POSITIVE KERNEL FUNCTIONS AND BERGMAN SPACES

Nozomu Mochizuкi

(Received May 8, 1987)

Introduction. We denote by B theo pen unit ball in $C^{n}, n \geqq 1$. The Poisson kernel for B is obtained from the Cauchy kernel. In the same way, we can define a positive kernel function, H_{δ}, from the well-known kernel which is treated in [5]. H_{δ} has the reproducing property for the functions in the weighted Bergman space $A^{p, s}(B), 1 \leqq p<+\infty$. Using this kernel we shall derive Hardy-Littlewood inequalities for $A^{p, s}(B)$, just as in $H^{p}(B)$, where the Poisson kernel plays an essential role ([7]). Similar results will be obtained in the setting of the generalized half plane in C^{n}. As an application of the inequality, we shall treat the Mackey topology of $A^{p, s}(B), 0<p<1$, extending the one variable result ([9]).

1. Positive kernels. $\langle z, w\rangle$ will denote the usual inner product for $z, w \in C^{n}$ with $|z|^{2}=\langle z, z\rangle$. We fix $\delta>-1$ throughout. Let $K_{\dot{\delta}}(z, w)=$ $A_{0}\left(1-|w|^{2}\right)^{\delta}(1-\langle z, w\rangle)^{-(n+1+\delta)}, z, w \in B$, where

$$
A_{0}=\left(\int_{B}\left(1-|w|^{2}\right)^{\delta} d w\right)^{-1}=\frac{\Gamma(n+1+\delta)}{\Gamma(1+\delta) \pi^{n}} ;
$$

here, $d w$ denotes Lebesgue measure on $\boldsymbol{R}^{2 n}$. We define a positive kernel H_{δ} by

$$
H_{\delta}(z, w):=\frac{K_{\delta}(z, w) K_{\delta}(w, z)}{K_{\delta}(z, z)}=\frac{A_{0}\left(1-|z|^{2}\right)^{n+1+\delta}\left(1-|w|^{2}\right)^{\delta}}{|1-\langle z, w\rangle|^{2(n+1+\delta)}}, \quad z, w \in B .
$$

We shall write

$$
H_{\partial}[f](z)=\int_{B} H_{\partial}(z, w) f(w) d w, \quad z \in B,
$$

when the integral makes sense. For $0<p<+\infty, L^{p, s}(B)$ will denote the class of measurable functions f on B such that

$$
\|f\|_{p, \delta}:=\left(\int_{B}|f(w)|^{p}\left(1-|w|^{2}\right)^{s} d w\right)^{1 / p}<+\infty
$$

and $A^{p, s}(B)$ will mean the class of holomorphic functions which belong to
Partially supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.
$L^{p, \delta}(B)$. We note that the following implies $H_{\delta}[1](z)=1, z \in B$.
Theorem 1. Let $1 \leqq p<+\infty$. Then
(1) $f(z)=H_{0}[f](z), z \in B$, if $f \in A^{p, \delta}(B)$.
(2) $u(z) \leqq H_{\delta}[u](z), z \in B$, if $u \in L^{p, s}(B)$ and u is plurisubharmonic.

Proof. It is enough to suppose $p=1$, since $L^{p, \delta} \subset L^{1, \delta}$. Fix an arbitrary $\varepsilon>0$. Then, for any $f \in L^{1, \delta}(B)$, we have

$$
\left\|H_{\delta}[f]\right\|_{1, \delta+\varepsilon} \leqq A_{0} \int_{B}\left(|f(w)|\left(1-|w|^{2}\right)^{\delta} \int_{B} \frac{\left(1-|z|^{2}\right)^{n+1+2 \delta+\varepsilon}}{|1-\langle z, w\rangle|^{2(n+1+\delta)}} d z\right) d w
$$

where the inner integral is a bounded function of w on B, by [8, 1.4.10]; thus $\left\|H_{j}[f]\right\|_{1, \delta+\varepsilon} \leqq C\|f\|_{1, \delta}$. The same method as in [2, Theorem 3, (ii)] shows that if $g \in A^{p, o}(B), 0<p<+\infty$, and $g_{r}(z)=g(r z), 0 \leqq r<1$, then $\left\|g_{r}-g\right\|_{p, \delta} \rightarrow$ 0 as $r \rightarrow 1$. Now K_{δ} has the reproducing property for the functions in $H^{\infty}(B)$ ([8, 7.1.2]). Hence, we can see from a standard argument that $f=H_{\delta}[f]$ for $f \in A(B)$, the ball algebra. Take $f \in A^{1,0}(B)$. Then we have $\left\|f_{r}-H_{\delta}[f]\right\|_{1, \delta+\varepsilon} \leqq C\left\|f_{r}-f\right\|_{1, \delta}$, so the continuous functions f and $H_{\delta}[f]$ coincide on the whole of B. Next we prove (2). For a fixed $z \in B$, take $\phi_{z} \in \operatorname{Aut}(B)$ as in [8, 2.2.1]. Then $\phi_{z}(0)=z$ and $\phi_{z}{ }^{\circ} \phi_{z}=$ identity. Since $u \circ \phi_{z}$ is subharmonic on B, it follows from integration in polar coordinates that

$$
\int_{B}\left(u \circ \phi_{z}\right)(\xi)\left(1-|\xi|^{2}\right)^{\delta} d \xi \geqq u(z)|\partial B| \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{\delta} d r
$$

