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1. Introduction. Let (M, jβ~) be a smooth foliated manifold with M
connected. Let EdT(M) be the tangent bundle of ^ and let DcT(M)
be a subbundle satisfying T(M) = E@D.

A horizontal curve is a piecewise smooth curve σ: [0, 1] —> M whose
tangent vector field lies in D. For xeM, let P(x) be the set of points
in M that can be joined to a; by a horizontal curve. Clearly the sets
P(x) partition M. The purpose of this paper is to investigate the struc-
ture of these sets. We show that under certain geometric conditions the
sets P(x) are immersed submanifolds of M.

As a special case we consider the situation in which M is a Riemannian
manifold, and D is the distribution orthogonal to the leaves. We show
that the geometric conditions implying that the sets P(x) are immersed
submanifolds are satisfied in the following cases,

(1) J?~ is totally geodesic and the induced metrics on the leaves
are complete (cf. [2]).

(2) ^ is totally umbilic with dim(^~) ^ 3, and the induced con-
formal structures on the leaves are complete.

(3) ^ is totally umbilic with dim(^~) ^ 3 and the metric on M
is complete and bundle-like.

(4) The second fundamental form of the leaves is Bott parallel and
the metric on M is complete and bundle-like.

(5) A certain tensor defined in terms of the second fundamental
form of the leaves and the Bott connection vanishes, and the induced
metrics on the leaves are complete.

(6) The above tensor has a specific form, dim(._̂ "~) ^ 2, and the
induced projective structures on the leaves are complete.

REMARK. If M-^N is a principal bundle, &~ is the foliation of M
by the fibers, and D is a connection in M, then the sets P(x) are just the
holonomy bundles of the connection.

2. Definitions. For each horizontal curve σ: [0, Ϊ]-*M there exists
a family of diffeomorphisms φt:V0—>Vt (0 ^ t ^ 1) such that
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(1) Vt is a neighborhood of σ(t) in the leaf of ^~ through σ(t) for
all 0 £ t ^ 1,

(2) φt(σ(0)) = σ(ί) for all 0 ^ ί ^ 1,
(3) for xeV0, the curve t->φt(x) is horizontal, and
(4) 0o is the identity map of Fo.
We call this family of diffeomorphisms an element of holonomy along

σ. The element of holonomy along σ is unique in the sense that two
such families must agree in a neighborhood of σ(0) (cf. [1]).

A vertical curve is a piecewise smooth curve τ: [0, 1] —> Λf which lies
entirely in one leaf of ^ 7 A rectangle is a piecewise smooth map
δ: [0, l]x[0, 1]-+M such that for each fixed se[0, 1], the curve S(-, s)
is horizontal, and for each fixed te[0, 1], the curve δ(t, —) is vertical.
The curves <5(-, 0), δ(~, 1), δ(0, - ) , and 5(1, - ) will be referred to as
the initial horizontal edge, the terminal horizontal edge, the initial vertical
edge, and the terminal vertical edge respectively.

We say D is an Ehresmann connection for ^~ if for every horizontal
curve σ and vertical curve τ with the same initial points there exists a
rectangle (necessarily unique) whose initial edges are σ and τ.

For the remainder of this section assume D is an Ehresmann con-
nection. Recall the following lemma from [2].

LEMMA 2.1. Let μ:[0, 1]—>Λf be a piecewise smooth curve. Then
there exists a unique rectangle δ: [0, l ]x[0, 1] —> ikf such that μ(t) = δ(t, t)
for all 0 ^ t ^ 1.

According to Lemma 2.1 every piecewise smooth curve in M is the
diagonal of a unique rectangle. The initial horizontal edge of this rec-
tangle is called the horizontal projection of the curve.

Let μ: [0,1]-*M be a piecewise smooth curve. For every vertical curve
τ: [0,1]—>M with τ(0) = μ(0), the transport of τ along μ is the vertical curve
μ%τ obtained by the following construction. Let δ be the rectangle con-
structed in Lemma 2.1 and let σ be the horizontal projection of μ. Let 3*
be the rectangle associated to σ and τ. Take μ%τ to be the terminal vertical
edge of δ traversed from μ(l) to σ(l) followed by the terminal vertical
edge of δ*. If r0 and τx are two vertical curves with ro(O) = rx(0) = μ(0)
which are homotopic keeping end-points fixed in the leaf of &~ through
μ(0), then μ$τ0 and μ^τx are two vertical curves which are homotopic
keeping endpoints fixed in the leaf of &~ through μ(l). Therefore, re-
calling that the universal covering space of a connected, locally simply
connected space may be identified with the homotopy classes keeping end-
points fixed of curves beginning at a fixed point, we see that μ% induces
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a diffeomorphism of the universal covering space of the leaf of
through μ(0) with the universal covering space of the leaf of &~ through
μ(l). (μ^1 is induced by traversing μ in the reverse direction.) Letting
(Lp, p) denote the universal cover of the leaf Lp through p identified with
the homotopy classes of curves in Lp beginning at p, we will denote the
diffeomorphism induced by transport along μ by μ$: {Lμm, μ(0))->(Lμ(1), μ(l)).

