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Introduction. In this paper we will consider the parameter spaces
of eigenmaps and isometric minimal immersions of projective spaces into
spheres.

A map /: (M, g)^Sm<zRm+ι is harmonic if / satisfies Δ(M>g)f = 2e(/)/,
where Δ{M>9) is the Laplacian of (M, g) and e(f) is the energy density of
/ (cf. [5]). In particular, if 2e(/) = λ is a constant, then λeSpec(M, g).
Such a harmonic map is called an eigenmap [5]. By a theorem of Taka-
hashi in [9], an eigenmap is an isometric minimal immersion if and only
if it is an isometric immersion. An eigenmap φ:M-^Sm is said to be
full if its image φ(M) is not contained in any great sphere in Sm. Let
φ19 φ2:M->Sm be full eigenmaps. Then they are said to be equivalent
if there exists an isometry p of Sm such that p°φt = φ2.

It is a fundamental problem on isometric minimal immersions to study
to what extent they exist. In [3], do Car mo and Wallach showed that the
set of equivalence classes of all full isometric minimal immersions of
compact symmetric spaces into spheres are parametrized by a compact
convex body in some vector space. It is also natural to consider a similar
problem for eigenmaps. In fact in [12], Toth and d'Ambra showed that
the set of equivalence classes of all full eigenmaps are also parametrized
by a compact convex body in some vector space.

Before showing further results on specific spaces, we explain the
standard construction of isometric minimal immersions of a compact ir-
reducible symmetric space (M, g) into spheres. Let Δ{M>9) be the Laplacian
of (M, g) with such sign that all eigenvalues are non-negative. We denote
by 0 = λ0 < λi < λ2 < , the set of all distinct eigenvalues of Δ{M'g\ and
by Vk the eigenspace of ΔlMtβ) corresponding to λ&. Put dirnF* = m(k) + 1
and dimikί=d. For each k ^ 1, define a canonical measure dμ on M

normalized by I dμ = ra(fc) + 1. Take an orthonormal base {/0, f19 ,fm{k))

and define a mapping
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1; p H> (fo(p),

Then #fc realizes an isometric minimal immersion of (ikf, (Xk/d)g) into the
unit sphere in ijm(fc)+1, which we call the standard isometric minimal
immersion.

The following theorem of do Carmo and Wallach [3] gives a descrip-
tion of the set of equivalence classes of all full isometric minimal im-
mersions of compact irreducible symmetric spaces into spheres.

THEOREM 0.1. (i) Assume that there exists a full isometric minimal
immersion φ of (ikf, c2g) with a constant c Φ 0 into a unit sphere S\.
Then there exists k ^ 1 such that c2 = xjd and q ^ m{k).

(ii) The set of equivalence classes of full isometric minimal immer-
sions of (ikf, (Xk/d)g) into Sf, q ^ m(fc), is parametrized by a convex body
WM in some vector space LM in such a way that the interior points of
WM correspond to those [φ] with q = m(k) and that the boundary points
of WM correspond to those [φ] with q < m(k).

We will give the description of WM and explain how it parametrizes
the set of equivalence classes of full isometric minimal immersions in § 2.
A similar theorem holds for eigenmaps.

THEOREM 0.2 (Toth and d'Ambra [12]). Let λeSpec(ikf, g). Then the
set of equivalence classes of full eigenmaps φ of (ikf, g) into Si with
2e(φ) = x can be parametrized by a convex body WE in some vector space
LE. The interior points of WE correspond to those [φ] with q = m(fc)
while the boundary points correspond to those [φ] with q < m(k).

For specific spaces the dimensions of LM and LE are studied, since
it is closely related to the following rigidity problem: Let φ be another
full isometric minimal immersion (resp. eigenmap), then is it equivalent
to xkl

By Theorems 1 or 2, the rigidity problem is reduced to studying
whether dimL^ or dimL^ is equal to zero or not. In fact, do Carmo
and Wallach showed:

THEOREM 0.3 (do Carmo and Wallach [3]). Le (ikf, g) be the d-dimen-
sional sphere with constant sectional curvature. Then

(i) dim LM ^ 18 if d ^ 3 and k ^ 4,
(ii) dim LM = 0 if d = 2 or & <; 3.

Thus the standard isometric minimal immersion xk of the d-dimensional
sphere is rigid in the category of isometric minimal immersions if d = 2
or k ^ 3. Toth and d'Ambra studied the parameter space WE when ikf
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is also a d-dimensional sphere.

THEOREM 0.4 (Toth and d'Ambra [12]). Let {M, g) be the d-dimen-
sίonal sphere with constant sectional curvature. Then

(i) dim LE ^ 10 if d ^ 3 and k ^ 2,
(ii) dim LE = 0 if d = 2 or k = 1.

Recently Urakawa obtained results on dim LM for complex protective
spaces and the quaternion protective plane. From his proof we can get
information on dim LE for complex projective spaces if k ^ 2. We state
it together with his original results on dimL^.

THEOREM 0.5 (Urakawa [14]). Let (M, g) be the complex projective
space Pn(C) = SU(n + l)/S(U(ΐ)xU(ri)) with an SU(n + l)-invariant
Riemannian metric g. Then

( i) dim LM ^ 91 if n ^ 2 and k ^ 4,
(ii) dim LE ^ 2 8 if n ^ 2 α^d & ^ 2.

THEOREM 0.6 (Urakawa [14]). Let {M, g) be the quaternion projective
plane P\H) = Sp(S)/Sp(T) x Sp(2) with an Sp(3)-invariant Riemannian
metric g. Then dim LM ^ 29007 if Λ ^ 4.

In this paper we prove the above theorem generally for quaternion
projective spaces. Namely we prove the following:

THEOREM 0.7. Let (M, g) be the quaternion projective space Pn{H) =
Sp(n + ΐ)/Sp(l) x Sp(n) with an Spin + l)-invariant Riemannian metric.
Then

(i) dim LM ^ 1386 if n ^ 2 and k ^ 3,
dim LM = 0 i/ n ^ 2 αwd fc = 1.

