$$

Take a component \mathfrak{b} of $t-D(G)$ whose closure contains the origin $o \in t$. Then the restriction of the exponential map \exp on \mathfrak{G} is a diffeomorphism of \mathfrak{G} onto $\exp (\mathfrak{G}) \subset G$. Let $\left\{\Lambda_{1}, \cdots, \Lambda_{n}\right\}$ be the system of fundamental weights, i.e., $2\left\langle\Lambda_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{j}, \alpha_{j}\right\rangle=\delta_{i j}, 1 \leqq i, j \leqq n$. Then the equivalence classes of all complex irreducible representations of G corresponds bijectively to

$$
D(G)=\left\{\sum_{j=1}^{n} m_{j} \Lambda_{j} ; m_{j}^{\prime} \text { 's are non-negative integers }\right\}
$$

We denote by $V(\Lambda)$ the corresponding irreducible G-module with highest weight $\Lambda \in D(G)$. For a complex G-module V, we denote by χ_{V} its character. For brevity, we denote also by χ_{A} the character $\chi_{V(\Lambda)}$ of $V(\Lambda)$. Put $z_{j}=\chi_{A_{j}}$. Then it is easily seen that each character χ_{V} is a polynomial in $z_{1}, z_{2}, \cdots, z_{n}$ with integral coefficients.

Recall the following facts on characters:
(i) The characters are determined by their restriction on $\exp (\mathfrak{G})$.
(ii) An irreducible character is an eigenfunction of the Laplacian Δ of G with respect to a bi-invariant Riemannian metric.

Let g be the G-invariant metric on G induced from the $\operatorname{Ad}(G)$-invariant inner product \langle,$\rangle on g$. Then the eigenvalue of Δ on χ_{A} is given by the following:

Lemma 3.1. The eigenvalue C_{1} of Δ on χ_{1} is

$$
C_{\Lambda}=\langle\Lambda+2 \delta, \Lambda\rangle, \quad \Lambda \in D(G),
$$

where $2 \delta=\sum_{j=1}^{n} \Lambda_{j}$
For the proof we refer, for instance, to [6].
A function h on G is called a class function if it satisfies $h\left(\sigma x \sigma^{-1}\right)=$ $h(x)$ for $x, \sigma \in G$. For example, characters are class functions. There exists a differential operator $\partial(\Delta)$ on $\exp (\mathfrak{h})$, called the radial part of Δ, such that

$$
\left.(\Delta h)\right|_{\exp (y)}=\partial(\Delta)\left(\left.h\right|_{\exp (y)}\right),
$$

if h is a class function. An explicit expression for $\partial(\Delta)$ is known (cf. [1]). But we will employ another expression.

Consider a polynomial in n variables $z_{1}, z_{2}, \cdots, z_{n}$. For any $\Lambda=$ $\sum_{j=1}^{n} m_{j} \Lambda_{j} \in D(G)$, we denote by z^{A} the monomial $z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. A polynomial $P\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ is said to be of degree Λ if

$$
P\left(z_{1}, z_{2}, \cdots, z_{n}\right)=\sum_{\lambda \leq \Lambda} a_{\lambda} z^{\lambda} \quad \text { with } \quad a_{A} \neq 0
$$

Since $V(\Lambda)$ is contained in $V\left(\Lambda_{1}\right)^{\otimes m_{1}} \otimes \cdots \otimes V\left(\Lambda_{n}\right)^{\otimes m_{n}}$ exactly once and the character of $V(\Lambda)^{\otimes m_{1}} \otimes \cdots \otimes V\left(\Lambda_{n}\right)^{\otimes m_{n}}$ is z^{4}, the character χ_{A} of $V(\Lambda)$ is the following monic polynomial of degree Λ

$$
\begin{equation*}
\chi_{\Lambda}=\sum_{\lambda \leq \Lambda} a_{\lambda} z^{\lambda}, \quad a_{\Lambda}=1 \tag{3.1}
\end{equation*}
$$

Let $\left\{t_{1}, \cdots, t_{n}\right\}$ be a linear coordinate system on \mathfrak{b}. Then it defines a coordinate system on $\exp (\mathfrak{h})$. We take another coordinate system on $\exp (\mathfrak{h})$. In general, characters are complex-valued functions. But if z_{i} is not real-valued, then there exists z_{j} such that $z_{i}=\bar{z}_{j}, i \neq j$ (cf. [4]). So we define $x_{1}, x_{2}, \cdots, x_{n}$ by

$$
x_{i}= \begin{cases}z_{i} & \text { if } \quad z_{i} \text { is real-valued }, \\ \operatorname{Re} z_{i} & \text { if } \quad z_{i}=\bar{z}_{j}, \quad i<j, \\ \operatorname{Im} z_{i} & \text { if } \quad z_{i}=\bar{z}_{j}, \quad j<i\end{cases}
$$

Lemma 3.2 (Vretare [15]).

$$
\partial\left(x_{1}, x_{2}, \cdots, x_{n}\right) / \partial\left(t_{1}, t_{2}, \cdots, t_{n}\right) \neq 0 \quad \text { on } \quad \exp (\mathfrak{h}) .
$$

Thus $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ defines a local coordinate system on $\exp (\mathfrak{h})$ and $\partial(\Delta)$ is expressed as

$$
\begin{equation*}
\partial(\Delta)=\sum_{1 \leq i \leq j \leq n} a_{i j} \partial^{2} / \partial x_{i} \partial x_{j}+\sum_{i \leq j \leq n} b_{j} \partial / \partial x_{j} \tag{3.2}
\end{equation*}
$$

where $a_{i j}$ and b_{j} are C^{∞} functions.
Lemma 3.3. Assume that $z_{1}, z_{2}, \cdots, z_{n}$ are real-valued. Then we have the following:
(i) $b_{j}=C_{\Lambda_{j}} z_{j}$ for $1 \leqq j \leqq n$.
(ii) For any $\Lambda \in D(G), \partial(\Delta) z^{1}$ is a polynomial of degree Λ with the highest term $C_{A} z^{4}$.
(iii) Put $\chi_{1_{i}+\Lambda_{j}}=z_{i} z_{j}+\sum_{i<\Lambda_{i}+\Lambda_{j}} a_{\lambda} z^{2}$. Then we have

$$
\begin{equation*}
\left(1+\delta_{i j}\right) a_{i j}=\left(C_{\Lambda_{i}+\Lambda_{j}}-C_{\Lambda_{i}}-C_{\Lambda_{j}}\right) z_{i} z_{j}+\left(C_{\Lambda_{i}+\Lambda_{j}}-\partial(\Delta)\right)\left(\sum_{\lambda<\Lambda_{i}+\Lambda_{j}} a_{\lambda} z^{\lambda}\right) \tag{3.3}
\end{equation*}
$$

Proof. (i) is clear, since z_{j} is an eigenfunction of $\partial(\Delta)$ corresponding to the eigenvalue $C_{A_{j}}$.
(ii) is proved by induction. Assume that (ii) holds for $\lambda \in D(G)$, $\lambda<\Lambda$. Then, since χ_{Λ} is a monic polynomial of degree Λ by (3.1) and is an eigenfunction of $\partial(\Delta)$ corresponding to the eigenvalue C_{A}, we have

$$
\partial(\Delta) \chi_{\Lambda}=\partial(\Delta) z^{\Lambda}+\partial(\Delta)\left(\sum_{\lambda<\Lambda} a_{\lambda} z^{1}\right)=C_{\Lambda}\left(z^{\Lambda}+\sum_{\lambda<A} a_{\lambda} z^{\lambda}\right) .
$$

Comparing both sides and then by the induction hypothesis, we have

$$
\partial(\Delta) z^{\Lambda}=C_{\Lambda} z^{\Lambda}+(\text { polynomial of degree }<\Lambda) .
$$

Namely, (ii) holds for $\Lambda \in D(G)$. Obviously (ii) holds for $\Lambda=0$. Thus (ii) is proved.
(iii) Since the character $\chi_{A_{i}+\Lambda_{j}}$ is an eigenfunction of $\partial(\Delta)$ corresponding to the eigenvalue $C_{\Lambda_{i}+\Lambda_{j}}$, we have (3.3). q.e.d.

Remark. (i) $a_{i j}$ a polynomial of degree $\Lambda_{i}+\Lambda_{j}, 1 \leqq i \leqq j \leqq n$, since the second term on the right hand side of (3.3) is a polynomial of degree less than $\Lambda_{i}+\Lambda_{j}$ by (ii) and ($C_{\Lambda_{i}+\Lambda_{j}}-C_{\Lambda_{i}}-C_{\Lambda_{j}}$) $=2\left\langle\Lambda_{i}, \Lambda_{j}\right\rangle \neq 0$, $1 \leqq i \leqq j \leqq n$.
(ii) By Lemma 3.3, we can inductively determine the coefficients $a_{i j}$ and b_{j} in (3.2).
(iii) The assumption of Lemma 3.3 is not essential. But for our purpose it is sufficient.