Let C(x) be the loop space of Mat x. Let Φ(x) = {λ#: λ eC(x)}. Note
that Φ(x) is a subgroup of the group of diffeomorphisms of the universal
cover Lx of the leaf through x. If χQ, x±eM there exist isomorphisms of
Φ(x0) onto Φfa) given by λ# -> μ^μϊ1 for any curve μ joining x0 to xλ.

REMARK. If M->N is a principal bundle, ^ is the foliation of M
by the fibers, and D is a connection in M, then D is an Ehresmann
connection for ^"[1] and Φ(x) is just the holonomy group of the con-
nection.

3. Structure of P(x). Throughout this section we assume D is an
Ehresmann connection.

The proof of the following lemma is elementary.

LEMMA 3.1. Let μ: [0, 1]->M be a curve with μ(0) = x, μ(l) = y.
(1) If μ is horizontal, then μ$[x] = [y] where [x], respectively [y],

is the homotopy class of the constant path at x, respectively y.
(2) If μ is vertical, then μ^[x] = [μ"1].

LEMMA 3.2. Let xeM. Let Lz be the leaf through x. Let X be the
orbit of [x] under Φ(x). Then π(X) — P(x)f]Lx where π:Lx-*Lx is the
covering projection.

PROOF. Let yeπ(X). Then for some χeC(x), y = 7r(λf[a?]) = σ(ΐ)
where σ is the horizontal projection of λ. Thus y e P(x) Π Lx.

Let zeP(x)f)Lx, and let σ be a horizontal path from x to z. Let τ
be a vertical path from z to x. Set λ = r σeC(x). Then χ$[x] = τ^[x] =
[τ"1] by Lemma 3.1. Hence z = Trtτ'1] = π(xM[x]) eπ(X).

LEMMA 3.3. The action of ^(Lx9 x) on Lx sends orbits of Φ{x) to
orbits. Thus N = π~\P(x) ΠLx) is a countable union of orbits.

PROOF. For [a] e πx{LXJ x) let p{[ά\) denote the deck transformation
corresponding to [a]. If a is a vertical loop at x, and τ is a vertical
path starting at x, then from the definition of transport of τ along α,

α W = [r-a-1] = Pda-'Wτ].
Suppose [r0] and [rj are in the same orbit of Φ{x). Then λ#[τ0] = [τj

for some xeC(x). Take [άleπ^L,, x). Then a~\aeC(x) and
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That ΛΓ is a union of orbits now follows from Lemma 3.2.

LEMMA 3.4. Let yeM and let L be the leaf through y. There exists
a neighborhood U of y in M, a neighborhood W of y in L, and a
diffeomorphism h:WxV-*U where V is a neighborhood of 0 in Rq

(q = coάim^~) such that h\Wx{0} is the inclusion and P(x)ΠU =

PROOF. Let U be a neighborhood of y in M such that J?~\U is
defined by a submersion f:U—>V where V is a convex neighborhood of
0 in Rq and f(y) = 0. We may assume the level sets of / are connected.
Let W = /"'(O). Define h: Wx V-+ U by letting h(w, v) be the endpoint
of the horizontal lift starting at w of the straight line joining 0 to v
in V. It may be necessary to cut down V and W in order that h be
defined. By the further cutting down of U, V, and W h will be a dif-
feomorphism.

Clearly h\Wx{0] is the inclusion. If zeP(x)f)U, then z = h(w, v)
for some (w, v) e Wx V. By construction of h, we WΓ\P(x). Thus
z e h((Wf] P{x)) x V). The other inclusion is obvious.

THEOREM 3.5. Suppose for some x0 e M, Φ(xQ) is contained in G where
GcDiff(£β0) is a Lie group acting smoothly on LXQ. Then for each
xeM, P(x) is an immersed submanifold of M.