(ii) dim LE ^ 1078 if n ^ 2 α^d Λ ^ 2,
dim L£ ^ 42 if n^S and k = 1,
dim Z/£ = 0 if n — 2 and k = 1.

Furthermore we will consider a similar problem for the Cayley pro-
jective plane and prove the following:

THEOREM 0.8. Let (M, g) be the Cayley projective plane P\Ca) =
FJSpin(9) with an F^invariant Riemannian metric. Then

(i) dim LM ^ 107406 ifk^S,
dim LM = 0 if k = 1.

(ii) dim £* ^ 19448 if k^2,
dimLE = 0 if k = 1.

From the above theorems, the standard isometric minimal immersions
#ft of spheres Sn, w ^ 3, complex projective spaces Pn(C), n^2, qua-
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ternion protective spaces Pn(H), n^2, or the Cayley projective plane
are rigid if k = 1 while they are not rigid if k ^ 4.

After the author completed this work, Professor H. Urakawa informed
him of the result of Z. Yiming [16], which states the following:

THEOREM. Let (M, g) be the quaternion projective space Pn(H) =
Sp(n + 1)/Sp(l) x Sp(n) with an Sp(n + l)Anvariant Riemanian metric.
Then xk is rigid if k = 1. If k > 1 then dim LM ^ 84.

But no proof of the key Lemma 4.2 in [16] is given. Lemma 4.2 in
[16] is proved as (4.6) in this paper. We cannot say anything about the
case k = 2 by using the theory of do Carmo and Wallach.

Thanks are due to Professor H. Urakawa for sending him a copy of
Yiming's paper and to Professor G. Toth for pointing out some mistakes
in the first draft.

1. The standard isometric minimal immersions. In this section we
explain the construction of standard isometric minimal immersions.

Let M = GjK be a cί-dimensional irreducible Riemannian symmetric
space of compact type and let g be a G-invariant Riemannian metric on
M. We denote by Δ(Λf>£7) the Laplacian on (M, g) and by

0 = λ0 < λi < λ2 <

the set of all eigenvalues of ΔiMt8). We denote by Vk the eigenspace of
Δ(Jf>ίf) corresponding to the eigenvalue χk and denote its dimension by
dim Vk = m(k) + 1. Let dμ be the canonical measure on M normalized
by \ dμ = m(k) + 1 and let {fo,flf --yfmUc)} be an orthonormal base of
Vk with respect to the ZΛinner product. Define a mapping xk by

xk: M-+Rm«)+ί; p H* (/0(p), f(p\ , fm{k)(p)) .

The action of G on M naturally induces an action of G on Vk by
(σ f)(p) = Aσ-' p) for σ e G, p e M. Let v0 = ΣΓ=(ofe) f{p)f e V\ Then

m(fc) m(k)

σ v0 = Σ ΛivXσ-A) = Σ flσ v)fi
< ϊ 0

Thus we may regard xk as

xk: M -> S, c Vk; σK -* σ v0 .

Since G preserves the LMnner product, the image xk(M) is contained in
a sphere centered at the origin. Furthermore by integrating (xk(p)f

M, we have

- ( (xk(p), xk(p))dμ
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S m(fc)

Σ)M j=o

= m(k) + 1 .

Thus xk is a map of Λf into the unit sphere in Rm{k)+1 centered at the
origin. An irreducible representation V of G is said to be of class one
if it contains a non-zero Infixed vector. We remark that Vk is irreducible
when Λf is of rank one. The (0, 2)-tensor xkg0 on Λf induced from the
standard Euclidean metric gQ on Rm{k)+1 is G-invariant. Thus by the
irreducibility of ΛΓ, xk must be an isometric immersion with respect to
c2g for some constant c Φ 0. Since A{Mt**a)xk = (Xk/c2)xk, a theorem of
Takahashi [9] implies that xk realizes an isometric minimal immersion of
(Λf, c2g) into a sphere of radius (dc2/xk)

1/2 Thus we have c2 = Xjd.
Let g and ϊ be the Lie algebras of G and K, respectively. Let p be

the orthogonal complement of ϊ in g with respect to an Ad(G)-invariant
inner product in g. Then the tangent space x*(TσK(M)) is

(1.1) xt{TσK{M)) = {σ(X-v); Xep) .

2. Classification theorem. In this section, we give a brief summary
of the classification theorem of do Car mo and Wallach [3], and that of
Toth and d'Ambra [12] stated in the introduction.

Let φ = (0o, φί9 , φq): (Λf, g) -> Slc:Rq+1 be a full eigenmap of an
irreducible Riemannian symmetric space (Λf, g) into the unit sphere Si
with A{M'g)φ = χkφt χk 6 Spec(Λf, g). Since φ is a full eigenmap, φ09 φlf , φq

are linearly independent, i.e., q <̂  m(fc). Thus there exists a matrix A
of size (m(k) + l)x(m(fc) + 1) such that (φQ9 φ19 , φq9 0, , 0) = (/0,/i,
•• >/m(jb))Ά Taking the polar decomposition of A, we see that i°φ is
equivalent to 5 ° ^ , where i is the canonical inclusion SqaSm(k) and S is
a symmetric positive semi-definite matrix of size (m(fc) + l)x(m(fc) + 1).

We identify the symmetric tensor product S\Vk) with the space of
all symmetric linear endomorphisms on Vk by

u v(t) = ((u, t)v + (v, t)u)/2 , u,v,teVk.

The inner product ( , ) on S\Vk), induced from the inner product < , >
on Vk under the above identification, is {A, B) = trace AB for A, BeS\Vk).
The induced action of G on S2(Vk) is σΆ = σAσ~ι for σeG, AeS\Vk).
Furthermore, we have (A(u)9 v) = {A, u v) for AeS2(Vk)f u, veV.

Since i°φ is a map of Λf into the unit sphere, we have (S(xk(p)),
S(xk(p))) = 1 for peM9 i.e.,

(S(xk(σK)\ S(xk(σK))) - (S\ σ-vϊ) = l y σeG.
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Since (/, σ-vl) - 1, we have

(S2-/, σ-vl) = 0.