Making the change of variable $\xi=\phi_{z}(w), w \in B$, we have, by [8, 2.2.2 and 2.2.6],

$$
1-|\xi|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2}}, \quad d \xi=\left(\frac{1-|z|^{2}}{|1-\langle z, w\rangle|^{2}}\right)^{n+1} d w
$$

(2) follows from these and the proof is completed.

We denote by D the domain $\left\{\left(z_{1}, z^{\prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{n-1}\left|\operatorname{Im} z_{1}-\left|z^{\prime}\right|^{2}>0\right\}\right.$. This is the upper half plane if $n=1$. The Cayley transform Ψ, defined by $\Psi\left(z_{1}, \cdots, z_{n}\right)=\left(w_{1}, \cdots, w_{n}\right)$ with $w_{1}=\left(z_{1}-i\right)\left(z_{1}+i\right)^{-1}$ and $w_{j}=2 z_{j}\left(z_{1}+i\right)^{-1}$, $2 \leqq j \leqq n$, maps D onto B biholomorphically. We have $1-\langle\Psi(z), \Psi(w)\rangle=$ $2 \rho(z, w)\left(\left(z_{1}+i\right)\left(\overline{w_{1}+i}\right)\right)^{-1}, z, w \in D$, where $\rho(z, w)=i\left(\bar{w}_{1}-z_{1}\right)-2\left\langle z^{\prime}, w^{\prime}\right\rangle$. The Jacobian of Ψ is $2^{2 n}\left|z_{1}+i\right|^{-2 n-2}$. For $\zeta, \xi \in B$, put $\zeta=\Psi(z), \xi=\Psi(w)$, $z, w \in D$. Then

$$
H_{\delta}(\zeta, \xi) d \xi=\frac{2^{n-1} A_{0} \rho(z, z)^{n+1+\delta} \rho(w, w)^{\delta}}{|\rho(z, w)|^{2(n+1+\delta)}} d w ;
$$

the kernel occurring on the right side will be denoted by $H_{\delta}^{*}(z, w)$. If
$g(\zeta)$ is a measurable function on B, then we can write $H_{\partial}[g](\Psi(z))=$ $H_{\delta}^{*}[g \circ \Psi](z), z \in D$. In particular, we have $H_{\delta}^{*}[1](z)=1$ for any $z \in D$. We denote by $L^{p, o}(D), 0<p<+\infty$, the class of measurable functions f on D such that

$$
\|f\|_{p, \delta}:=\left(\int_{D} \mid f(z)^{p} \rho(z, z)^{\delta} d z\right)^{1 / p}<+\infty .
$$

$A^{p, s}(D)$ will denote the class of holomorphic $L^{p, \delta}(D)$-functions. Take $f \in$ $A^{p, o}(D)$. Then from $\left|z_{1}+i\right|>1, z \in D$, we see that

$$
\int_{B}\left|\left(f \circ \Psi^{-1}\right)(w)\right|^{p}\left(1-|w|^{2}\right)^{\delta} d w<2^{2 n+\delta}\left(\|f\|_{p, \delta}\right)^{p}<+\infty,
$$

i.e., $f \circ \Psi^{-1} \in A^{p, \delta}(B)$. Thus, for $1 \leqq p<+\infty$, we have $f(z)=$ $H_{\delta}\left[f \circ \Psi^{-1}\right](\Psi(z))=H_{\delta}^{*}[f](z), z \in D$. Similarly, if u is plurisubharmonic and $u \in L^{p, o}(D), 1 \leqq p<+\infty$, then we have

$$
\begin{equation*}
u(z) \leqq H_{\delta}^{*}[u](z), \quad z \in D \tag{3}
\end{equation*}
$$

2. Hardy-Littlewood inequalities for $A^{p, s}(B)$. For a continuous function f on $B, 1 \leqq k \leqq n$, and $0 \leqq r<1$, we define means $M_{q}(f, k ; r)$, $0<q \leqq+\infty$, as follows:

$$
\begin{gathered}
M_{\infty}(f, k ; r)=\max _{\zeta^{\prime} \in \partial B_{k}}\left|f\left(r \zeta^{\prime}, 0^{\prime \prime}\right)\right|, \\
M_{q}(f, k ; r)=\left(\int_{\partial B_{k}}\left|f\left(r \zeta^{\prime}, 0^{\prime \prime}\right)\right|^{q} d \sigma_{k}\left(\zeta^{\prime}\right)\right)^{1 / q}, \quad 0<q<+\infty,
\end{gathered}
$$

where B_{k} and $d \sigma_{k}$ denote, respectively, the unit ball in C^{k} and the surface measure on ∂B_{k}. We shall simply write $d \sigma$ instead of $d \sigma_{n}$. Also, $M_{q}(f ; r)$ will mean $M_{q}(f, n ; r)$.