PROOF. Let C°(x0) be the subset of C(xQ) consisting of all contractible
loops. The subgroup Φ\x0) of Φ(x0) arising from all loops in C\x0) is an
arcwise connected subgroup of G. Hence Φ\x0) is a Lie subgroup of G
[4]. Since Φ(xo)/Φ\xo) has at most countably many elements, Φ(x0) can be
given a Lie group structure in which Φ°(x0) is the connected component
of the identity.

Thus the orbits of Φ(x0) on LXQ are immersed submanifolds of LXQ.
By Lemma 3.3, N = π~1(P(x0)Γ\LXQ) is a countable union of orbits of Φ(x0)
and hence is an immersed submanifold of LXQ. Since π^L^, x0) acts freely
and properly discontinuously on N, it follows that N/π^L^, x0) is an
immersed manifold of LXQ whose image in LH is P(xo)Γ\LXo. By Lemma
3.4, P(x0) can be given a topology and differentiate structure making it
into an immersed submanifold of M by requiring as charts on P(x0) the
maps ψ: Ωx V->P(xQ) defined by ψ(w, v) = h(φ(w), v) where φ: Ω-^Wf]P(x0)
is a chart on P(xo)f)LXo.

To complete the proof it suffices to show that for every xeM, Φ(x)
is a Lie group acting smoothly on Lx. If μ is a curve joining x0 to x
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then the isomorphism of Φ(xQ) onto Φ(x) given by λ# —> AV4/4Γ1 can be used
to put a Lie group structure on Φ(x). This structure is independent of
the choice of μ.

EXAMPLE. Let G be a connected Lie group acting smoothly on a
manifold N. Let P->B be a principal G-bundle with a connection whose
holonomy group is G [4]. Let M = PxGN-+B be the associated bundle
with fiber N, and let ^~ be the foliation of M by the fibers. Let D be
the distribution on M arising from the connection in P. Then D is an
Ehresmann connection for ^ Ί Identifying a leaf L of ^ with iV, we
have that the sets P(x)Γ\L are just the orbits of G on N. In general,
each P{x) is a union of P(y)'s but these closures need not partition M
even if M is compact since the closures of the orbits of a non-compact
group action need not partition. If however the leaves are totally geodesic
and M is compact, then the sets P(x) do partition M and are submanifolds
[2].

4. Bundles of Tangential r-frames. Let (Af, ^~) be a foliated
manifold, and let E be the tangent bundle of ^~. A tangential r-frame
at p e M is an equivalence class of immersions / : (U, 0) —> (L, p) where £/
is a neighborhood of 0 in Rk (k = dim(^")) and L is the leaf of &~
through p, where two such immersions are equivalent if they agree up
to order r at 0. Let Fr(E) be the collection of all tangential r-frames
at all points of M. The projection map π: Fr(E) -> M defined by π[f] =
/(0) has the structure of a principal Gr(fe)-bundle where Gr(fc) is the
group of r-frames at 0 in Rk. The restriction of π to a leaf L is the
usual bundle of r-frames over L [3].

Let jβ~ — π~\^). Given a complementary distribution D on (Af, ^~),
there is a natural lift of D to a complementary distribution D on
{Fr{E\ JT) defined as follows. Let uoeFr(E), and p0 = ττ(tt0). Let [/
be a neighborhood of p0 in which ^ is a product, and let X be a
horizontal vector field on U which is parallel along the leaves. The local
flow φt generated by X sends leaves to leaves, and hence induces a local
flow φίr) in a neighborhood of u0. Let X be the vector field induced by
φΐ\ and let DUQ be the set of all such XUQ. Then D is a complementary
distribution to β^ since π%X — X for these vector fields.

Let 7r: P->Λf be a reduction of Fr(E) to a Lie subgroup if of Gr(fc).

DEFINITION. D is compatible with P if D is tangent to P.

The restriction of P to a leaf L of J?~ is a reduction of the bundle
of r-frames on L to H. This gives a collection of distinguished r-frames
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on each leaf. Then D is compatible with P if and only if the elements
of holonomy along horizontal paths in M send distinguished r-frames to
distinguished r-frames. In this case, D is a complementary distribution

/ on P.

LEMMA 4.1. If D is an Ehresmann connection for (P, β~) then D
is an Ehresmann connection for (ikf,

PROOF. Let r be a vertical curve and σ a horizontal curve in M
with τ(0) = σ(0). Let f be a lift of τ to P. Then τ is tangent to β~.
Let φt be the element of holonomy along σ. Let φlr) be the natural lift
of φt to P, and let σ(t) = φlr)(τ(0)). The rectangle associated to σ and τ
projects under π to a rectangle associated to σ and τ.