Let Wo = {{G-vl}} be the iMinear span of G-vl in S\Vk) and let LE be
its orthogonal complement LE = {CeS\Vk);C ± σ-vl, σeG}. Then C =
S2 - J is contained in LE. Let Wz = {CeLE; C + I is positive semi-de-
finite}. Then the correspondence

WEaC^(C + iy/2xk

gives a parametrization of the set of equivalence classes of full eigen-
maps. This is an outline of the proof of Theorem 0.2 stated in the
introduction.

LEMMA 2.1 (do Carmo and Wallach [3]). // each irreducible K-sub-
modules of Vk has multiplicity one, then WQ is the sum of all class one
submodules of (G, K) in S2(Vk).

For the proof of Lemma 2.1, we refer to do Carmo and Wallach [3]
or Toth [11], Although do Carmo and Wallach [3] proved Lemma 2.1
only for the case M = Sn, their proof works well under the assumption
of Lemma 2.1.

REMARK 2.2. The assumption of Lemma 2.1 is satisfied if M is a
symmetric space of compact type and of rank one (cf. [8] and [11]).

Now we consider the case where an eigenmap S<>χk is an isometric
immersion. In this case, Soχk is an isometric minimal immersion. By
(1.1), Soχk is an isometric immersion if and only if

<S(σ(X-v0)), S(σ(X-v0))) = (σ(X v0), σ(X v0)) for σeG , Xep.

By an argument similar to that on eigenmaps, the equivalence classes of
full isometric minimal immersions of (M, (\Jd)g) into spheres are para-
metrized by the convex set WM = {CeLM; C + I is positive semi-definite}
in LM = {CeS\Vky, C J_ σ(X v0)

2, σeG, Xep}.
Let xk: M —> <Sxc Vk be the fc-th standard isometric minimal immersion

and let V1 = {X-v0; Xsp}. Then S\Vt) is contained in S\Vk) in a natural
manner. Let L'M be the sum of all (?-submodules of S\Vk) which do not
contain any ίΓ-irreducible factors of S2(FX). Then we have:

LEMMA 2.3 (do Carmo and Wallach [3]). L'M is contained in LM.

3. Irreducible characters of compact Lie groups. In this section
we explain the way to express irreducible characters of a compact Lie
group as polynomials of fundamental irreducible characters.
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Let G be a simple simply connected compact Lie group and T be a
maximal torus of G. We denote by g and t the Lie algebras of G and
Γ, respectively, and we denote by < , > a G-invariant inner product on
g. Define and fix once for all a lexicographic order < in t. Let Σ+(G) be
the set of all positive roots of gc with respect to tc and {alf , an} be
the set of all simple roots, where n is the rank of g. We put

D{G) = {Het; <α, H) e Z for some a e Σ+(G)} .

Take a component § of t-D(G) whose closure contains the origin oet.
Then the restriction of the exponential map exp on ί) is a diffeomorphism
of ί) onto exp(§)cG. Let {Λlf « ,Λn} be the system of fundamental
weights, i.e., 2{Λt, α, >/<αy, α, > = δijf 1 ^ i, j ^ n. Then the equivalence
classes of all complex irreducible representations of G corresponds bijec-
tively to

D{G) = {Σ^mjΛj; ra/s are non-negative integers} .

We denote by V(Λ) the corresponding irreducible G-module with highest
weight ΛeD(G). For a complex G-module F, we denote by Xv its charac-
ter. For brevity, we denote also by XΛ the character XV{Λ) of V(Λ). Put
Zs — &y Then it is easily seen that each character Xv is a polynomial
in zlf z2, •••, zn with integral coefficients.

Recall the following facts on characters:
(i) The characters are determined by their restriction on exp(Ij).
(ii) An irreducible character is an eigenfunction of the Laplacian Δ

of G with respect to a bi-invariant Riemannian metric.
Let g be the G-invariant metric on G induced from the Ad(G)-invariant

inner product < , > on g. Then the eigenvalue of Δ on XΛ is given by the
following:

LEMMA 3.1. The eigenvalue CΛ of Δ on XΛ is

CΛ=(Λ + 2d,Λ), ΛeD(G),

where 2δ = Σ?=i Λ3-

For the proof we refer, for instance, to [6].
A function h on G is called a class function if it satisfies hiσxσ'1) =

h(x) for x, σ 6 G. For example, characters are class functions. There
exists a differential operator 3(Δ) on exp(ϊj), called the radial part of Δ,
such that

if h is a class function. An explicit expression for 3(Δ) is known (cf.
[1]). But we will employ another expression.
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Consider a polynomial in n variables z19 z2, , zn. For any A —
Σ?=i WsjA, e D(G), we denote by zΛ the monomial zf1 Znn. A polynomial
P(%i> %2> * •> zn) is said to be of degree A if

P(z19 z2, , zn) = Σ ^ with α^ ^ 0 .

Since V(A) is contained in V{A^Pmι (g) (g) V(An)®mn exactly once and the
character of V(A)®mι (g) (g) V{AΊ^f>mn is zΛ

9 the character XA of V(A) is
the following monic polynomial of degree A

Let {t19 •••,<„} be a linear coordinate system on Jj. Then it defines

a coordinate system on exp(ϊj). We take another coordinate system on

exp(Ij). In general, characters are complex-valued functions. But if zt

is not real-valued, then there exists zs such that z< = zj9 iΦ j (cf. [4]).

So we define xlf x29 , xn by
fzt if zt is real-valued ,

xt = • Re Zi if Zi = Zj , i < j ,

J m ^ i f z t = z j f j < i .

LEMMA 3.2 (Vretare [15]).

d(x19 x29 , xn)/d(t19 t29 , ί j ^ 0 ow exp(^) .

Thus x = (x19 x29 , xn) defines a local coordinate system on exp(ί))
and 9(Δ) is expressed as

(3.2) 9(Δ) = Σ dijP/dxβXj + Σ

where α^ and bό are C°° functions.

LEMMA 3.3. Assume that z19 z2, , zn are real-valued. Then we have
the following:

( i ) bj = CΛjZj for l ^ j ^ n .