Now we explain the way of calculating the coefficients a_{2} 's in the expression (3.1) of χ_{1}. Let us number λ 's $\in D(G)$, which appear in (3.1), as

$$
\Lambda=\lambda_{0}>\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}
$$

Note that $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{N}$ must be the weights of $V(\Lambda)$. We know that $a_{\lambda_{0}}=1$. We go on inductively. Assume that we have first r coefficients $1=a_{\lambda_{0}}, a_{\lambda_{1}}, \cdots, a_{\lambda_{r-1}}, 1 \leqq r \leqq N$. Put $P_{r}=\sum_{j=0}^{r-1} a_{\lambda_{j}} z^{\lambda_{j}}$ and $Q_{r}=\sum_{j=r}^{N} a_{\lambda_{j}} z^{\lambda_{j}}$. Since $\chi_{A}=P_{r}+Q_{r}$ is an eigenfunction of $\partial(\Delta)$ corresponding to the eigenvalue C_{A}, we have

$$
\begin{equation*}
\partial(\Delta) P_{r}-C_{A} P_{r}=-\partial(\Delta) Q_{r}+C_{A} Q_{r} . \tag{3.4}
\end{equation*}
$$

Let αz^{μ} be the highest term on the left hand side. Since $\partial(\Delta) Q_{r}$ is a polynomial in $z_{1}, z_{2}, \cdots, z_{n}$ of degree λ_{r} and $C_{A}-C_{A_{r}} \neq 0$ [6, p. 191], the highest term on the right hand side is $\left(C_{A}-C_{\lambda_{r}}\right) a_{\lambda_{r}} z^{\lambda_{r}}$. Comparing the highest terms of both sides of (3.4), we have $\mu=\lambda_{r}$ and $a_{\lambda_{r}}=\alpha /\left(C_{A}-C_{\lambda_{r}}\right)$. Thus we have the following:

Lemma 3.4. Let $V(\Lambda)$ be the irreducible G-module with highest weight $\Lambda \in D(G)$. Assume that

$$
\begin{array}{r}
\chi_{\Lambda}=\sum_{j=0}^{r-1} a_{\lambda_{j}} z^{\lambda_{j}}+\left(\text { terms of degree }<\lambda_{r-1}\right), \\
\\
a_{\lambda_{0}}=1, \quad \Lambda=\lambda_{0}>\lambda_{1}>\cdots>\lambda_{r} .
\end{array}
$$

Put $P_{r}=\sum_{j=0}^{r-1} a_{\lambda_{j}} z^{\lambda_{j}}$ and let αz^{μ} be the highest term of $\partial(\Delta) P_{r}-C_{A} P_{r}$. Then we have
(i) $\mu=\lambda_{r}$.
(ii) $\chi_{A}=\sum_{j=0}^{r-1} a_{\lambda_{j}} z^{\lambda_{j}}+\left(\alpha /\left(C_{\Lambda}-C_{\lambda_{r}}\right)\right) z^{\lambda_{r}}+\left(\right.$ terms of degree $\left.<\lambda_{r}\right)$.

In order to decompose the symmetric tensor product $S^{2}\left(V^{k}\right)$, we need the following:

Lemma 3.5. Let $\chi_{1}^{(2)}$ be the character of $S^{2}(V(\Lambda))$. Then

$$
\begin{equation*}
\chi_{1}^{(2)}(\sigma)=\left(\chi_{1}(\sigma)^{2}+\chi_{1}\left(\sigma^{2}\right)\right) / 2 \quad \text { for } \quad \sigma \in G . \tag{3.5}
\end{equation*}
$$

For the proof of Lemma 3.5, we refer to [14].
4. Quaternion projective spaces. In this section, we use the following notation:

$$
G=S p(n)=\left\{\sigma \in U(2 n) ;{ }^{t} \sigma J_{n} \sigma=J_{n}\right\}, \quad n \geqq 3,
$$

where

$$
J_{n}=\left(\begin{array}{rr}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

and I_{n} is the $n \times n$ identity matrix.

$$
\begin{aligned}
& K=S p(1) \times S p(n-1)=\left\{\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & A & 0 & B \\
c & 0 & d & 0 \\
0 & C & 0 & D
\end{array}\right) ;\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p(1),\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in S p(n-1)\right\} \\
& \mathfrak{g}=\mathfrak{s p}(n)=\left\{X \in \mathfrak{H}(2 n) ;{ }^{t} X J_{n}+J_{n} X=0\right\} \\
& =\left\{\left(\begin{array}{rr}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right) ; A, B \in M_{n}(C),{ }^{t} \bar{A}+A=0, B={ }^{t} B\right\}, \\
& \mathfrak{l}=\mathfrak{g} \mathfrak{p}(1) \times \mathfrak{n} \mathfrak{p}(n-1) \\
& =\left\{\left(\begin{array}{rrrr}
x & 0 & y & 0 \\
0 & X & 0 & Y \\
-\bar{y} & 0 & \bar{x} & 0 \\
0 & -\bar{Y} & 0 & \bar{X}
\end{array}\right) ; \begin{array}{l}
{ }^{t} X+\bar{X}=0, \quad Y={ }^{t} Y
\end{array}\right\} \\
& B(X, Y)=-\operatorname{Trace}(X Y), \quad X, Y \in \mathfrak{g} \\
& \mathfrak{p}=\left\{\left(\begin{array}{cccc}
0 & Z & 0 & W \\
-{ }^{t} \bar{Z} & 0 & { }^{t} W & 0 \\
0 & -\bar{W} & 0 & \bar{Z} \\
-{ }^{t} \bar{W} & 0 & -{ }^{t} Z & 0
\end{array}\right) ; Z, W \in M(1, n-1, C)\right\}:
\end{aligned}
$$

the orthogonal complement of \mathfrak{f} in with respect to B,

$$
\left.\begin{array}{l}
T=\left\{\left(\begin{array}{llll}
\alpha_{1} & \ddots & & \\
& \ddots & & \\
& & \alpha_{n} & \\
& & \alpha_{1}^{-1} & \\
& & & \ddots
\end{array}\right) ; \alpha_{i} \in \boldsymbol{C}, \alpha_{i} \bar{\alpha}_{i}=1,1 \leqq i \leqq n\right\}, \\
\\
\\
\mathrm{t}=\left\{H\left(x_{1}, \cdots, x_{n}\right) ;\right. \\
\\
\end{array}\right)
$$

the Cartan subalgebra of \mathfrak{g} and \mathfrak{f}, where

$$
H\left(x_{1}, \cdots, x_{n}\right)=(-1)^{1 / 2}\left(\begin{array}{lllll}
x_{1} & & & & \\
& \ddots & & & \\
& & x_{n} & & \\
& & & -x_{1} & \\
& & & \ddots & \\
& & & & -x_{n}
\end{array}\right)
$$

We can identify $P^{n-1}(\boldsymbol{H})$ with G / K and introduce a G-invariant Riemannian metric induced from the inner product $B(X, Y), X, Y \in \mathfrak{p}$.

Define an element ε_{i} of t by

$$
\varepsilon_{i}=H\left(0, \cdots, 0, \frac{i}{1}, 0, \cdots, 0\right)
$$

and introduce a lexicographic order $>$ in t by

$$
\varepsilon_{1}>\varepsilon_{2}>\cdots>\varepsilon_{n}>0
$$

Let $\Sigma^{+}(G)$ (resp. $\Sigma^{+}(K)$) be the set of positive roots of the complexification g^{c} (resp. \mathfrak{t}^{c}) with respect to \mathfrak{t}^{c}. Then we have

$$
\begin{aligned}
& \Sigma^{+}(G)=\left\{\varepsilon_{i} \pm \varepsilon_{j} ; 1 \leqq i<j \leqq n\right\} \cup\left\{2 \varepsilon_{i} ; 1 \leqq i \leqq n\right\} \\
& \Sigma^{+}(K)=\left\{\varepsilon_{i} \pm \varepsilon_{j} ; 2 \leqq i<j \leqq n\right\} \cup\left\{2 \varepsilon_{i} ; 1 \leqq i \leqq n\right\}
\end{aligned}
$$

Then the dominant integral forms for G (resp. K) with respect to $>$ are

$$
\begin{aligned}
D(G) & =\left\{\sum_{i=1}^{n} a_{i} \varepsilon_{i} ; a_{i} \in \boldsymbol{Z}, a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \geqq 0\right\}, \\
D(K) & =\left\{\sum_{i=1}^{n} b_{i} \varepsilon_{i} ; b_{1} \in \boldsymbol{Z}, b_{1} \geqq 0, b_{2} \geqq b_{3} \geqq \cdots \geqq b_{n} \geqq 0\right\} .
\end{aligned}
$$