REMARK. The converse is also true. (cf. Proposition 4.3 of [2])

Recall from [2] that a parallelism for ^ is a family Xlf « ,Xm

(m = dim(^)) of vector fields on P everywhere linearly independent and
tangent to Jh The parallelism is said to be complete if each vector field
Xi is a complete vector field on P. We say D preserves the parallelism
if each Xi is invariant under the elements of holonomy along 5-curves.

PROPOSITION 4.2. If D preserves a complete parallelism for ^ then
D is an Ehresmann connection for ^~.

PROOF. We first show that each uoeP has a neighborhood V in the
leaf of j^~ through u0 such that for every horizontal curve σ with σ β V,
the element of holonomy along σ can be defined throughout V. Indeed,
for each i = 1, , m, let φ\ be the flow generated by Xt. The function
/(ίi> •> *») = ΦH° '' °0ΓmOO defines a diffeomorphism of a neighborhood
of 0 in Rm onto a neighborhood V of ^0 in the leaf through u0. Let σ
be a horizontal curve with σ(0) = /(sx, , sm) 6 V. For each v e F ,

Ψ*(v) = ΦH ° ° ΦTm ° A ° ° Φ-s^V))

defines the element of holonomy along σ at v where Z"1^) = (ίx, , ί J
Let τ be a vertical curve and σ a horizontal curve in P with the

same initial points. The preceding argument shows that the element of
holonomy determined by σ can be continued along τ, and so D is an
Ehresmann connection. The proposition now follows from Lemma 4.1.

5. Applications. Let M be a Riemannian manifold, ^~ a foliation
of M, and D the distribution orthogonal to the leaves.

LEMMA 5.1. The elements of holonomy along horizontal curves are
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isometries (respectively, conformal transformations) if and only if the
leaves of jβ~ are totally geodesic (respectively, totally umbilic) sub-
manifolds.

PROOF. Let g be the metric tensor, V the Riemannian connection
on M, and a the second fundamental form for the leaves. Let X be a
horizontal vector field parallel along the leaves in some neighborhood U
in M. Let Y, Z be vertical vector fields on U. Then

(Lig)(Y, Z) = X(g(Y, Z)) - g(LχY, Z) - g(Yf LjZ)

= g(Ϊ5Y, Z) + g(Yy V~XZ) - g([X, Y], Z) - g(Y9 [X, Z})

= g(V*Y - [X,Y\ Z) + g(Y, V2Z - [X, Z})

= g(VγX, Z) + g(Yt fzX) = -g(X, VYZ) - g(fzY, X)

= -g(X, a(Y, Z)) - g(a(Z,Y), X) - -2g(a(Y, Z\ X).

The elements of holonomy along horizontal curves are isometries (respec-
tively, conformal transformations) if and only if Ljg = 0 (respectively,
L$g = eg), and so the result follows from the above calculation.

Suppose ^~ is totally geodesic with complete leaves. By Lemma 5.1
the elements of holonomy preserve the metrics on the leaves. Let P be
the reduction of F\E) obtained by taking orthonormal frames on the
leaves. Then D is compatible with P. The leaves of J?~ have a complete
parallelism (that arises from the Levi-Civita connections on the leaves)
which is preserved by D. By Proposition 4.2, D is an Ehresmann con-
nection for ^~. Since Φ(x) is contained in the Lie group of isometries
of L, it follows from Theorem 3.5 that the sets P(x) are immersed sub-
manifolds.

Suppose ^ is totally umbilic with d im(^) ^ 3, and the induced
conformal structures on the leaves are complete. By Lemma 5.1, the
elements of holonomy preserve the conformal structures on the leaves.
Let PcF\E) be the reduction arising from the conformal structures
on the leaves of ^ [3]. Then D is compatible with P. The leaves of
Jr have a complete parallelism (that arises from the normal conformal
Cartan connections on the leaves of ^) which is preserved by D. By
Proposition 4.2, D is an Ehresmann connection for jβ\ Since Φ(x) is
contained in the Lie group of conformal automorphisms of L, it follows
from Theorem 3.5 that the sets P(x) are immersed submanifolds.