Lemma 1. Let $1 \leqq p<+\infty$ and put $u=H_{j}[h]$ for $h \in L^{p, o}(B)$. Let $\sigma=p^{-1}(n+1+\delta)-q^{-1} n$ for $p \leqq q \leqq+\infty$. Then

$$
\begin{equation*}
M_{q}(u ; r) \leqq A(n, p, q, \delta)\|h\|_{p, \delta}(1-r)^{-\sigma}, \quad 0 \leqq r<1 \tag{4}
\end{equation*}
$$

If $1<p<q \leqq+\infty, p \leqq \lambda<+\infty$, then

$$
\begin{equation*}
\left(\int_{0}^{1} M_{q}(u ; r)^{\lambda}(1-r)^{\lambda \sigma-1} d r\right)^{1 / \lambda} \leqq A(n, p, q, \delta, \lambda)\|h\|_{p, \delta} \tag{5}
\end{equation*}
$$

Proof. (4): Suppose $q=+\infty$. Let $\zeta \in \partial B, 0 \leqq r<1$. Since $H_{\delta}[1](z)=1$ for any $z \in B$, Jensen's inequality shows that $|u(r \zeta)|^{p}<2^{n+1+\delta} A_{0}(1-$ $r)^{-(n+1+\delta)}\left(\|h\|_{p, \delta}\right)^{p}$, and (4) is clear. Suppose $p \leqq q<+\infty$. Then we have, by (4) with $q=+\infty$,

$$
M_{q}(u ; r)^{q} \leqq\left(C\|h\|_{p, \delta}(1-r)^{-(n+1+\delta) / p}\right)^{q-p} \int_{\partial B}|u(r \zeta)|^{p} d \sigma(\zeta)
$$

In the second factor, we see that

$$
\begin{aligned}
& \int_{\partial B}|u(r \zeta)|^{p} d \sigma(\zeta) \\
& \quad \leqq A_{0}\left(1-r^{2}\right)^{n+1+\delta} \int_{B}\left(|h(w)|^{p}\left(1-|w|^{2}\right)^{\delta} \int_{\partial B} \frac{d \sigma(\zeta)}{|1-\langle r \zeta, w\rangle|^{2(n+1+\delta)}}\right) d w
\end{aligned}
$$

The inner integral, $I(w, r)$, is $\approx\left(1-|r w|^{2}\right)^{-(n+2+2 \delta)}$ as $|r w| \rightarrow 1$, by [8, 1.4.10], hence $I(w, r) \leqq C\left(1-r^{2}\right)^{-(n+2+2 \delta)}, 0 \leqq r<1$. Thus (4) follows from these estimates. (5): We define a measure $d \nu$ on $[0,1)$ by $d \nu(r)=(1-r)^{n+\delta} d r$. Let $1 \leqq p \leqq q$, if $q<+\infty$, and $1 \leqq p<+\infty$, if $q=+\infty$. For $h \in L^{p, \delta}(B)$, putting $u=H_{\delta}[h]$, we define $(T h)(r)=M_{q}(u ; r)(1-r)^{-n / q}, 0 \leqq r<1$. The rest of the proof is quite similar to the case $k=n$ in [7, (17)].

For a function g on B_{k}, let $\left(E_{n, k} g\right)\left(w^{\prime}, w^{\prime \prime}\right)=g\left(w^{\prime}\right),\left(w^{\prime}, w^{\prime \prime}\right) \in B$. For a function f on B, let $\left(R_{k, n} f\right)\left(w^{\prime}\right)=f\left(w^{\prime}, 0^{\prime \prime}\right), w^{\prime} \in B_{k}$.

Lemma 2. Let $f \in A^{p, s}(B), 0<p<+\infty$, and $1 \leqq k \leqq n$. Then

$$
\begin{equation*}
\left(\int_{B_{k}}\left|f\left(z^{\prime}, 0^{\prime \prime}\right)\right|^{p}\left(1-\left|z^{\prime}\right|^{2}\right)^{n+\delta-k} d z^{\prime}\right)^{1 / p} \leqq A(n, k, p, \delta)\|f\|_{p, \delta} \tag{6}
\end{equation*}
$$

Moreover, for $1 \leqq k \leqq n-1, E_{n, k}$ becomes a linear isometry of $A^{p, n+\delta-k}\left(B_{k}\right)$ into $A^{p, \delta}(B)$, and $R_{k, n}$ is a norm-decreasing operator of $A^{p, \delta}(B)$ onto $A^{p, n+\delta-k}\left(B_{k}\right)$.