We put

$$
\mathfrak{G}=\left\{\sum_{i=1}^{n} a_{i} \varepsilon_{i} ; 1>a_{1}>a_{2}>\cdots>a_{n}>0\right\},
$$

$$
\delta_{G}=n \varepsilon_{1}+(n-1) \varepsilon_{2}+\cdots+\varepsilon_{n}
$$

The complexification \mathfrak{p}^{c} of \mathfrak{p} is the irreducible K-module with highest weight $\varepsilon_{1}+\varepsilon_{2}$. Then the symmetric tensor product $S^{2}\left(p^{c}\right)$ is decomposed as a K-module as (cf. [14])

$$
S^{2}\left(\mathfrak{p}^{c}\right)=V\left(2 \varepsilon_{1}+2 \varepsilon_{2}\right)+V\left(\varepsilon_{2}+\varepsilon_{3}\right)+V(0) .
$$

Lemma 4.1 (Urakawa [14]). (1) Let $n=3$. Then every G-module over \boldsymbol{C} which contains one of the K-irreducible factors of $S^{2}(\mathfrak{p})^{c}$ has the highest weight $\sum_{i=1}^{3} a_{i} \varepsilon_{i}$, where the triple $\left(a_{1}, a_{2}, a_{3}\right)$ is one of the following:

a_{1}	$k+2$	$k+3$	$k+1$	$k+4$	$k+2$	k
a_{2}	k	k	k	k	k	k
a_{3}	2	1	1	0	0	0
	$k \geqq 2$	$k \geqq 1$	$k \geqq 1$	$k \geqq 0$	$k \geqq 1$	$k \geqq 0$

(2) Let $n \geqq 4$. If $a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \geqq 0$ satisfy one of the conditions
(i) $a_{3} \geqq 3 \quad$ (ii) $a_{4} \geqq 2$ or (iii) $a_{i} \geqq 1$ for some $5 \leqq i \leqq n$, then the G-module $V\left(\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right)$ contains none of the K-irreducible components of $S^{2}\left(p^{c}\right)$.

Now we describe the radial part of the Laplacian Δ of $S p(n)$ with respect to the fundamental irreducible characters. We put $\Lambda_{j}=\sum_{i=1}^{j} \varepsilon_{i} \in$ $D(G)$. Then $\left\{\Lambda_{1}, \Lambda_{2}, \cdots, \Lambda_{n}\right\}$ is the fundamental weight system of $\mathfrak{B p}(n)$. It is known that each character z_{i} of $V\left(\Lambda_{i}\right)$ is real-valued. Thus we denote by x_{i} the character of $V\left(\Lambda_{i}\right)$. We also denote by x_{i} the restriction of x_{i} to $\exp (\mathfrak{h})$ and its pull back on \mathfrak{G} by $\exp : \mathfrak{b} \rightarrow T$.

Let g be the G-invariant Riemannian metric on G induced by B. We denote by $\Delta^{(6, g)}$ the Laplacian of (G, g). Then we have the following:

Lemma 4.2. The character χ_{A} of $V(\Lambda)$ for $\Lambda \in D(G)$ is an eigenfunction of $\Delta^{(G, g)}$ with eigenvalue

$$
C_{\Lambda}=\sum_{i=1}^{n}\left(a_{i}^{2}+2(n+1-i) a_{i}\right), \quad \Lambda=\sum_{i=1}^{n} a_{i} \varepsilon_{i} .
$$

The radial part $\partial\left(\Delta^{(G, g)}\right)$ is a differential operator of second order with polynomial coefficients. We have the first order term of $\partial(\Delta)$ easily by Lemma 3.3(i). But to get an explicit form of the second order terms we need the following:

Lemma 4.3 (Tsukamoto [13]). An $S p(n)$-module $V\left(\Lambda_{r}\right) \otimes V\left(\Lambda_{s}\right), 1 \leqq$ $r \leqq s \leqq n$, decomposes into irreducible modules as

$$
V\left(\Lambda_{r}\right) \otimes V\left(\Lambda_{s}\right)=\sum_{(i, j) \epsilon S} V\left(\Lambda_{i}+\Lambda_{j}\right),
$$

where the set S consists of pairs of non-negative integers (i, j) satisfying $s-r \leqq j-i \leqq 2 n-s-r, i+j \leqq r+s$ and $i+j \equiv r+s(\bmod 2)$.

Using the above lemma we can express the character $\chi_{1_{i}+\Lambda_{j}}$ as a polynomial in $x_{1}, x_{2}, \cdots, x_{n}$ and by (3.3) we can obtain the coefficients of the second order terms of $\partial\left(\Delta^{(S p(n), g)}\right)$.

Lemma 4.4. The radial part $\partial\left(\Delta^{(s p(n), g)}\right)$ is

$$
\begin{aligned}
& \partial\left(\Delta^{\left(s_{p}(n), g\right)}\right) \\
&=(2 n+1) x_{1} \partial / \partial x_{1}+4 n x_{2} \partial / \partial x_{2}+(6 n-3) x_{3} \partial / \partial x_{3}+(8 n-8) x_{4} \partial / \partial x_{4} \\
&+(10 n-15) x_{5} \partial / \partial x_{5}+\left(\text { terms in } \partial / \partial x_{6}, \cdots, \partial / \partial x_{n}\right) \\
&+x_{1}^{2} \partial^{2} / \partial x_{1}^{2}+2 x_{1} x_{2} \partial^{2} / \partial x_{1} \partial x_{2}+2 x_{1} x_{3} \partial^{2} / \partial x_{1} \partial x_{3} \\
&+2 x_{1} x_{4} \partial^{2} / \partial x_{1} \partial x_{4}+2 x_{1} x_{5} \partial^{2} / \partial x_{1} \partial x_{5} \\
&+\left(2 x_{2}^{2}-2 x_{1} x_{3}-2 n x_{1}^{2}\right) \partial^{2} / \partial x_{2}^{2}+\left(4 x_{2} x_{3}-6 x_{1} x_{4}-(4 n-2) x_{1} x_{2}\right) \partial^{2} / \partial x_{2} \partial x_{3} \\
&+\left(4 x_{2} x_{4}-8 x_{1} x_{5}-4(n-1) x_{1} x_{3}\right) \partial^{2} / \partial x_{2} \partial x_{4} \\
&+\left(6 x_{2} x_{5}-10 x_{1} x_{5}-(4 n-6) x_{1} x_{4}\right) \partial^{2} / \partial x_{2} \partial x_{5} \\
&+\left\{\begin{array}{l}
3 x_{3}^{2}-2 x_{2} x_{4}-2(n-1) x_{2}^{2}-4 x_{1} x_{5}-2 n x_{1}^{2}, \quad n \geqq 4 \\
3 x_{3}^{2}-4 x_{2}^{2}+4 x_{1} x_{3}-6 x_{1}^{2}, \\
\end{array}\right\}+\left(6 x_{3} x_{4}-16 x_{2} x_{5}-(10 n+1) x_{2} x_{3}+10 x_{1} x_{6}-(2 n+3) x_{1} x_{4}\right. \\
&\left.+(4 n-2) x_{1} x_{2}\right) \partial^{2} / \partial x_{3} \partial x_{4} \\
&+\left(\text { terms in } \partial^{2} / \partial x_{1} \partial x_{8}^{2}, \cdots, \partial^{2} / \partial x_{2} \partial x_{8}, \cdots, \partial^{2} / \partial x_{3} \partial x_{5}, \cdots\right),
\end{aligned}
$$

where the terms of degree $<\Lambda_{n}$ are omitted in the coefficients of the second order terms.

Let V^{k} be the k-th eigenspace of $\Delta^{(\mu, g)}$ and $\left(V^{k}\right)^{c}$ be its complexification. Then $\left(V^{k}\right)^{c}$ is an irreducible $S p(n)$-module with highest weight $k\left(\varepsilon_{1}+\varepsilon_{2}\right)=k \Lambda_{2}$. Thus the restriction to \mathfrak{G} of its character is a polynomial of degree $k \Lambda_{2}$.