(i i) For any AeD(G), d(A)zΛ is a polynomial of degree A with the
highest term CΛz

Λ.
(iii) Put XΛi+Λ. = z&j + ΣiλKAi+Ajdχzx. Then we have

(3.3) (1 + d^aίό = (CAi+Aj - CAi - C^zj + (CAi+A. -

PROOF, (i) is clear, since zs is an eigenfunction of 9(Δ) corresponding
to the eigenvalue CAj.

(ii) is proved by induction. Assume that (ii) holds for χeD(G),
λ < A. Then, since XΛ is a monic polynomial of degree A by (3.1) and
is an eigenfunction of 9(Δ) corresponding to the eigenvalue CA, we have
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zΛ + Σ
X<Λ

= d(A)zΛ + 3(Δ)(Σ a,zA) = CΛ(zΛ

Comparing both sides and then by the induction hypothesis, we have

d(A)zΛ = CAz
Λ + (polynomial of degree < A) .

Namely, (ii) holds for A e D(G). Obviously (ii) holds for A = 0. Thus
(ii) is proved.

(iii) Since the character XAi+Aj is an eigenfunction of 3(Δ) correspond-
ing to the eigenvalue CΛ.+Aj, we have (3.3). q.e.d.

REMARK, (i) atj a polynomial of degree At + Aίf 1 ^ i ^ j ^ n,
since the second term on the right hand side of (3.3) is a polynomial of
degree less than A, + Aά by (ii) and (CA.+A. - CΛ. - CAj) = 2<Λ,, Aά) Φ 0,
1 ^ i ^ j ^ n.

(ii) By Lemma 3.3, we can inductively determine the coefficients aiά

and bj in (3.2).
(iii) The assumption of Lemma 3.3 is not essential. But for our

purpose it is sufficient.

Now we explain the way of calculating the coefficients α/s in the
expression (3.1) of XA. Let us number λ ' seΰ(G), which appear in (3.1),
as

A = λ0 > λj. > λ2 > > XN

Note that λ0, λi, -- ,XN must be the weights of V(A). We know that
aλo = 1. We go on inductively. Assume that we have first r coefficients
1 = α v ah, , α w 1 ^ r ^ N. Put P r = Σ5=i ^ and Qr = Σf=r aλ^K
Since %̂  = P r + Qr is an eigenfunction of 3(Δ) corresponding to the eigen-
value CΛ, we have

(3.4) 3(Δ)Pr - C,P r = -d(A)Qr + C,Qr .

Let azμ be the highest term on the left hand side. Since 3(Δ)Qr is a
polynomial in zlf z2, , zn of degree λ r and CA — CAr Φ 0 [6, p. 191], the
highest term on the right hand side is (CA — Cχr)aXrz

λr. Comparing the
highest terms of both sides of (3.4), we have μ = λ r and aλr = a/(CA — Cλr).
Thus we have the following:

LEMMA 3.4. Let V(A) be the irreducible G-module with highest weight
AeD(G). Assume that

r-l

%Λ — Σ <x>x4z
Xi + (terms of degree < λr_i) ,

i=o 3

aXo = 1 , A = λ0 > λi > > λ r .
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and let azμ be the highest term of 3(Δ)Pr — CΛPr.Put Pr = Σi=ί dij
Then we have

(i) μ = κ-
(ii) 1A = Σ5=ίax.z

ιi + (a/(CΛ - CXr))zιr + (terms of degree < \ r ) .

In order to decompose the symmetric tensor product S\Vk), we need
the following:

LEMMA 3.5. Let If be the character of S\V(Λ)). Then

(3.5) χ»(σ) = (XΛ(σY + %,(σ2))/2 for σeG.

For the proof of Lemma 3.5, we refer to [14].

4. Quaternion projective spaces. In this section, we use the follow-
ing notation:

G = Sp(n) = {σe U(2n); *σJnσ = Jn} , n ̂  3 ,
where

0 /,

I. 0
and /„ is the nxn identity matrix.

I la 0 b

0 A 0 B

c 0 d O

Q =

l\0 COD

= {χe tt(2»); 4XJB + JnX = 0}

6 Sp{n - 1)

7 »
0

0 y 0\

X 0 Y

-y 0 * 0

\ 0 -Ϋ 0 Xl

BiX, Y) = -Trace(XΓ) , X, Γ e g

= 0. -B = '

xe(-iy*R, yeC, X,

*x+ x = o, γ=*γ

/ 0 Z

-*Z 0

0 -W 0

\-'TT 0 -*i

0 TF\

*TΓ 0

z
0/

Z,WeMil,n-l,C)
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the orthogonal complement of ϊ in g with respect to JS,

α* e C, α ^ = 1, 1 <̂  i

255

- 1 /

t = {H(xlf , xn); xt 6 R, 1 ^ i <;

the Cartan subalgebra of g and ϊ, where

We can identify Pn~\H) with G/K and introduce a G-invariant Rieman-
nian metric induced from the inner product B(X, Y), X, Yep.

Define an element et of t by

••-,0,1,0, .-.,0)

and introduce a lexicographic order > in t by

βi > ε2 > > εn > 0 .

Let Σ+(G) (resp. Σ+(K)) be the set of positive roots of the complexifica-
tion gc (resp. ίc) with respect to tc. Then we have

Σ+(G) = {et ± εd; 1 ^ i < j ^ n}U{264; 1 ^ < ^ n) ,

Then the dominant integral forms for G (resp. K) with respect to > are

D(G) = j Σ Ufii) di e Z, dί ^ a2 ^ ^ α n ^ Oh ,

D{K) = J Σ Mίί &i 6 Z, &x ^ 0, b2 ^ 63 ^ ^ 6n ^ ol .

We put

§ = JΣ ΛA; 1 > a, > α2 > > an > oj ,



256 K. MASHIMO

δG = ne± + (n — l)ε2 + + εn .
The complexification pc of p is the irreducible i£-module with highest

weight 6χ + ε2. Then the symmetric tensor product S\pc) is decomposed
as a JfΓ-module as (cf. [14])

S\pc) = 7(2ε1 + 2ε2) + 7(ε2 + ε3) + 7(0) .