Proof. Suppose $1 \leqq k \leqq n-1$. We write L_{k} for the space $\boldsymbol{C}^{k} \times$ $\{0\} \times \cdots \times\{0\} \subset C^{n}$ and consider measures on $B: d \mu_{k}(z)=\left(1-\left|z^{\prime}\right|^{2}\right)^{n+\delta-k} d z^{\prime}$, $z=\left(z^{\prime}, 0^{\prime \prime}\right) \in B \cap L_{k}$, and $d \mu_{\delta}(z)=\left(1-|z|^{2}\right)^{\delta} d z, z \in B$. For $\xi \in \partial B$, let $K(\xi, r)=$ $\left\{z \in B\left||1-\langle z, \xi\rangle|<r^{2}\right\}\right.$. It is enough to see that there is a constant C, independent of ξ, r, such that $\mu_{k}(K(\xi, r)) \leqq C \mu_{\delta}(K(\xi, r))$, since this implies (6) by [1] or [6]. First suppose $0<r \leqq 2^{-1 / 2}$. We shall show that $\mu_{k}(K(\xi, r)) \leqq$ $C r^{2(n+1+\delta)}, \xi \in \partial B$, just as in [7, Theorem 1, (2)]. Put $\alpha=n+\delta-k$ and $t=\left|\xi^{\prime}\right|$, where $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ with $\xi^{\prime} \in \boldsymbol{C}^{k}$. Then

$$
I_{k}(r):=\mu_{k}(K(\xi, r))=C(n, k, \delta) \int_{G^{\prime \prime}}\left(1-\left|w_{1}\right|^{2}\right)^{\alpha+k-1} d w_{1},
$$

where $G^{\prime \prime}=\left\{w_{1} \in B_{1}| | 1-t w_{1} \mid<r^{2}\right\}$, and then we get $I_{k}(r) \leqq C r^{2(n+1+\delta)}$ by the change of variable $w_{1}=\phi(\lambda)=t^{-1}\left(1-r^{2} \lambda^{-1}\right), \lambda \in C-\{0\}$. Next, letting $E=\left\{w_{1} \in B_{1}| | 1-w_{1} \mid<r^{2}\right\}$, we have

$$
\begin{aligned}
\mu_{\delta}(K(\xi, r)) & =C(n, \delta) \int_{E}\left(1-\left|w_{1}\right|^{2}\right)^{n+\delta-1} d w_{1} \\
& =C r^{2(n+1+\delta)} \int_{E^{\prime}}\left(2 \operatorname{Re} \lambda-r^{2}\right)^{n+\delta-1}|\lambda|^{-2(n+1+\delta)} d \lambda
\end{aligned}
$$

with $E^{\prime}=\left\{\lambda \in C| | \lambda \mid>1\right.$, Re $\left.\lambda>2^{-1} r^{2}\right\}$. Since $n \geqq 2$, the above integral
exceeds the integral of $\left(2 \operatorname{Re} \lambda-2^{-1}\right)^{n+\delta-1}|\lambda|^{-2(n+1+\delta)}$ over the domain $\{|\lambda|>1$, $\left.\operatorname{Re} \lambda>4^{-1}\right\}$, thus showing that $\mu_{s}(K(\xi, r)) \geqq C r^{2(n+1+8)}$. If $r>2^{-1 / 2}$, then $\mu_{k}(K(\xi, r)) \leqq \mu_{k}\left(B \cap L_{k}\right) \leqq C \mu_{\rho}\left(K\left(\xi, 2^{-1 / 2}\right)\right) \leqq C \mu_{\rho}(K(\xi, r))$ for any $\xi \in \partial B$, hence the desired inequality holds for $r>0$. Next, let $g \in A^{p, n+\delta-k}\left(B_{k}\right)$. Then, by Fubini's theorem,

$$
\int_{B}\left|\left(E_{n, k} g\right)(w)\right|^{p}\left(1-|w|^{2}\right)^{s} d w=C \int_{B_{k}}\left|g\left(w^{\prime}\right)\right|^{p}\left(1-\left|w^{\prime}\right|^{2}\right)^{n+\delta-k} d w^{\prime} .
$$

$R_{k, n}$ is continuous by (6) and onto, since $R_{k, n} \circ E_{n, k}=$ identity.
Theorem 2. Let $f \in A^{p, 0}(B), 0<p<+\infty$. Put $\sigma=p^{-1}(n+1+\delta)-$ $q^{-1} k$ for $p \leqq q \leqq+\infty, 1 \leqq k \leqq n$. Then, for $p \leqq \lambda<+\infty$,

$$
\begin{equation*}
\left(\int_{0}^{1} M_{q}(f, k ; r)^{2}(1-r)^{20-1} d r\right)^{1 / 2} \leqq A(n, k, p, q, \delta, \lambda)\|f\|_{p, \delta} . \tag{7}
\end{equation*}
$$