We look for all irreducible $S p(n)$-submodules of $S^{2}\left(V\left(k \Lambda_{2}\right)\right)$ whose highest weights are greater than or equal to $4 \Lambda_{1}+(k-8) \Lambda_{2}+4 \Lambda_{3}$. For this purpose, we express $\chi_{k \Lambda_{2}}^{(2)}$ as a polynomial in x_{1}, \cdots, x_{n} in the following manner:
(i) We calculate the character $\chi_{k \Lambda_{2}}$ as a polynomial in x_{1}, \cdots, x_{n} by using Lemmas 3.4 and 4.4.
(ii) We denote by y_{j} the function on \mathfrak{h} defined by $y_{j}(H)=x_{j}(2 H)$ for $H \in \mathfrak{G}$ and find the expression for y_{j} as a polynomial in x_{1}, \cdots, x_{n} for $1 \leqq j \leqq n$.
(iii) By Lemma 3.6, the character $\chi_{k \lambda_{2}}^{(2)}$ is the polynomial in x_{1}, \cdots, x_{n} given by

$$
\begin{equation*}
\chi_{k \Lambda_{2}}^{(2)}=(1 / 2)\left(\left(\chi_{k \Lambda_{2}}\left(x_{1}, \cdots, x_{n}\right)\right)^{2}+\chi_{k \Lambda_{2}}\left(y_{1}, \cdots, y_{n}\right)\right) \tag{4.1}
\end{equation*}
$$

By Lemma 3.4 and 4.4, we calculate inductively the coefficients of the character $\chi_{k \Lambda_{2}}$ as a polynomial in x_{1}, \cdots, x_{n} up to $x_{1}^{4} x_{2}^{k-8} x_{3}^{4}$.

$$
\begin{align*}
\chi_{k \Lambda_{2}}= & x_{2}^{k}-(k-1) x_{1} x_{2}^{k-3} x_{3}+((k-2)(k-3) / 2) x_{1}^{2} x_{2}^{k-4} x_{3}^{2} \tag{4.2}\\
& +(k-2) x_{1}^{2} x_{2}^{k-3} x_{4}-x_{1}^{2} x_{2}^{k-2} \\
& -((k-3)(k-4)(k-5) / 6) x_{1}^{3} x_{2}^{k-8} x_{3}^{3} \\
& -(k-3)(k-4) x_{1}^{3} x_{2}^{k-5} x_{3} x_{4} \\
& -(k-3) x_{1}^{3} x_{2}^{k-4} x_{5}+\left\{\begin{array}{ll}
(k-3) x_{1}^{3} x_{2}^{k-4} x_{3}, \quad n>4 \\
2(k-3) x_{1}^{3} x_{2}^{k-4} x_{3}, \quad n=3
\end{array}\right\} \\
& +((k-4)(k-5)(k-6)(k-7) / 24) x_{1}^{4} x_{2}^{k-8} x_{3}^{4} \\
& +\left(\text { terms of degree }<4 \Lambda_{1}+(k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{align*}
$$

Since degree of the terms which appear in the expression for $\chi_{k \Lambda_{2}}$ are weights of $V\left(k \Lambda_{2}\right)$, we know that $x_{2}^{k}, x_{1} x_{2}^{k-2} x_{3}, \cdots, x_{1}^{4} x_{2}^{k-8} x_{3}^{4}$ and the terms of degree $<4 \Lambda_{1}+(k-8) \Lambda_{2}+4 \Lambda_{3}$ appear in the expression for $\chi_{k \Lambda_{2}}$. When we apply the terms of $\partial\left(\Delta^{(S p(n), g)}\right)$ which is not given explicitly in Lemma 4.4 to the monomials $x_{2}^{k}, \cdots, x_{1}^{4} x_{2}^{k-8} x_{3}^{4}$, the degree will be lower than $4 \Lambda_{1}+$ $(k-8) \Lambda_{2}+4 \Lambda_{3}$. Thus to obtain (4.2), the expression for $\partial\left(\Delta^{(S p(n), g)}\right)$ in Lemma 4.4 is sufficient.

Next we find the expression for y_{j} as a polynomial in x_{1}, \cdots, x_{n}. For any $\lambda \in \mathrm{t}$, we denote by by e^{λ} the function on t defined by $e^{\lambda}(H)=$ $e^{2 \pi i\langle H, \lambda\rangle}$ for $H \in \mathrm{t}$. Put $\omega_{\lambda}=\sum_{\lambda \in W} e^{\sigma \lambda}$, where W is the Weyl group of G. Counting the multiplicity of the weights of $V\left(\Lambda_{1}\right)$ (cf. [6]), we have $x_{1}=\omega_{1}$. Thus we have $y_{1}(H)=x_{1}(2 H)=\omega_{2 \Lambda_{1}}(H)$. On the other hand, we have

$$
\begin{aligned}
& \left(x_{1}(H)\right)^{2}=\left(\omega_{2 \Lambda_{1}}+2 \omega_{2}+2 n\right)(H) \\
& x_{2}(H)=\left(\omega_{21_{1}}+2(n-1)\right)(H)
\end{aligned}
$$

Thus we have,

$$
y_{1}=x_{1}^{2}-2 x_{2}+2
$$

Similarly we have,

$$
\begin{aligned}
& y_{2}=x_{2}^{2}-2 x_{1} x_{3}-2 x_{1}^{2}+\left(\text { terms of degree }<\Lambda_{n}\right), \\
& y_{3}=\left\{\begin{array}{l}
x_{3}^{2}-2 x_{2} x_{4}-2 x_{2}^{2}+x_{1} x_{5}+4 x_{1} x_{3}+2 x_{1}^{2}+\left(\text { terms of degree }<\Lambda_{n}\right) \\
x_{3}^{2}-2 x_{2} x_{4}-2 x_{2}^{2}+4 x_{1} x_{3}+2 x_{1}^{2}+\left(\text { terms of degree }<\Lambda_{n}\right) \\
\\
\\
x_{3}^{2}-2 x_{2}^{2}+2 x_{1} x_{3}+2 x_{1}^{2}+\left(\text { terms of degree }<\Lambda_{n}\right) \\
\text { if } n=4, \\
\text { if } n=3
\end{array}\right.
\end{aligned}
$$

Note that y_{j} is a polynomial in x_{1}, \cdots, x_{n} of degree $2 \Lambda_{j}$. When we substitute y_{j}^{\prime} 's into (4.2) instead of x_{j}^{\prime} 's, the degree of $y_{1}^{2} y_{2}^{k-3} y_{4}$ is $4 \Lambda_{1}+$ $2(k-3) \Lambda_{2}+2 \Lambda_{4}=2 k \varepsilon_{1}+(2 k-4) \varepsilon_{2}+2 \varepsilon_{3}+2 \varepsilon_{4}$ which is less than $4 \Lambda_{1}+$ $(2 k-4) \Lambda_{2}+4 \Lambda_{3}=2 k \varepsilon_{1}+(2 k-4) \varepsilon_{2}+4 \varepsilon_{3}$. Thus, for our purpose, there are no need to have expressions for y_{4}, y_{5}, \cdots as polynomials in $x_{1}, x_{2}, \cdots, x_{n}$ by (4.2). Substitute y_{i} 's into (4.2). Then, by (4.1), we have

$$
\begin{align*}
\chi_{k \Lambda_{2}}^{(2)}= & x_{2}^{2 k}-(2 k-1) x_{1} x_{2}^{2 k-2} x_{3}+\left(2 k^{2}-5 k+4\right) x_{1}^{2} x_{2}^{2 k-4} x_{3}^{2} \tag{4.3}\\
& +(2 k-3) x_{1}^{2} x_{2}^{2 k-3} x_{4}-2 x_{1}^{2} x_{2}^{2 k-2} \\
& -\left(\left(4 k^{3}-24 k^{2}+53 k-45\right) / 3\right) x_{1}^{3} x_{2}^{2 k-6} x_{3}^{3} \\
& -\left(4 k^{2}-16 k+18\right) x_{1}^{3} x_{2}^{2 k-5} x_{3} x_{4}-(2 k-4) x_{1}^{3} x_{2}^{2 k-4} x_{5} \\
& +(4 k-6) x_{1}^{3} x_{2}^{2 k-4} x_{3} \\
& +\left(\left(4 k^{4}-44 k^{3}+191 k^{2}-397 k+342\right) / 6\right) x_{1}^{4} x_{2}^{2 k-8} x_{3}^{4} \\
& +\left(\text { terms of degree }<4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{align*}
$$

By (4.2) and (4.3), we have

$$
\begin{align*}
\chi_{k \Lambda_{2}}^{(2)}-\chi_{2 k \Lambda_{2}}= & x_{1}^{2} x_{2}^{2 k-4} x_{3}^{2}-x_{1}^{2} x_{2}^{2 k-3} x_{4}-x_{1}^{2} x_{2}^{2 k-2} \tag{4.4}\\
& -(2 k-5) x_{1}^{2} x_{2}^{2 k-8} x_{3}^{3}+(2 k-6) x_{1}^{3} x_{2}^{2 k-5} x_{3} x_{4} \\
& +x_{1}^{3} x_{2}^{2 k-4} x_{5}+\left\{\begin{array}{ll}
(2 k-3) x_{1}^{3} x_{2}^{2 k-4} x_{3}, & n \geqq 4 \\
(2 k-4) x_{1}^{3} x_{2}^{2 k-4} x_{3}, & n=3
\end{array}\right\} \\
& +\left(2 k^{2}-13 k+22\right) x_{1}^{4} x_{2}^{2 k-8} x_{3}^{4} \\
& +\left(\text { terms of degree }<4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{align*}
$$

Thus we have the following decomposition for $k \geqq 2$;

$$
S^{2}\left(V\left(k \Lambda_{2}\right)\right)=V\left(2 k \Lambda_{2}\right)+V\left(2 \Lambda_{1}+2(k-2) \Lambda_{2}+2 \Lambda_{3}\right)+\cdots .
$$