LEMMA 4.1 (Urakawa [14]). (1) Let n = 3. Tfcew ever?/ G-module
over C which contains one of the K-irreducible factors of S\p)c has the
highest weight Σϊ=i &£» where the triple (a19 a2, α3) is one of the following:

α2

α3

A; + 2

k

2

A;^2

A + 3

k

1

A ^ l

k

k

1

k

+ 1

^ 1

fc + 4

0

A ; ^ 0

A + 2

k

0

A ^ l

A;

A;

0

A ^ O

( 2 ) Let n ^ 4. i / αx ^ α2 ^ ^ αn ^ 0 satisfy one of the condi-
tions

(i) α3 ^ 3 (ii) α4 ^ 2 or (iii) α* ^ 1 for some 5 ^ i ^ n ,
ίfeβ^ ί^e G-module 7(Σ?=i α^«) contains none of the K-irreducible com-
ponents of S\pc).

Now we describe the radial part of the Laplacian Δ of Sp(n) with
respect to the fundamental irreducible characters. We put Λj = Σί=i β i e

D(G). Then {Λlf Λ2, "*,Λn} is the fundamental weight system of &p(ri).
It is known that each character zt of V(Λt) is real-valued. Thus we
denote by xt the character of V{Λ^). We also denote by xt the restriction
of xt to exp(§) and its pull back on § by exp: ί) —> Γ.

Let <7 be the G-invariaμt Riemannian metric on G induced by B. We
denote by Δ (GU) the Laplacian of (G, g). Then we have the following:

LEMMA 4.2. The character XΛ of V(Λ) for A e D(G) is an eigenfunc-
tion of A{G>9) with eigenvalue

CΛ = Σ(αJ + 2(n + 1 -
i l

A =

The radial part 3(Δ(<?>flr)) is a differential operator of second order
with polynomial coefficients. We have the first order term of 3(Δ) easily
by Lemma 3.3(i). But to get an explicit form of the second order terms
we need the following:

LEMMA 4.3 (Tsukamoto [13]). An Sp(n)-module V(Λr)®V{A8), 1 ^
r :S s ^ n, decomposes into irreducible modules as
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V{Λr)®V{Λs) = Σ

where the set S consists of pairs of non-negative integers (i, j) satisfying
s — r<^j — i^2n — s — r, i + j ^ r + s and i + j = r + s (mod 2).

Using the above lemma we can express the character XΛi+Aj as a
polynomial in xlf x2, •••,#„ and by (3.3) we can obtain the coefficients of
the second order terms of d(Δ{spM>g)).

LEMMA 4.4. The radial part d(A{Sp{nhg)) is

= (2n + 1)^3/3^ + Anx2d/dx2 + (Qn - 3)

+ (lOn — 15)xδd/dxδ + (terms in d/dxQ, , 3/3̂ )̂

+ ^3 2 /3^ + 2x1x2d
2ldx1dx2 + 2^1^33

2/3^13^3

+ 2x1xid
2/dx1dxi + 2x1xδd

2/dx1dxδ

+ (Ax2x3 - 6^^4 - (An - 2)x1x2)d2/dx2dxs

— Q)x1x4)d2ldx2dxδ

n ^ 4

- 6x1, w = 3J 3 ^
+ (6ίc3x4 — 16x2xδ —

+ (An — 2)x1x2)d2/dxβx4:

+ (terms in d2/dx1dx6, , d2/dx2dxβ, , d2/dxsdx6, •) ,

where the terms of degree <Λn are omitted in the coefficients of the second
order terms.

Let F fc be the fc-th eigenspace of Δ(3f>fir) and (Vk)€ be its complexiίica-
tion. Then (Vk)c is an irreducible Sp(w)-module with highest weight
fcfe + ε2) = kΛ2. Thus the restriction to ί) of its character is a polynomial
of degree kΛ2.

We look for all irreducible Sp(w)-submodules of S\V(kΛ2)) whose
highest weights are greater than or equal to AAX + (k — 8)Λ2 + 4Λ3. For
this purpose, we express %l?j2 as a polynomial in α̂ , •••, xn in the follow-
ing manner:

( i ) We calculate the character XkΛ2 as a polynomial in χlf , xn by
using Lemmas 3.4 and 4.4.

(ii) We denote by yά the function on § defined by Vj(H) = Xj(2H)
for i ί 6 ή and find the expression for y5 as a polynomial in xl9 , xn for
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(iii) By Lemma 3.6, the character Xk\ is the polynomial in xlf , xn

given by

(4.1) Tk\ = (l/2)((XkA2(xlf , xn)y + XkΛ2(ylf • , yn)) .

By Lemma 3.4 and 4.4, we calculate inductively the coefficients of

the character XkH as a polynomial in x19 •••, xn up to x\xl~*x\.

(4.2) XkA2 = x\ - (k -

+ (fc -
- ((fc - 3)(fc - 4)(fc -
- (fc - 3)(fc -

n— (fe — 3)xlx% a?β + i

+ ((A: -

+ (terms of degree < 4,Λλ + (k - 8)^2 + 4^3) .

Since degree of the terms which appear in the expression for XkH are
weights of V(kΛ2), we know that x*, xfii^Xs, ---,%ix%~sxl and the terms
of degree < 4ΛX + (fc — S)Λ2 + AΛ3 appear in the expression for XkAl. When
we apply the terms of d(Δ{Sp(n)tB)) which is not given explicitly in Lemma
4.4 to the monomials a?*, v x\x\~%x\, the degree will be lower than AA± +
(fc - 8)Λ2 + 4^3. Thus to obtain (4.2), the expression for d(ΔιSpM>g)) in
Lemma 4.4 is sufficient.

Next we find the expression for yά as a polynomial in xί9 •• ,a?n.
For any xet, we denote by by eλ the function on t defined by e\H) —

e2πi<̂ ,;> f o r j ϊ 6 t # p u t ωχ = ^βRreσ i, where ΐF is the Weyl group of G.
Counting the multiplicity of the weights of V(AJ (cf. [6]), we have x1 = ωt.
Thus we have yλ(H) = xt(2H) = ω2Al(H). On the other hand, we have

= (o)^ + 2ω2

(<*H + 2(n -

Thus we have,

^ = aj? - 2a;2 + 2 .