σ is the best possible exponent. (7) does not hold, when $0<q<p$.
Proof. It is sufficient to assume $k=n$, because the other cases can be settled by Lemma 2. First suppose $p<q \leqq+\infty, \mathrm{p} \leqq \lambda<+\infty$. Since $|f|^{p / 2} \in L^{2, b}(B)$, we have $|f(z)|^{p / 2} \leqq H_{0}\left[|f|^{p / 2}\right](z)=: u(z), z \in B$, by (2), hence $M_{q}(f ; r)^{2} \leqq M_{(2 q / p)}(u ; r)^{2)^{2 / p}}$. Taking 2, $p^{-1}(2 q)$, and $p^{-1}(2 \lambda)$, respectively, for p, q, and λ in (5), we get (7). In the case $p=q=\lambda$, we can derive (7) from the definition of $\|f\|_{p, 3}$, as we have obtained (13) from (14) in [7, Theorem 4]. If $p=q<\lambda$, then (7) follows from [7, (19)]. Now the function $\left(1-z_{1}\right)^{-\beta}, \beta>0$, belongs to $A^{p, s}(B)$ if and only if $\beta<p^{-1}(n+1+\delta)$. Let $0<\alpha<\sigma, \quad 0<p \leqq q \leqq+\infty$. Then $f(z):=\left(1-z_{1}\right)^{-\alpha-(k / q)} \in A^{p, s}(B)$ and $M_{q}(f, k ; r) \approx\left(1-r^{2}\right)^{-\alpha}$ as $r \rightarrow 1$. Thus the integral in (7), with σ replaced by α, becomes $+\infty$. The last assertion can be verified by taking the functions $z_{1}^{2 j}, j=1,2, \cdots$, as in the proof of [7, Theorem 4].
3. Hardy-Littlewood inequalities for $A^{p, s}(D)$. We denote by G_{r} the domain $\left\{\left(z_{1}, z^{\prime}\right) \in D\left|\operatorname{Im} z_{1}-\left|z^{\prime}\right|^{2}>r\right\}, r>0\right.$.

Lemma 3. Let u be plurisubharmonic on $D, u \geqq 0$, and $u \in L^{p, s}(D)$, $1 \leqq p<+\infty$. Then $u(z) \rightarrow 0$ as $\left|z_{1}\right| \rightarrow+\infty$, uniformly on \bar{G}_{r} for any $r>0$.

Proof. We can suppose $p=1$, since u^{p} is plurisubharmonic. Let $d \mu(w)=\rho(w, w)^{3} u(w) d w, w \in D$. Then, in view of (3), it is enough to verify the assertion for the function v defined by

$$
v(z)=\int_{D} \rho(z, z)^{n+1+\delta}|\rho(z, w)|^{-2(n+1+8)} d \mu(w), \quad z \in D .
$$

Pick $r>0$ and fix $\varepsilon>0$. Let $Q_{m}=\left\{\left(y_{1}+i s+i\left|w^{\prime}\right|^{2}, w^{\prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{n-1}| | y_{1} \mid<m\right.$, $\left.0<s<m,\left|w^{\prime}\right|<m\right\}$. We can take m so that $\mu\left(D \backslash Q_{m}\right)<\varepsilon$ and, then,
T, S, and R so that $T^{-(n+1+\delta)} \mu\left(Q_{m}\right)<\varepsilon, T^{n+1+\delta}(S-m)^{-4(n+1+\delta)} \mu\left(Q_{m}\right)<\varepsilon$ with $S>m$, and $T^{n+1+\delta}(R-m(1+2 S))^{-2(n+1+\delta)} \mu\left(Q_{m}\right)<\varepsilon$ with $R>m(1+2 S)$. Now take an arbitrary $z=\left(z_{1}, z^{\prime}\right) \in \bar{G}_{r}, \quad z_{1}=x_{1}+i t+i\left|z^{\prime}\right|^{2}$, such that $\left|z_{1}\right|^{2}>R^{2}+\left(T+S^{2}\right)^{2}$. Then we have, for any $w=\left(y_{1}+i s+i\left|w^{\prime}\right|^{2}, w^{\prime}\right) \in D$,

$$
\begin{align*}
& \frac{\rho(z, z)^{n+1+\delta}}{|\rho(z, w)|^{2(n+1+\delta)}} \tag{8}\\
& \quad=\frac{2^{n+1+\delta} t^{n+1+\delta}}{\left[\left(x_{1}-y_{1}+2 \operatorname{Im}\left\langle z^{\prime}, w^{\prime}\right\rangle\right)^{2}+\left(t+s+\left|z^{\prime}-w^{\prime}\right|^{2}\right)^{2}\right]^{n+1+\delta}} \\
& \quad \leqq\left(2 r^{-1}\right)^{n+1+\delta}=: M,
\end{align*}
$$

hence

$$
v(z) \leqq \int_{Q_{m}}+M \varepsilon
$$

Suppose $t>T$. Then

$$
v(z) \leqq \int_{Q_{m}} 2^{n+1+\delta} t^{-(n+1+\delta)} d \mu(w)+M \varepsilon<\left(2^{n+1+\delta}+M\right) \varepsilon
$$