Since $V\left(2 \Lambda_{1}+2(k-2) \Lambda_{2}+2 \Lambda_{3}\right)$ is not a class one representation of ($S p(n), S p(1) \times S p(n-1)$), L_{E}^{c} contains it by Lemma 2.1. By Weyl's dimension formula we have

$$
\operatorname{dim}_{c} V\left(2 \Lambda_{1}+2(k-2) \Lambda_{2}+2 \Lambda_{3}\right) \geqq \operatorname{dim}_{c} V\left(2 \Lambda_{1}+2 \Lambda_{3}\right) \geqq 1078,
$$

if $k \geqq 2$ and $n \geqq 3$. On the other hand, we have

$$
S^{2}\left(V\left(\Lambda_{2}\right)\right)=\left\{\begin{array}{lll}
V\left(2 \Lambda_{2}\right)+V\left(\Lambda_{2}\right)+V(0) & \text { if } \quad n=3 \\
V\left(2 \Lambda_{2}\right)+V\left(\Lambda_{4}\right)+V\left(\Lambda_{2}\right)+V(0) & \text { if } \quad n \geqq 4
\end{array}\right.
$$

Thus, when $k=1$, we have $L_{E}^{c}=0$ for $n=3$ and $\operatorname{dim}_{c} L_{E}^{c}=\operatorname{dim}_{c} V\left(\Lambda_{4}\right) \geqq 42$ for $n \geqq 4$. Summing up, we have:

Theorem A. Let $M=S p(n) / S p(1) \times S p(n-1)$ be the quaternion projective space $P^{n-1}(\boldsymbol{H})$ with an $S p(n)$-invariant Riemannian metric. Then
(i) $\operatorname{dim} L_{E}=0$ if $k=1$ and $n=3$, $\operatorname{dim} L_{E} \geqq 42 \quad$ if $k=1$ and $n \geqq 4$,
(ii) $\operatorname{dim} L_{E} \geqq 1078$ if $k \geqq 2$ and $n \geqq 3$.

Furthermore, we calculate the character of $V\left(2 \Lambda_{1}+(2 k-4) \Lambda_{2}+2 \Lambda_{3}\right)$ as

$$
\begin{aligned}
\chi_{2 \Lambda_{1}+(2 k-4) A_{2}+2 \Lambda_{3}}= & x_{1}^{2} x_{2}^{2 k-4} x_{3}^{2}-x_{1}^{2} x_{2}^{2 k-3} x_{4}-x_{1}^{2} x_{2}^{2 k-2} \\
& -(2 k-5) x_{1}^{2} x_{2}^{2 k-6} x_{3}^{3}+(2 k-6) x_{1}^{3} x_{2}^{2 k-5} x_{3} x_{4} \\
& +x_{1}^{3} x_{2}^{2 k-4} x_{5}+\left\{\begin{array}{ll}
(2 k-4) x_{1}^{3} x_{2}^{2 k-4} x_{3}, & n \geqq 4 \\
(2 k-5) x_{1}^{3} x_{2}^{2 k-4} x_{3}, & n=3
\end{array}\right\} \\
& +(k-3)(2 k-7) x_{1}^{4} x_{2}^{2 k-8} x_{3}^{4} \\
& +\left(\text { terms of degree }<4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{aligned}
$$

Thus we have from (4.4)

$$
\begin{align*}
\chi_{k \Lambda_{2}}^{(2)}- & \chi_{2 k \Lambda_{2}}-\chi_{2 \Lambda_{1}+(2 k-4) \Lambda_{2}+2 \Lambda_{3}}=x_{1}^{3} x_{2}^{2 k-4} x_{3}+x_{1}^{4} x_{2}^{2 k-8} x_{3}^{4} \tag{4.5}\\
& \quad+\left(\text { terms of degree }<4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{align*}
$$

By a simple calculation, we have

$$
\begin{aligned}
\partial(\Delta) x_{1}^{3} x_{2}^{2 k-4} x_{3}= & C_{3 \Lambda_{1}+(2 k-4) \Lambda_{2}+\Lambda_{3}} x_{1}^{3} x_{2}^{2 k-4} x_{3} \\
& +\left(\text { terms of degree }<4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{aligned}
$$

Thus by (4.5) we have

$$
\begin{aligned}
& \chi_{k \Lambda_{2}}^{(2)}-\chi_{2 k \Lambda_{2}}-\chi_{2 \Lambda_{1}+(2 k-4) \Lambda_{2}+2 \Lambda_{3}}-\chi_{3 \Lambda_{1}+(2 k-4) \Lambda_{2}+\Lambda_{3}} \\
& \quad=x_{1}^{4} x_{2}^{2 k-8} x_{3}^{4}+\left(\text { terms of degree }<4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) .
\end{aligned}
$$

Finally we have the following decomposition if $k \geqq 4$:

$$
\begin{align*}
& S^{2}\left(V\left(k \Lambda_{2}\right)\right)=V\left(2 k \Lambda_{2}\right)+V\left(2 \Lambda_{1}+(2 k-4) \Lambda_{2}+2 \Lambda_{3}\right) \tag{4.6}\\
& \quad+V\left(3 \Lambda_{1}+(2 k-4) \Lambda_{2}+\Lambda_{3}\right)+V\left(4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right)+\cdots
\end{align*}
$$

By Lemma 4.1, $V\left(4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right)=V\left(2 k \varepsilon_{1}+(2 k-4) \varepsilon_{2}+4 \varepsilon_{3}\right)$ contains none of the K-irreducible components of $S^{2}\left(\mathfrak{p}^{c}\right)$. By Weyl's dimension formula, we have

$$
\operatorname{dim}_{c} V\left(4 \Lambda_{1}+(2 k-8) \Lambda_{2}+4 \Lambda_{3}\right) \geqq \operatorname{dim}_{c} V\left(4 \Lambda_{1}+4 \Lambda_{3}\right) \geqq 41140
$$

if $n \geqq 3$ and $k \geqq 4$. When $k=3$, we have the following decomposition if $n \geqq 4$:

$$
S^{2}\left(V\left(3 \Lambda_{2}\right)\right)=\left\{\begin{array}{c}
V\left(6 \Lambda_{2}\right)+V\left(2 \Lambda_{1}+2 \Lambda_{2}+2 \Lambda_{3}\right)+V\left(3 \Lambda_{1}+2 \Lambda_{2}+\Lambda_{3}\right) \\
\quad+V\left(4 \Lambda_{2}+2 \Lambda_{2}\right)+V\left(5 \Lambda_{2}\right)+V\left(\Lambda_{1}+3 \Lambda_{2}+\Lambda_{3}\right) \\
\quad+V\left(2 \Lambda_{1}+\Lambda_{2}+2 \Lambda_{3}\right)+V\left(3 \Lambda_{1}+\Lambda_{2}+\Lambda_{3}\right)+V\left(4 \Lambda_{1}+\Lambda_{2}\right) \\
\quad+V\left(4 \Lambda_{2}\right)+V\left(\Lambda_{1}+3 \Lambda_{3}\right)+\cdots, \text { if } n=3 \\
V\left(6 \Lambda_{2}\right)+V\left(2 \Lambda_{1}+2 \Lambda_{2}+2 \Lambda_{3}\right)+V\left(3 \Lambda_{1}+2 \Lambda_{2}+\Lambda_{3}\right) \\
\quad+V\left(4 \Lambda_{1}+2 \Lambda_{2}\right)+V\left(4 \Lambda_{2}+\Lambda_{4}\right)+\left(5 \Lambda_{2}\right) \\
\\
+V\left(2 \Lambda_{1}+2 \Lambda_{3}+\Lambda_{4}\right)+\cdots
\end{array}\right.
$$

By Lemma 4.1, $V\left(\Lambda_{1}+3 \Lambda_{3}\right)=V\left(4 \varepsilon_{1}+3 \varepsilon_{2}+3 \varepsilon_{3}\right)$ for $n=3$ and $V\left(2 \Lambda_{1}+\right.$ $\left.2 \Lambda_{3}+\Lambda_{4}\right)=V\left(5 \varepsilon_{1}+3 \varepsilon_{2}+3 \varepsilon_{3}+\varepsilon_{4}\right)$ for $n \geqq 4$ contain none of the K-irreducible components of $S^{2}\left(\mathfrak{p}^{c}\right)$. By Weyl's dimension formula, we have

$$
\begin{array}{ll}
\operatorname{dim}_{c} V\left(\Lambda_{1}+\Lambda_{3}\right)=1386 & \text { if } n=3 \\
\operatorname{dim}_{c} V\left(2 \Lambda_{1}+2 \Lambda_{3}+\Lambda_{4}\right) \geqq 21344 & \text { if } n \geqq 4
\end{array}
$$

Thus by Lemma 2.3, we have the following:
Theorem B. Let $M=P^{n-1}(\boldsymbol{H})$ be the quaternion projective space with an $S p(n)$-invariant Riemannian metric. Then
(i) $\operatorname{dim} L_{M}=0$ if $k=1$ and $n \geqq 3$,
(ii) $\operatorname{dim} L_{M} \geqq 1386$ if $k \geqq 3$ and $n \geqq 3$.