Similarly we have,

y2 — x\ — 2xλx3 — 2x1 + (terms of degree < Λn) ,
fxl — 2x2x4 — 2x1 + xtxδ + Axλx3 + 2x\ + (terms of degree < Λn)

if n ^ 5 ,

yx\ — 2x2x± — 2x1 + 4xxxz + 2x\ + (terms of degree < Λn)

if % = 4 ,

- 2xt + 2x,x3 + 2x\ + (terms of degree < Λn) if n = 3 .
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Note that yd is a polynomial in xlf •••, xn of degree 2Λά. When we
substitute y/s into (4.2) instead of #/s, the degree of y\yX~zy± is 4 4 +
2(k - 3)Λ2 + 2Λ4 = 2kε1 + (2k - 4)ε2 + 2ε3 + 2ε4 which is less than 4 4 +
(2k — 4 ) 4 + 4 4 = 2kει + (2k — 4)ε2 + 4ε3. Thus, for our purpose, there
are no need to have expressions for y4, yδ, as polynomials in
x19 x2, --,xn by (4.2). Substitute y/s into (4.2). Then, by (4.1), we
have

(4.3) %$2 = xf - (2k - ^x.xf-'x, + (2k2 - 5k + 4)x\xf~'x\
_1_ (Oh — Q\~2~2k-S~ _ Or2r2fc-2

— VV^"' — Δ*xtϋ ~Γ DON/ — ί±OJld)JϋιJϋ2 «̂ 3

/ λ 7 9 ^ ^^ 7 i ^ ^ 3 \ l̂ 2fc^^5 / ' ί^ 7 vί \ 1 oîM lM j

^Γ \yttv \JjAtiΛr2 v3

+ (terms of degree < AΛ, + (2k - 8)4 + 4Λ3) .

By (4.2) and (4.3), we have

(4.4) ΊLkΛ2 &2kA2 — XΆ ^ 3 ^1^2 #4 ^1^2

, , ^ , f(2fc - 3 ) ^ - ^ , n 7ί 4)

- 13k + 22)^2fc~V3

+ (terms of degree < AΛX + (2k - 8)Λ2 + 4/ί3) .

Thus we have the following decomposition for k ^ 2;

Since V(2Λ1 + 2(k — 2)Λ2 + 2Λ3) is not a class one representation of
(Sp(ri), Sp(l) x Sp(n - 1)), L i contains it by Lemma 2.1. By Weyl's
dimension formula we have

2(k - 2)Λ2 + 2ΛS) ^ d i m c F ( 2 ^ + 2Λ3) ^ 1078 ,

if k ^ 2 and ^ Ξ> 3. On the other hand, we have

ίSH V(Λ )) = ί
1 l J ; (F(2^) + F(Λ) + V(Λ2) + F(0) if n ^ 4 .

Thus, when k = 1, we have L | = 0 for n = 3 and dimc L
C

E = dimcF(/ί4) ^ 42
for n ^ 4. Summing up, we have:

THEOREM A. Lei M = Sp(n)/Sp(ϊ) x Sp(w — 1) δe ίfeβ quaternion pro-
jective space Pn~\H) with an Sp(n)-invariant Riemannian metric. Then
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( i) dim LE = 0 if k = 1 α^ώ n = 3,

dim Ltf ;> 42 if k = 1 and n^4t,

(ii) dim Z^ ^ 1078 if k ^ 2 αwd % ^ 3.

Furthermore, we calculate the character of V(2Λ1 + (2k — 4)Λ2 + 2ΛZ)
as

— ^ 2 ^ - 4 ^ 2 _ ^ 2 ^ 2 ^ - 3 ^ _ /y,2 ,̂2&-2

- (2fc - 5)αφκ?-βαS + (2fc - β)txZx?-*x&

{(2k - 4)xlx?-% , w ̂  4

+ (fc - 3)(2fc - Ί)x\xt~*x\

+ (terms of degree < 4ΛX + (2A; - 8)/ί2 + 4i48) .

Thus we have from (4.4)

+ (terms of degree < 44X + (2fc - 8)^ί2 + 4Λ3) .

By a simple calculation, we have

d(A)xlxf~% =

+ (terms of degree < 4 ^ + (2k - 8)Λ2 +

Thus by (4.5) we have

= xixf-8xt + (terms of degree < 4Λ, + (2k - 8)Λ2 + 4Λ3) .

Finally we have the following decomposition if k ^ 4:

(4.6) S\V(kΛ2)) = V(2kΛ2) + F(2^x + (2k - 4)^2 + 2Λ3)

+ (2fc - 4)Λ2 + Az) + V(U, + (2fc -

By Lemma 4.1, V(U1 + (2fc - 8)Λ2 + 4AZ) = F(2fc£l + (2fc - 4)ε2 + 4ε3)
contains none of the Z-irreducible components of S2(pc). By WeyΓs
dimension formula, we have

dime 7 ( 4 4 + (2k - S)Λ2 + 4Λ3) ^ dimcF(4Λ + 4Λ3) ^ 41140 ,

if n ^ 3 and fc ̂  4. When k = 3, we have the following decomposition
if n >: 4:
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7(64) + ^(24 + 24 + 2Λ3) + 7(34 + 24 + 4)
+ 7(44 + 24) + 7(54) + 7(4 + 34 + 4)
+ 7(24 + 4 + 24) + 7(3/1, + 4 + 4) + ̂ (44 + 4)
+ 7(44) + V(ΛX + 34) + , if n = 3 ,

7(64) + ^(24 + 24 + 2Λ3) + 7(34 + 24 + 4)

S2( 7(34)) =

+ 7 ( 2 4 + 2 4 + 4 ) + ••••
By Lemma 4.1, 7 ( 4 + 34) = V(±ex + 3ε2 + 3ε3) for n = 3 and 7 ( 2 4 +

2Λ3 + 4 ) — V(βεx + 3ε2 + 3ε3 + ε4) for n ^ 4 contain none of the jKMrreduc-
ible components of S2(ί>c). By WeyΓs dimension formula, we have

dime 7 ( 4 + 4 ) = 1386 if n = 3 ,

dim* 7 ( 2 4 + 2 4 + 4 ) ^ 21344 if n ^ 4 .