Suppose $r \leqq t \leqq T$. If $\left|z^{\prime}\right|>S$, then

$$
v(z) \leqq \int_{Q_{m}} \frac{2^{n+1+\delta} T^{n+1+\delta}}{\left|z^{\prime}-w^{\prime}\right|^{(n+1+\delta)}} d \mu(w)+M \varepsilon<\left(2^{n+1+\delta}+M\right) \varepsilon
$$

If $\left|z^{\prime}\right| \leqq S$, then $\left|x_{1}\right|>R$, hence from

$$
v(z) \leqq \int_{Q_{m}} \frac{2^{n+1+\delta} T^{n+1+\delta}}{\left|x_{1}-y_{1}+2 \operatorname{Im}\left\langle z^{\prime}, w^{\prime}\right\rangle\right|^{2(n+1+\delta)}} d \mu(w)+M \varepsilon
$$

we have $v(z)<\left(2^{n+1+\delta}+M\right) \varepsilon$, completing the proof.
Let f be a complex-valued function on D such that $|f|$ is upper semicontinuous. We define means $M_{q}(f, k ; t), t>0$, for $0<q \leqq+\infty$ and $1 \leqq k \leqq n$ as follows:

$$
\begin{gathered}
M_{\infty}(f, k ; t)=\sup _{\left(x_{1}, z^{\prime}\right) \in \boldsymbol{R} \times \boldsymbol{C}^{k-1}}\left|f\left(x_{1}+i t+i\left|z^{\prime}\right|^{2}, z^{\prime}, 0^{\prime \prime}\right)\right|, \\
M_{q}(f, k ; t)=\left(\int_{R \times \boldsymbol{c}^{k-1}}\left|f\left(x_{1}+i t+i\left|z^{\prime}\right|^{2}, z^{\prime}, 0^{\prime \prime}\right)\right|^{q} d x_{1} d z^{\prime}\right)^{1 / q},
\end{gathered}
$$

for $0<q<+\infty$. $M_{q}(f, k ; t)$ is an extended real-valued function on (0 , $+\infty) . \quad M_{q}(f ; t)$ will mean $M_{q}(f, n ; t)$.

Lemma 4. Let u be plurisubharmonic on $D, u \geqq 0$, and $u \in L^{p, s}(D)$, $1 \leqq p<+\infty$. Then, for $p \leqq q \leqq+\infty, M_{q}(u ; t)$ is a real-valued decreasing function of t.

Proof. Suppose $q=+\infty$. By Lemma 3, the maximum principle for
subharmonic functions holds on the domain \bar{G}_{r} and $M_{\infty}(u ; r)$ is identical with the supremum of $u(z)$ taken over \bar{G}_{r}. This proves the assertion. Suppose $p \leqq q<+\infty$. The fact that $M_{q}(u ; t)<+\infty$ will be seen from (9) in the next Lemma 5, so we show that M_{q} is decreasing on ($0,+\infty$). For a fixed $z^{\prime} \in \boldsymbol{C}^{n-1}$, put $u_{z^{\prime}}\left(x_{1}+i t\right)=u\left(x_{1}+i t+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)^{q}, \quad\left(x_{1}, t\right) \in \boldsymbol{R} \times$ $(0,+\infty)$. Then $u_{z^{\prime}}$ is subharmonic on $\boldsymbol{R} \times(0,+\infty)$ and we can write

$$
M_{q}(u ; t)^{q}=\int_{C^{n-1}} d z^{\prime} \int_{R} u_{z^{\prime}}\left(x_{1}+i t\right) d x_{1}
$$

Lemma 3 implies that $u_{z^{\prime}}\left(x_{1}+i t\right) \rightarrow 0$ as $\left|x_{1}+i t\right| \rightarrow+\infty$, uniformly on $\boldsymbol{R} \times[r,+\infty)$ for any $r>0$. It follows from [3, Theorem 1] that the inner integral is an extended real-valued, decreasing function of t, so that $M_{q}(u ; t)^{q}$ is decreasing. This completes the proof.

The Poisson kernel $P(z, \eta)$ for the domain D is given by

$$
P(z, \eta)=\frac{2^{n-2} \Gamma(n)}{\pi^{n}} \frac{\rho(z, z)^{n}}{|\rho(z, \eta)|^{2 n}}, \quad z \in D, \quad \eta \in \partial D
$$