Remark. When $k=2$ and $n=3$, we have the decomposition

$$
\begin{aligned}
S^{2}\left(V\left(2 \Lambda_{2}\right)\right)= & V\left(4 \Lambda_{2}\right)+V\left(2 \Lambda_{1}+2 \Lambda_{3}\right)+V\left(3 \Lambda_{1}+\Lambda_{3}\right)+V\left(4 \Lambda_{1}\right) \\
& +V\left(3 \Lambda_{2}\right)+V\left(\Lambda_{1}+\Lambda_{2}+\Lambda_{3}\right)+V\left(2 \Lambda_{2}\right)+V\left(\Lambda_{2}\right)+V(0)
\end{aligned}
$$

Thus by Lemma 4.1, we have $\operatorname{dim} L_{M}^{\prime}=0$. But we cannot say anything about $\operatorname{dim} L_{M}$.
5. The Cayley projective plane. Let $G=F_{4}, K=\operatorname{Spin}(9)$ and let T be a maximal torus of $\operatorname{Spin}(9)$. We denote by g, \mathfrak{t} and t the Lie algebras of G, K and T, respectively. Let B be a G-invariant inner product in \mathfrak{g} and \mathfrak{p} be the orthogonal complement of $\mathfrak{l} \mathfrak{g}$ with respect to B. Then we can identify the Cayley projective plane $P^{2}(\boldsymbol{C a})$ with G / K and introduce a G-invariant Riemannian metric induced from the inner product $B(X, Y)$ for $X, Y \in \mathfrak{p}$.

Under suitable choise of an orthogonal base $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right\}$ of t, the set $\Sigma^{+}(G)$ (resp. $\Sigma^{+}(K)$) of positive roots of G (resp. K) with respect to the lexicographic order defined by $\varepsilon_{1}>\varepsilon_{2}>\varepsilon_{3}>\varepsilon_{4}>0$ are

$$
\begin{aligned}
\Sigma^{+}(G)= & \left\{\varepsilon_{i} ; 1 \leqq i \leqq 4\right\} \cup\left\{\varepsilon_{i} \pm \varepsilon_{j} ; 1 \leqq i<j \leqq 4\right\} \\
& \cup\left\{(1 / 2) \sum_{i=1}^{4} a_{i} \varepsilon_{i} ; a_{i}= \pm 1,1 \leqq i \leqq 4\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Sigma^{+}(K)= & \left\{\varepsilon_{i} \pm \varepsilon_{j} ; 1 \leqq i<j \leqq 4\right\} \\
& \cup\left\{(1 / 2) \sum_{i=1}^{4} a_{i} \varepsilon_{i} ; a_{i}= \pm 1,1 \leqq i \leqq 4, \prod_{i=1}^{4} a_{i}=-1\right\}
\end{aligned}
$$

The set of dominant integral forms for G (resp. K) are

$$
\begin{array}{r}
D(G)=\left\{\sum_{i=1}^{4} a_{i} \varepsilon_{i} ; a_{1} \geqq a_{2} \geqq a_{3} \geqq a_{4} \geqq 0, a_{1} \geqq a_{2}+a_{3}+a_{4},\right. \\
\left.2 a_{1}, a_{1}-a_{2}, a_{2}-a_{3}, a_{3}-a_{4} \in \boldsymbol{Z}\right\}, \\
D(K)=\left\{\sum_{i=1}^{4} b_{i} \varepsilon_{i} ; b_{1} \geqq b_{2} \geqq b_{3} \geqq\left|b_{4}\right|, b_{1} \geqq b_{2}+b_{3}+b_{4},\right. \\
\left.2 b_{1}, b_{1}-b_{2}, b_{2}-b_{3}, b_{2}-b_{4} \in \boldsymbol{Z}\right\}
\end{array}
$$

We put

$$
\begin{aligned}
& \mathfrak{G}=\left\{\sum_{i=1}^{4} a_{i} \varepsilon_{i} ; 1 \geqq a_{1}+a_{2}, a_{2} \geqq a_{3} \geqq a_{4} \geqq 0, a_{1} \geqq a_{2}+a_{3}+a_{4}\right\}, \\
& \delta_{G}=\left(11 \varepsilon_{1}+5 \varepsilon_{2}+3 \varepsilon_{3}+\varepsilon_{1}\right) / 2 .
\end{aligned}
$$

Let \mathfrak{p} be the orthogonal complement of $\mathfrak{t} \mathfrak{g}$. Then \mathfrak{p}^{c} is the irreducible K-module with highest weight ε_{1} and the symmetric tensor product $S^{2}\left(\mathfrak{p}^{c}\right)$ is decomposed as

$$
S^{2}\left(p^{c}\right)=V\left(2 \varepsilon_{1}\right)+V\left(\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}\right) / 2\right)+V(0)
$$

Lemma 5.1 (Mashimo [7]). Every G-module over C which contains one of the K-irreducible component of $S^{2}\left(\mathfrak{p}^{c}\right)$ has the highest weight $\sum_{i=1}^{4} a_{i} \varepsilon_{i}$, where the quadruple ($a_{1}, a_{2}, a_{3}, a_{4}$) is one of the following:

a_{1}	$k / 2$	$k / 2$	k	k	k	k
a_{2}	$3 / 2$	$1 / 2$	1	2	1	0
a_{3}	$1 / 2$	$1 / 2$	1	0	0	0
a_{4}	$1 / 2$	$1 / 2$	1	0	0	0
	$k \geqq 5$	$k \geqq 3$	$k \geqq 3$	$k \geqq 2$	$k \geqq 2$	$k \geqq 0$

Now we describe the radial part of the Laplacian Δ of F_{4} with respect to the fundamental irreducible characters. We put

$$
\begin{aligned}
& \Lambda_{1}=\varepsilon_{1}+\varepsilon_{2}, \\
& \Lambda_{2}=2 \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}, \\
& \Lambda_{3}=\left(3 \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right) / 2, \\
& \Lambda_{4}=\varepsilon_{1} .
\end{aligned}
$$

Then $\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}\right\}$ is the fundamental weight system of g. It is known that each character z_{i} of $V\left(\Lambda_{i}\right)$ is real-valued. So we denote it by x_{i}. We denote also by x_{i} the restriction of x_{i} to $\exp (\mathfrak{k})$ and its pull back on \mathfrak{G} by $\exp : \mathfrak{h} \rightarrow T$.

Let g be the G-invariant Riemannian metric on G induced by B. We denote by $\Delta^{(a, g)}$ the Laplacian of (G, g). Then we have the following:

Lemma 5.2. The character χ_{A} of $V(\Lambda)$ for $\Lambda=\sum_{i=1}^{4} a_{i} \varepsilon_{i} \in D(G)$ is an eigenfunction of $\Delta^{(G, g)}$ with eigenvalue

$$
C_{4}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+11 a_{1}+5 a_{2}+3 a_{3}+a_{4} .
$$

Lemma 5.3. The radial part of $\partial\left(\Delta^{\left(F_{4}, q\right)}\right)$ is