Thus by Lemma 2.3, we have the following:

THEOREM B. Let M = Pn~\H) be the quaternion projective space
with an Sp(n)-ίnvariant Riemannian metric. Then

(i) dim LM = 0 if k = 1 and n*z3,
(ii) dim LM ^ 1386 if k ^ 3 and n^S.

REMARK. When k — 2 and n = 3, we have the decomposition

S2(7(2Λ2)) = 7(4Λ2) + 7(24 + 24) + ^(34 + A) + ^"(44)

+ 7(34) + V(4 + 4 + 4) + V(2A2) + 7(4) + ^(0).

Thus by Lemma 4.1, we have dim L'M = 0. But we cannot say anything
about dim LM.

5. The Cayley projective plane. Let G = F±, K— Spin(9) and let
T be a maximal torus of Spin(9). We denote by g, ϊ and t the Lie
algebras of G, K and Γ, respectively. Let B be a G-invariant inner
product in g and p be the orthogonal complement of ϊ in g with respect
to B. Then we can identify the Cayley projective plane P\Ca) with
G/K and introduce a G-invariant Riemannian metric induced from the inner
product B(X, Y) for X,Yep.

Under suitable choise of an orthogonal base {e19 ε2, ε3, ε j of t, the set
Σ+(G) (resp. Σ+(K)) of positive roots of G (resp. K) with respect to the
lexicographic order defined by e1 > ε2 > ε3 > ε4 > 0 are

Σ+(G) = {ε,; 1 ^ i ^ 4}U{ε, ± ε, ; 1 ^ i < i ^ 4}

U aiSi; a, = ± 1 , 1 ^ i ^ 4J ,
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Σ+(K) = fa ± ε, ; 1 ^ i < j ^ 4}

U ί(l/2)Σ ΛA; α, = ±1, 1 ^ i ^ 4, Π α, = - l l .

The set of dominant integral forms for G (resp. K) are

D(G) = J Σ tyeό ĉ i ^ α2 ^ α3 ^ α4 ^ 0, αx ^ α2 + α3 + α4,
U=l

2αx, αx — α2, α2 — α3, α3 — α4 e

6 A ; 5 ^ 6 , ^ 6 , ^ l&4|, 61 ^ &2 + δ3 + &4,
l

2&i, &i - 62, &2 - δ3, δ2 - δ4 e z j .

We put
§ == | Σ ai£i'> 1 ^ αx + α2, α2 ̂  α3 ̂  α4 ̂  0, αx ^ α2 + α3 + α 4 | ,

δG = (llβx + 5ε2 + 3ε3

Let p be the orthogonal complement of ϊ in g. Then pc is the ir-
reducible jK-module with highest weight εx and the symmetric tensor
product S\pc) is decomposed as

S\pc) = V(2ed + 7((βl + ε2 + ε3 - ε4)/2) + F(0) .

LEMMA 5.1 (Mashimo [7]). Every G-module over C which contains
one of the K-irreducible component of S\pc) has the highest weight
Σί=i &&> where the quadruple (alf a2, α3, α4) is one of the following:

α2

α8

α4

k/2

3/2

1/2

1/2

kϊ>5

k/2

1/2

1/2

1/2

k^Z

k

1

1

1

fcΞ>3

k

2

0

0

k>2

k

1

0

0

k^2

k

0

0

0

k^O

Now we describe the radial part of the Laplacian Δ of F4 with
respect to the fundamental irreducible characters. We put

A = St + ε 2 ,
Λ2 = 2ε1 + ε2 + ε 3 ,

Λ3 = (Sβx + ε2 + ε3 + ε4)/2 ,
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Then {Λv A2, Λ3, ΛJ is the fundamental weight system of g. It is known
that each character zt of V{Λ^) is real-valued. So we denote it by xt.
We denote also by xt the restriction of xt to exp(ΐ}) and its pull back on
ί) by exp: Ij -> T.

Let g be the G-invariant Riemannian metric on G induced by B. We
denote by Δ(σ>ί/) the Laplacian of (G, g). Then we have the following:

LEMMA 5.2. The character XΛ of V(A) for A = Σ* = 1 ^ e * e D(G) is an
eigenfunctίon of Δ{G>9) with eigenvalue

CΛ = a\ + a\ + αϊ + a\ + 1 1 ^ + 5α2 + 3α3 + α 4 .

LEMMA 5.3. The radial part of d(A{F4>g)) is

^3/3^ + S6x2d/dx2

?J - 7x1 - 4a?i - 2x2 +

- 6a?l + β

?3 — 2a?! -

8a?J + Gxl - 30a?ϊ - 6a?ί -

Sx2xl + GxjXl

+ 2(te4 - 26)d2/dx2

2

(Sx2xs — δ x ^ ^ — Ίxzx\ + 5xjX2 — Ίx\x± — 2x\ + 17#2#4 + 6xλxl + Ίx\

?4 + 8x\ - 20a;2 - 7x,x4 - 7x\

+ 7x2 - 2\xz + 7#4 -

- a;2a;4 - 3 ^ - 6x1

- ΛΛ - x\ + 2a;3

+ (3a:3̂ 4 - 7x1x4t -

+ (xl - 4a?! - s8 - 7Λ:4 -

PROOF. The first order terms of 3(Δ) are easily obtained by Lemmas
3.3 and 5.2. The second order terms are also obtained by Lemma 3.3.
We omit the lengthy and tedious calculation. q.e.d.

Let Vk be the ft-th eigen-space of Δ{M'g) and {Vk)€ be its complexifica-
tion. Then (Vk)c is an irreducible jF4-module with highest weight kA4 =
kex. Thus the restriction to ί) of its character is a polynomial of degree
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kΛ±. By Lemmas 3.4 and 5.3, we can calculate inductively its coefficients
up to x\x\~*.