$H_{n-1}:=\boldsymbol{R} \times \boldsymbol{C}^{n-1}$ becomes the Heisenberg group under the group operation, $x \cdot y=\left(x_{1}+y_{1}+2 \operatorname{Im}\left\langle z^{\prime}, w^{\prime}\right\rangle, z^{\prime}+w^{\prime}\right)$ for $x=\left(x_{1}, z^{\prime}\right), y=\left(y_{1}, w^{\prime}\right) \in H_{n-1}$. If we put $x \cdot w=\left(x_{1}+w_{1}+2 i\left\langle w^{\prime}, z^{\prime}\right\rangle+i\left|z^{\prime}\right|^{2}, z^{\prime}+w^{\prime}\right)$ for $w=\left(w_{1}, w^{\prime}\right) \in \boldsymbol{C}^{n}$, we can write $\left(x_{1}+i t+i\left|\boldsymbol{z}^{\prime}\right|^{2}, z^{\prime}\right)=x \cdot i t e$, with $e=(1,0, \cdots, 0) \in \boldsymbol{C}^{n}$. Since $P(x \cdot$ ite, $y \cdot 0)=P\left(\right.$ ite,$\left.x^{-1} \cdot y \cdot 0\right)$, we have

$$
\int_{H_{n-1}} P(x \cdot i t e, y \cdot 0) d x=\int_{H_{n-1}} P(i t e, u \cdot 0) d u=1, \quad t>0, \quad y \in H_{n-1}
$$

Lemma 5. Put $u=H_{o}^{*}[h]$ for $h \in L^{p, o}(D), 1 \leqq p<+\infty$. Let $\sigma=$ $p^{-1}(n+1+\delta)-q^{-1} n$ for $p \leqq q \leqq+\infty$. Then

$$
\begin{equation*}
M_{q}(u ; t) \leqq A(n, p, q, \delta)\|h\|_{p, \delta} t^{-\sigma}, \quad t>0 \tag{9}
\end{equation*}
$$

If $p<q \leqq+\infty$, then

$$
\begin{equation*}
M_{q}(u ; t)=o\left(t^{-\sigma}\right) \quad \text { as } \quad t \rightarrow 0^{+} \tag{10}
\end{equation*}
$$

If $1<p<q \leqq+\infty, p \leqq \lambda<+\infty$, then

$$
\begin{equation*}
\left(\int_{0}^{+\infty} M_{q}(u ; t)^{\lambda} t^{\lambda \sigma-1} d t\right)^{1 / \lambda} \leqq A(n, p, q, \delta, \lambda)\|h\|_{p, \delta} \tag{11}
\end{equation*}
$$

Proof. (9): Suppose $q=+\infty$. For $z=\left(x_{1}+i t+i\left|z^{\prime}\right|^{2}, z^{\prime}\right) \in D$, we have $H_{\delta}^{*}(z, w) \leqq C(n, \delta) t^{-(n+1+\delta)} \rho(w, w)^{\delta}, \quad w \in D$, by (8), so $|u(z)|^{p} \leqq C(n$, $\delta) t^{-(n+1+\delta)}\left(\|h\|_{p, \delta}\right)^{p}$ and (9) follows. Suppose $p \leqq q<+\infty$. Note that $M_{q}(u ; t)^{q} \leqq\left(C\|h\|_{p, \delta} t^{-(n+1+\delta) / p}\right)^{q-p} M_{p}(u ; t)^{p}$. For $z=\left(x_{1}+i t+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)$ and $w=\left(y_{1}+i s+i\left|w^{\prime}\right|^{2}, w^{\prime}\right) \in D$, we see that

$$
\begin{aligned}
& \frac{\rho(z, z)^{n+1+\delta}}{|\rho(z, w)|^{2(n+1+\delta)}} \\
& \quad \leqq 2^{n+1+\delta} t^{-(1+\delta)} \frac{t^{n}}{\left[\left(x_{1}-y_{1}+2 \operatorname{Im}\left\langle z^{\prime}, w^{\prime}\right\rangle\right)^{2}+\left(t+\left|z^{\prime}-w^{\prime}\right|^{2}\right)^{2}\right]^{n}} \\
& \quad=C(n, \delta) t^{-(1+\delta)} P(z, \eta),
\end{aligned}
$$

where we have put $\eta=\left(y_{1}+i\left|w^{\prime}\right|^{2}, w^{\prime}\right) \in \partial D$. It follows that

$$
|u(z)|^{p} \leqq C(n, \delta) t^{-(1+\delta)} \int_{D} P(z, \eta) \rho(w, w)^{\delta}|h(w)|^{p} d w
$$