$$
\begin{aligned}
& \partial\left(\Delta^{\left(F_{4}, g\right)}\right)=18 x_{1} \partial / \partial x_{1}+36 x_{2} \partial / \partial x_{2}+24 x_{3} \partial / \partial x_{3}+12 x_{4} \partial / \partial x_{4} \\
& \quad+\left(2 x_{1}^{2}-7 x_{4}^{2}-4 x_{1}-2 x_{2}+7 x_{3}+7 x_{4}-13\right) \partial^{2} / \partial x_{1}^{2} \\
& \quad+\left(6 x_{1} x_{2}-6 x_{3}^{2}+6 x_{2} x_{4}-6 x_{1} x_{4}+6 x_{4}^{3}+6 x_{1} x_{3}-21 x_{3} x_{4}-8 x_{1}^{2}+17 x_{2}\right. \\
& \left.\quad-x_{4}^{2}-x_{3}-2 x_{1}-13 x_{4}+13\right) \partial^{2} / \partial x_{1} \partial x_{2} \\
& \quad+\left(4 x_{1} x_{3}-7 x_{3} x_{4}-7 x_{1} x_{4}-13 x_{4}^{2}+20 x_{1}+7 x_{2}+5 x_{3}-7 x_{4}+13\right) \partial^{2} / \partial x_{1} \partial x_{3} \\
& \quad+\left(2 x_{1} x_{4}-8 x_{3}-20 x_{4}\right) \partial^{2} / \partial x_{1} \partial x_{4} \\
& \quad+\left(12 x_{2}^{2}-8 x_{1}^{3}+6 x_{1}^{2}-30 x_{3}^{2}-6 x_{4}^{4}-20 x_{4}^{3}+18 x_{4}^{2}-4 x_{1} x_{3}^{2}+12 x_{1} x_{4}^{3}\right. \\
& \quad-6 x_{1}^{2} x_{4}^{2}+8 x_{2} x_{4}^{2}+6 x_{1} x_{4}^{2}+40 x_{3} x_{4}^{3}+30 x_{1} x_{2}+6 x_{1}^{2} x_{3}+8 x_{2} x_{3}-26 x_{1} x_{3} \\
& \quad+16 x_{1}^{2} x_{4}-8 x_{3}^{2} x_{4}-32 x_{2} x_{4}+4 x_{1} x_{2} x_{4}-20 x_{1} x_{4}-34 x_{1} x_{3} x_{4}+42 x_{3} x_{4}-22 x_{2} \\
& \left.\quad+2 x_{1}-32 x_{3}+20 x_{4}-26\right) \partial^{2} / \partial x_{2}^{2} \\
& \quad+\left(8 x_{2} x_{3}-5 x_{1} x_{3} x_{4}-7 x_{3} x_{4}^{2}+5 x_{1} x_{2}-7 x_{1}^{2} x_{4}-2 x_{3}^{2}+17 x_{2} x_{4}+6 x_{1} x_{4}^{2}+7 x_{4}^{3}\right. \\
& \left.\quad-15 x_{1} x_{3}-x_{3} x_{4}+8 x_{1}^{2}-20 x_{2}-7 x_{1} x_{4}-7 x_{4}^{2}+22 x_{3}+x_{1}-7 x_{4}\right) \partial^{2} / \partial x_{2} \partial x_{3} \\
& \quad+\left(4 x_{2} x_{4}-6 x_{1} x_{3}-7 x_{3} x_{4}-7 x_{1} x_{4}+13 x_{4}^{2}\right. \\
& \left.\quad-6 x_{1}+7 x_{2}-21 x_{3}+7 x_{4}-13\right) \partial^{2} / \partial x_{2} \partial x_{4} \\
& \quad+\left(3 x_{3}^{2}-x_{2} x_{4}-3 x_{1} x_{4}^{2}-6 x_{4}^{3}+4 x_{3} x_{4}-4 x_{1}^{2}+3 x_{2}\right. \\
& \left.\quad-x_{1} x_{4}-x_{4}^{2}+2 x_{3}+4 x_{1}+14 x_{4}-13\right) \partial^{2} / \partial x_{3}^{2} \\
& \quad+\left(3 x_{3} x_{4}-7 x_{1} x_{4}-13 x_{4}^{2}-8 x_{1}-3 x_{2}+5 x_{3}-7 x_{4}+13\right) \partial^{2} / \partial x_{3} \partial x_{4} \\
& \quad+\left(x_{4}^{2}-4 x_{1}-x_{3}-7 x_{4}-13\right) \partial^{2} / \partial x_{4}^{2}
\end{aligned}
$$

Proof. The first order terms of $\partial(\Delta)$ are easily obtained by Lemmas 3.3 and 5.2. The second order terms are also obtained by Lemma 3.3. We omit the lengthy and tedious calculation. q.e.d.

Let V^{k} be the k-th eigen-space of $\Delta^{(\mu, g)}$ and $\left(V^{k}\right)^{c}$ be its complexification. Then $\left(V^{k}\right)^{c}$ is an irreducible F_{4}-module with highest weight $k \Lambda_{4}=$ $k \varepsilon_{1}$. Thus the restriction to \mathfrak{G} of its character is a polynomial of degree
$k \Lambda_{4}$. By Lemmas 3.4 and 5.3 , we can calculate inductively its coefficients up to $x_{3}^{4} x_{4}^{k-8}$.

$$
\begin{align*}
\chi_{k \Lambda_{4}}= & x_{4}^{k}-(k-1) x_{3} x_{4}^{k-2}+((k-2)(k-3) / 2) x_{3}^{2} x_{4}^{k-4} \tag{5.1}\\
& +(k-2) x_{2} x_{4}^{k-3}-x_{1} x_{4}^{k-2}-x_{4}^{k-1} \\
& -((k-3)(k-4)(k-5) / 6) x_{3}^{3} x_{4}^{k-6}-(k-3)(k-4) x_{2} x_{3} x_{4}^{k-5} \\
& +(k-3) x_{1} x_{3} x_{4}^{k-4}+(k-3) x_{3} x_{4}^{k-3} \\
& +((k-4)(k-5)(k-6)(k-7) / 24) x_{3}^{4} x_{4}^{k-8} \\
& +\left(\text { terms of degree }<4 \Lambda_{3}+(k-8) \Lambda_{4}\right) .
\end{align*}
$$

We calculate the character of $S^{2}\left(V\left(\Lambda_{4}\right)\right)$ as a polynomial in x_{1}, \cdots, x_{4} up to $x_{3}^{4} x_{2}^{2 k-8}$ by a similar manner to that used in $\S 4$. We put $y_{j}(H)=$ $x_{j}(2 H)$ for $H \in \mathrm{t}$. Then by Lemma 3.5, the character $\chi_{k \Lambda_{4}}^{(2)}$ of $S^{2}\left(V\left(k \Lambda_{4}\right)\right)$ is

$$
\chi_{k 1_{4}}^{(2)}=(1 / 2)\left(\left(\chi_{k \Lambda_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)^{2}+\chi_{k 1_{4}}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right) .
$$

When we substitute y_{i} 's into (5.1) instead of x_{i} 's, the degree of $y_{2} y_{4}^{k-3}$ is less than that of $x_{3}^{4} x_{4}^{2 k-8}$. Thus we need only explicit expression for y_{3} and y_{4} as polynomials in x_{1}, x_{2}, x_{3} and x_{4}, which can be obtained similarly as in $\S 4$ as follows:

$$
\begin{aligned}
& y_{3}=x_{3}^{2}-2 x_{2} x_{4}-2 x_{1} x_{4}^{2}+4 x_{1} x_{3}+2 x_{1}^{2}+2 x_{1} \\
& y_{4}=x_{4}^{2}-2 x_{1}-2 x_{3}
\end{aligned}
$$

Multiplicities of weights, which we need in the calculation, are found in [2]. Substituting y_{i} 's, we have

$$
\begin{align*}
\chi_{k 4_{4}}^{(2)}= & x_{4}^{2 k}-(2 k-1) x_{3} x_{4}^{2 k-2}+\left(2 k^{2}-5 k+4\right) x_{3}^{2} x_{4}^{2 k-8} \tag{5.2}\\
& +(2 k-3) x_{2} x_{4}^{2 k-3}-2 x_{1} x_{4}^{2 k-2}-x_{4}^{2 k-1} \\
& -\left(\left(4 k^{3}-24 k^{2}+53 k-45\right) / 3\right) x_{3}^{3} x_{4}^{2 k-6} \\
& -\left(4 k^{2}-16 k+18\right) x_{2} x_{3} x_{4}^{2 k-5}+(4 k-6) x_{1} x_{3} x_{4}^{2 k-4} \\
& +(2 k-4) x_{3} x_{4}^{2 k-3} \\
& +\left(\left(4 k^{4}-44 k^{3}+191 k^{2}-397 k+342\right) / 6\right) x_{3}^{4} x_{4}^{2 k-8} \\
& +\left(\text { terms of degree }<4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) .
\end{align*}
$$

By (5.1) and (5.2), we have

$$
\begin{align*}
\chi_{k \Lambda_{4}}^{(2)}-\chi_{2 k \Lambda_{4}}= & x_{3}^{2} x_{4}^{2 k-4}-x_{2} x_{4}^{2 k-3}-x_{1} x_{4}^{2 k-2} \tag{5.3}\\
& -(2 k-5) x_{3}^{3} x_{4}^{2 k-6}+(2 k-6) x_{2} x_{3} x_{4}^{2 k-5} \\
& +(2 k-3) x_{1} x_{3} x_{4}^{2 k-4}-x_{3} x_{4}^{2 k-3} \\
& +\left(2 k^{2}-13 k+22\right) x_{3}^{4} x_{4}^{2 k-8} \\
& +\left(\text { terms of degree }<4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) .
\end{align*}
$$

Thus we have the following decomposition for $k \geqq 2$:

$$
S^{2}\left(V\left(k \Lambda_{4}\right)\right)=V\left(2 k \Lambda_{4}\right)+V\left(2 \Lambda_{3}+2(k-2) \Lambda_{4}\right)+\cdots .
$$

Since $V\left(2 \Lambda_{3}+2(k-2) \Lambda_{4}\right)$ is not a class one representation of ($\left.F_{4}, \operatorname{Spin}(9)\right)$, L_{E}^{c} contains it by Lemma 2.1. On the other hand, we have $L_{E}^{c}=0$ for $k=1$, Since $S^{2}\left(V\left(\Lambda_{4}\right)\right)=V\left(2 \Lambda_{4}\right)+V\left(\Lambda_{4}\right)+V(0)$. By Weyl's dimension formula we have

$$
\operatorname{dim}_{c} V\left(2 \Lambda_{3}+2(k-2) \Lambda_{4}\right) \geqq \operatorname{dim}_{C} V\left(2 \Lambda_{3}\right)=19448
$$

if $k \geqq 2$. Thus we have the following:
Theorem C. Let $M=F_{4} / \operatorname{Spin}(9)$ be the Cayley projective plane $P^{2}(\boldsymbol{C a})$ with an F_{4}-invariant Riemannian metric. Then
(i) $\operatorname{dim} L_{E}=0 \quad$ if $k=1$,
(ii) $\operatorname{dim} L_{E} \geqq 19448$ if $k \geqq 2$.