(5.1) = x\
+
—
+
+
+

- ( f c
( f c -
( ( f c -

( f c -
((k-

— l)a

2)x2x\

3)(fc

3)* 1a;£

4)(fc

(terms of

'3*̂ 4 Π^ \\Λ /

5-3 ^, β.k-2

- 4)(fc - 5)/6;

,*Γ4 + (fc - 3]

- 5)(fc - 6)(fc

degree < iΛ3

2)(fc - 3;

)£»l£CΪ-β -

)χsχϊ~3

— 7)/24)

, + ( f c -

i/2)a;|a

( f c -

8)^4)

3)( fc-

We calculate the character of S2( V(ΛA)) as a polynomial in x19

up to x\xf~* by a similar manner to that used in § 4. We put y
Xj(2H) for Het Then by Lemma 3.5, the character χ$ 4 of S2(F(fcΛ)) is

(^, α;2, a?to ^4))2 + XkJk(ylf y2, ys, yj) .

When we substitute y/s into (5.1) instead of sc/s, the degree of
is less than that of x\xf~s. Thus we need only explicit expression for yz

and 2/4 as polynomials in x19 χ29 xz and xif which can be obtained similarly
as in § 4 as follows:

= x\ -

Multiplicities of weights, which we need in the calculation, are found in
[2J. Substituting y/s, we have

(5.2) χβ 4 = α? - (2fc - l ) ^ f - 2 + (2fc2 - 5fc + 4)^f~ 8

+ (2fc - 3)x2x?-s - 2 ^ f c ~ 2 - a??-1

- ((4fc3 - 24fc2 + 53fc - 45)/3)ajJaj?-β

- (4fc2 - 16fc + 18)x2xsxf ~δ + (4fc - 6)x1x,xlk"

+ (2fc - 4)x3x?"3

+ ((4fc4 - 44fc3 + 191fc2 - 397fc + 342)/6)^f"8

+ (terms of degree < 4Λ3 + (2fc - 8)A,) .

By (5.1) and (5.2), we have

(5.3) m, - X2kΛi = xlxf-* - x2x?s - χιX
ιXff~*

- (2fc - 5)xlxlk~6 + (2fc -

+ (2fc - 3)x1x,xlk~i - X0*"3

+ (2fc2 ~ 13fc + 22)α£&ί*-β

+ (terms of degree < 4Λ3 + (2fc - 8)Λ4) .
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Thus we have the following decomposition for k ^ 2:

S\V(kA,)) = V(2kA,) + V(2A3 + 2(k - 2)4) + .

Since F(2Λ3 + 2(fc — 2)Λ4) is not a class one representation of (F±, Spin(9)),
LC

E contains it by Lemma 2.1. On the other hand, we have LE = 0 for
k = 1, Since S2(F(Λ4)) = F(2Λ4) + F(Λ4) + 7(0). By Weyl's dimension
formula we have

dimcF(2Λ3 + 2(k - 2)Λ4) ^ dimcF(2Λ3) = 19448

if k ;> 2. Thus we have the following:

THEOREM C. Lei ikf = FJSpin(9) be the Cayley projective plane P\Ca)
with an F^-invariant Riemannian metric. Then

( i ) dim LE = 0 if k = 1,
(ii) dim LE ^ 19448 if k ^ 2.

Furthermore, we calculate the character of V(2ΛB + (2fc — 4)Λ4) as

- (2fc - 5)xlxf~Q + (2fc -

+ (2fc - 4 ) 0 ^ ? " * + (2fc - 3 ) ^ f " 3

+ (fc - 3)(2fc - 7)a*c?-β

+ (terms of degree < AΛ3 + (2k - 8)Λ,) .

Thus we have from (5.3)

(5.4) XkAA — X2kΛi ~~ %2Λ3+(2fc-4)Λ4

= x?-1 + α^βaί*-4 - (2k + 4)xsx?-3 + xixf-8

+ (terms of degree < 4Λ3 + (2k - 8)Λ4) .

The character of V(Λt + Λ3 + (2k - 4)Λ4) is

+ (terms of degree < 4Λ8 + (2fc - 8)^4) .

Thus by (5.1) and (5.4), we have

y(2) γ γ γ γ
Afcyl4 Λ2fcΛ4 MA3+(2k-i)Ai ^(2fc-l)^4 ^ ! + ^3+(2Jfc-4)^4

= x\xf~% + (terms of degree < 4Λ3 + (2k - 8)4) .

Finally, we have the following decomposition if k ^ 4:

(5.5) S2(F(fcyl4)) = V(2kΛ,) + F(2Λ3 + (2fe - 4)Λ4) + V((2k - 1)Λ4)

+ V(Aγ + Az + (2k - 4)Λ4) + V(AΛ3 + (2fc - 8)AJ + .

By Lemma 5.1, V(AA3 + (2fc - 8)/t4) = V((2k - 2)ε, + 2ε2 + 2ε3 + 2ε4)
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contains none of the iί-irreducible components of S\pc). By WeyΓs
dimension formula have

+ (2fc - 8)Λ4) ^ dimcF(4Λ3) = 11955216

if k ^ 4. When k = 3, the symmetric tensor product S2(F(3ΛJ) is de-

composed as

+ V(ΛB + 3Λ4) + V{2AX + 2Λ4)

+ V(Λ2 + Λ3) +

By Lemma 5.1, V(Λ2 + Λ3) = F((7εx + 3ε2 + 3ε3 + e4)/2) contains none of the
Z-irreducible components of S2(t>c). By WeyΓs dimension formula, we
have

άimcV(Λ2 + Λz) = 107406 .

Thus by Lemma 2.3, we have the following:

THEOREM D. Let M = P\Ca) be the Cayley projective plane with an
F^-invariant Riemannian metric. Then

( i ) dimL J f = 0 if k = 1,
(ii) dim LM ^ 107406 if k ^ 3.

REMARK. When fc = 2, S2(F(2ΛJ) is decomposed as

By Lemma 5.1, we have L'M = 0. But we cannot say anything about
dim LM.
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