Suppose ^~ is totally umbilic with dim(^^) ^ 3 and g is complete
and bundle-like. Since g is complete and bundle-like, D is an Ehresmann
connection [1]. By Lemma 5.1, Φ(x) is contained in the Lie group of
conformal automorphisms of L. Thus the sets P(x) are immersed sub-
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manifolds by Theorem 3.5.
In addition to the notation introduced in the proof of Lemma 5.1,

let V be the induced connection in the leaves, and V the Bott connection
along the leaves. For vertical vectors W,Y, Z we define a horizontal-
valued tensor S(Y, Z,W) = (Vwa)(Y, Z) + <ywg)*a(Y, Z) where (Vwg)* is
the linear operator on horizontal vectors satisfying g((Vwg)*(X0), Xx) =
(ywβ)(Xof Xi) f° r all horizontal vectors XOf Xx.

LEMMA 5.2. Let U be a neighborhood where the foliation is a product.
Let X be a vector field on U, Bott parallel along the leaves of ^ 7 Let
Y, Z,W be vertical vector fields on Usuch LXY = LXZ = LXW — 0. Then

-2g(S(Z,W,Y), X) = g(LzVYZ,W) + g(LxVγW, Z)

and

YZ,W) = g(S(Y, Z,W) - S(W,Y, Z) - S(Z,W,Y), X) .

PROOF. Using the formula for Lxg derived in the proof of Lemma
5.1 we have

YZ, W) + g(Z, LXVYW)

= X(g(VYZ,W)) - (Lxg)(VYZ,W) - g{VγZ, LXW)

+ X(g(Z, VrW)) - {Lig){Z, VYW) - g(LxZ, VYW)

= X{Y{g{Z,W))) + 2g(a(VYZ,W), X) + 2g(a(Z, VYW), X)

= (LzY)g(Z,W) +Y((Lxg)(Z,W)) +Y(g(LxZ,W))

+ Y(g(Z, LXW)) + 2g(a(VYZ,W), X) + 2g{a{Zy VYW), X)

= -2Y(g(a(Z,W), X)) + 2g(a(VγZ,W), X) + 2g(a(Z, VYW), X)

= -2φγg)(a(Z,W)X) - 2g((VγaXZ,W), X) - 2g(a(Z,W), VFX)

= -2g((VYa)(Z,W) + (Vγg)*(a(Z,W)), X)

= -2g(S(Z,W,Y), X).

The second equation follows from the first by a short calculation.

PROPOSITION 5.3. The elements of holonomy along horizontal curves
are affine transformations (respectively, protective transformations) if
and only if S = 0 (respectively, -2g(S(Z,W,Y), X) = ηAZ)g(Y,W) +
VAW)g(Y, Z) + 2ηx(Y)g(Z,W) for some section rj of the vector bundle
Hom(Z), E*) for every horizontal vector X and vertical vectors Y, Zy W.)

PROOF. In the notation of Lemma 5.2, the elements of holonomy
along horizontal curves are affine transformations if and only if LXVYZ = 0
for all such X,Y, Z. By Lemma 5.2, this occurs if and only if S = 0.
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The elements of holonomy are projective transformations if and only
if Lχ(VγZ) = ηx(Y)Z + 7}x(Z)Y for all such X,Y, Z and some section η
of Hom(D, E*). The result follows by Lemma 5.2.

Suppose g is complete and bundle-like (i.e. Vg Ξ= 0). Thus if Vα = 0,
then S = Vα + (Vff)1 = 0, and so by Proposition 5.3, Φ(x) is contained in
the Lie group of affine transformations of L. Thus the sets P(x) are
immersed submanifolds.

Suppose S = 0 and the induced metrics on the leaves are complete.
By Proposition 5.3, the elements of holonomy along horizontal curves are
affine transformations. Let P = F\E). Trivially, D is compatible with
P. The leaves of ^ have a complete parallelism (that arises from the
affine connections on the leaves of ^) which is preserved by D. By
Proposition 4.2, D is an Ehresmann connection for ^ 7 Since Φ(x) is
contained in the Lie group of affine transformations of L, it follows that
the sets P(x) are immersed submanifolds.

Suppose S has the form in Proposition 5.3, so that the elements of
holonomy along horizontal curves are projective transformations. Suppose
also that dimC^) ^ 2, and that the induced projective structures on the
leaves are complete. Let PcF\E) be the reduction arising from the
projective structures on the leaves of ^ [3]. Then D is compatible with
P. The leaves of ^ have a complete parallelism (that arises from the
normal projective Cartan connections on the leaves of ^ " ) which is preserved
by D. By Proposition 4.2, D is an Ehresmann connection for ^ 7 Since
Φ(x) is contained in the Lie group of projective automorphisms of L, it
follows that the sets P(x) are immersed submanifolds.
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