Furthermore, we calculate the character of $V\left(2 \Lambda_{3}+(2 k-4) \Lambda_{4}\right)$ as

$$
\begin{aligned}
\chi_{2 \Lambda_{3}+(2 k-4) \Lambda_{4}}= & x_{3}^{2} x_{4}^{2 k-4}-x_{2} x_{4}^{2 k-3}-x_{1} x_{4}^{2 k-2}-x_{4}^{2 k-1} \\
& -(2 k-5) x_{3}^{3} x_{4}^{2 k-8}+(2 k-6) x_{2} x_{3} x_{4}^{2 k-5} \\
& +(2 k-4) x_{1} x_{3} x_{4}^{2 k-4}+(2 k-3) x_{3} x_{4}^{2 k-3} \\
& +(k-3)(2 k-7) x_{3}^{4} x_{4}^{2 k-8} \\
& +\left(\text { terms of degree }<4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) .
\end{aligned}
$$

Thus we have from (5.3)

$$
\begin{align*}
\chi_{k \Lambda_{4}}^{(2)}- & \chi_{2 k \Lambda_{4}}-\chi_{2 \Lambda_{3}+(2 k-4) \Lambda_{4}} \tag{5.4}\\
= & x_{4}^{2 k-1}+x_{1} x_{3} x_{4}^{2 k-4}-(2 k+4) x_{3} x_{4}^{2 k-3}+x_{3}^{4} x_{4}^{2 k-8} \\
& \quad+\left(\text { terms of degree }<4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) .
\end{align*}
$$

The character of $V\left(\Lambda_{1}+\Lambda_{3}+(2 k-4) \Lambda_{4}\right)$ is

$$
\begin{aligned}
\chi_{\Lambda_{1}+\Lambda_{3}+(2 k-4) \Lambda_{4}}= & x_{1} x_{3} x_{4}^{2 k-4}-x_{3} x_{4}^{2 k-3} \\
& +\left(\text { terms of degree }<4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) .
\end{aligned}
$$

Thus by (5.1) and (5.4), we have

$$
\begin{aligned}
\chi_{k \Lambda_{4}}^{(2)} & -\chi_{2 k \Lambda_{4}}-\chi_{2 \Lambda_{3}+(2 k-4) \Lambda_{4}}-\chi_{(2 k-1) \Lambda_{4}}-\chi_{\Lambda_{1}+\Lambda_{3}+(2 k-4) \Lambda_{4}} \\
& =X_{3}^{4} x_{4}^{2 k-8}+\left(\text { terms of degree }<4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) .
\end{aligned}
$$

Finally, we have the following decomposition if $k \geqq 4$:

$$
\begin{align*}
& S^{2}\left(V\left(k \Lambda_{4}\right)\right)=V\left(2 k \Lambda_{4}\right)+V\left(2 \Lambda_{3}+(2 k-4) \Lambda_{4}\right)+V\left((2 k-1) \Lambda_{4}\right) \tag{5.5}\\
& \quad+V\left(\Lambda_{1}+\Lambda_{3}+(2 k-4) \Lambda_{4}\right)+V\left(4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right)+\cdots .
\end{align*}
$$

By
By Lemma 5.1, $V\left(4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right)=V\left((2 k-2) \varepsilon_{1}+2 \varepsilon_{2}+2 \varepsilon_{3}+2 \varepsilon_{4}\right)$
contains none of the K-irreducible components of $S^{2}\left(\mathfrak{p}^{c}\right)$. By Weyl's dimension formula have

$$
\operatorname{dim}_{c} V\left(4 \Lambda_{3}+(2 k-8) \Lambda_{4}\right) \geqq \operatorname{dim}_{c} V\left(4 \Lambda_{3}\right)=11955216
$$

if $k \geqq 4$. When $k=3$, the symmetric tensor product $S^{2}\left(V\left(3 \Lambda_{4}\right)\right)$ is decomposed as

$$
\begin{aligned}
S^{2}\left(V\left(3 \Lambda_{4}\right)\right)= & V\left(6 \Lambda_{4}\right)+V\left(2 \Lambda_{3}+2 \Lambda_{4}\right)+V\left(5 \Lambda_{4}\right)+V\left(\Lambda_{1}+\Lambda_{3}+2 \Lambda_{4}\right) \\
& +V\left(\Lambda_{3}+3 \Lambda_{4}\right)+V\left(2 \Lambda_{1}+2 \Lambda_{4}\right)+V\left(2 \Lambda_{3}+\Lambda_{4}\right)+V\left(4 \Lambda_{4}\right) \\
& +V\left(\Lambda_{2}+\Lambda_{3}\right)+\cdots .
\end{aligned}
$$

By Lemma 5.1, $V\left(\Lambda_{2}+\Lambda_{3}\right)=V\left(\left(7 \varepsilon_{1}+3 \varepsilon_{2}+3 \varepsilon_{3}+\varepsilon_{4}\right) / 2\right)$ contains none of the K-irreducible components of $S^{2}\left(p^{c}\right)$. By Weyl's dimension formula, we have

$$
\operatorname{dim}_{c} V\left(\Lambda_{2}+\Lambda_{3}\right)=107406
$$

Thus by Lemma 2.3, we have the following:
Theorem D. Let $M=P^{2}(\boldsymbol{C a})$ be the Cayley projective plane with an F_{4}-invariant Riemannian metric. Then
(i) $\operatorname{dim} L_{M}=0 \quad$ if $k=1$,
(ii) $\operatorname{dim} L_{M} \geqq 107406$ if $k \geqq 3$.

Remark. When $k=2, S^{2}\left(V\left(2 \Lambda_{4}\right)\right)$ is decomposed as

$$
\begin{aligned}
S^{2}\left(V\left(2 \Lambda_{4}\right)\right)= & V\left(4 \Lambda_{4}\right)+V\left(2 \Lambda_{3}\right)+V\left(3 \Lambda_{4}\right)+V\left(\Lambda_{1}+\Lambda_{3}\right) \\
& +V\left(\Lambda_{3}+\Lambda_{4}\right)+V\left(2 \Lambda_{1}\right)+V\left(2 \Lambda_{4}\right)+V\left(\Lambda_{4}\right)+V(0)
\end{aligned}
$$

By Lemma 5.1, we have $L_{M}^{\prime}=0$. But we cannot say anything about $\operatorname{dim} L_{M}$.

References

[1] F. A. Berezin, Laplace operators on semi-simple Lie groups, Trudy Moskov. Mat. Obsc. 6 (1957), 371-463.
[2] M. R. Bremner, R. V. Moody and J. Patera, Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras, Pure and Appl. Math. 90, Marcel Dekker, New York, 1985.
[3] M. P. do Carmo and N. R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math. (2) 93 (1971), 43-62.
[4] M. Goto and F. D. Grosshans, Semisimple Lie Algebras, Lecture Notes in Pure and Appl. Math. 38, Marcel Dekker, New York, Basel, 1978.
[5] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
[6] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Text in Math. 9, Springer Verlag, Berlin, Heidelberg, New York, 1970.
[7] K. Mashimo, Spectra of Laplacian on $F_{4} / \operatorname{Spin}(9)$, in preparation.
[8] R. T. Smith, The spherical representations of groups transitive on S^{n}, Indiana Univ. Math. J. 24 (1974), 307-325.
[9] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
[10] M. Takeuchi, Modern Theory of Spherical Functions, (in Japanese), Iwanami-Shoten, Tokyo, 1957.
[11] G. Тотн, On non-rigidity of harmonic maps into spheres, preprint.
[12] G. Toth and G. D'Ambra, Parameter space for harmonic maps of constant energy density into spheres, Geom. Dedicata 17 (1984), 61-67.
[13] C. Tsukamoto, The spectra of Laplace-Beltrami operators on $S O(n+2) / S O(2) \times S O(n)$ and $S p(n+1) / S p(1) \times S p(n)$, Osaka J. Math. 18 (1981), 407-426.
[14] H. Urakawa, Minimal immersions of projective spaces into spheres, Tsukuba J. Math. 9 (1985), 321-347.
[15] L. Vretare, Elementary spherical functions on symmetric spaces, Math. Scand. 39 (1976), 343-358.
[16] Z. Yiming, Minimal immersions of rank 1 compact symmetric spaces into spheres, Sci. Sinica 28 (1985), 263-272.

Department of Mathematics
Tokyo University of Agriculture
and Technology
Fuchu, Tokyo 183
Japan

[^0]: Partry supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