hence $M_{p}(u ; t)^{p} \leqq C(n, \delta) t^{-(1+\delta)}\left(\|h\|_{p, \delta}\right)^{p}$, which shows (9). (10): We follow [4, Theorem 1]. Take $\varepsilon>0$. Choose $h_{1} \in C_{c}(D)$ so that $\left\|h-h_{1}\right\|_{p, \delta}<\varepsilon$. Put $h_{2}=h-h_{1}$. Then $u=H_{\delta}^{*}\left[h_{1}\right]+H_{\delta}^{*}\left[h_{2}\right]=: u_{1}+u_{2}$ and $M_{q}(u ; t) \leqq$ $M_{q}\left(u_{1} ; t\right)+M_{q}\left(u_{2} ; t\right)$. Since $M_{\infty}\left(u_{1} ; t\right) \leqq\left\|h_{1}\right\|_{\infty}$ and since $M_{\infty}\left(u_{2} ; t\right)<C t^{-(n+1+\delta) / p} \varepsilon$ by (9), we get (10) in the case $q=+\infty$. Suppose $p<q<+\infty$. (9) implies that $M_{q}\left(u_{1} ; t\right) \leqq C\left\|h_{1}\right\|_{q, \delta} t^{-((n+1+\delta) / q)-(n / q))}$, since $h_{1} \in L^{q, \delta}(D)$, and $M_{q}\left(u_{2} ; t\right)<$ $C t^{-((n+1+\delta) / p)-(n / q)} \varepsilon$, so (10) follows. (11): Define a measure $d \nu$ on ($0,+\infty$) by $d \nu(t)=t^{n+\delta} d t$ and let $(T h)(t)=M_{q}(u ; t) t^{-n / q}, t \in(0,+\infty)$, where $u=$ $H_{0}^{*}[h]$ for $h \in L^{p, s}(D)$. Since $u(z)=H_{0}\left[h \circ \Psi^{-1}\right](\Psi(z)), u$ is continuous on D. The conclusion of Lemma 3 holds for u, hence $M_{\infty}(u ; t)$ is a continuous function of t. $M_{q}(u ; t)$ is obviously measurable, if $p \leqq q<+\infty$. The inequality (11) can be seen as in Lemma 1.

Lemma 6. Denote by D_{k} the domain $\left\{\left(z_{1}, z^{\prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{k-1}\left|\operatorname{Im} z_{1}-\left|z^{\prime}\right|^{2}>0\right\}\right.$, $1 \leqq k \leqq n$. If $f \in A^{p, o}(D), 0<p<+\infty$, then

$$
\begin{equation*}
\left(\int_{D_{k}}\left|f\left(z^{\prime}, 0^{\prime \prime}\right)\right|^{p} \rho\left(z^{\prime}, z^{\prime}\right)^{n+\delta-k} d z^{\prime}\right)^{1 / p} \leqq A(n, k, p, \delta)\|f\|_{p, \delta} \tag{12}
\end{equation*}
$$

Proof. For $g \in A^{p, s}(B)$, we define $\left(\Psi_{o}^{*} g\right)(z)=2^{(2 n+\delta) / p}(g \circ \Psi)(z)\left(z_{1}+\right.$ $i)^{-2(n+1+\delta) / p}, z \in D$. It is easily seen that $\|g\|_{p, \delta}=\left\|\Psi_{\delta}^{*} g\right\|_{p, \delta}$ and that Ψ_{δ}^{*} is an isometry of $A^{p, s}(B)$ onto $A^{p, s}(D)$. Let Ψ_{k} be the Cayley transform of D_{k} onto B_{k}. Then, for $z=\left(z^{\prime}, 0^{\prime \prime}\right) \in D \cap L_{k}$, we can write $\Psi(z)=\left(\Psi_{k}\left(z^{\prime}\right), 0^{\prime \prime}\right)$. The Jacobian of Ψ_{k} is $2^{2 k}\left|z_{1}+i\right|^{-2 k-2}$. For $f \in A^{p, o}(D)$, take $g \in A^{p, o}(B)$ so that $f=\Psi_{\delta}^{*} g$. Applying Lemma 2 to g, we obtain (12).

Theorem 3. Let $f \in A^{p, \delta}(D), 0<p<+\infty$. Put $\sigma=p^{-1}(n+1+\delta)-$ $q^{-1} k$ for $p \leqq q \leqq+\infty, 1 \leqq k \leqq n$. Then, for $p \leqq \lambda<+\infty$, the following hold:

$$
\begin{gather*}
M_{q}(f, k ; t) \leqq A(n, k, p, q, \delta)\|f\|_{p, \delta} t^{-\sigma}, \quad t>0 \tag{13}\\
M_{q}(f, k ; t)=o\left(t^{-\sigma}\right) \text { as } t \rightarrow 0^{+} \tag{14}\\
\left(\int_{0}^{+\infty} M_{q}(f, k ; t)^{\lambda} t^{\lambda \sigma-1} d t\right)^{1 / \lambda} \leqq A(n, k, p, q, \delta, \lambda)\|f\|_{p, \delta} \tag{15}
\end{gather*}
$$

Proof. We define $R_{k, n}$ by $\left(R_{k, n} f\right)\left(z^{\prime}\right)=f\left(z^{\prime}, 0^{\prime \prime}\right), z^{\prime} \in D_{k}$, for $f \in A^{p, z}(D)$, $1 \leqq k \leqq n-1$. Lemma 6 means that $R_{k, n} f \in A^{p, n+\delta-k}\left(D_{k}\right)$ with $\left\|R_{k, n} f\right\|_{p, n+\delta-k} \leqq$ $A(n, k, p, \delta)\|f\|_{p, \delta}$. Hence it is sufficient to treat the case $k=n$. Now we have $|f|^{p / 2} \leqq H_{d}^{*}\left[|f|^{p / 2}\right]=: u$ with $\left(\left\||f|^{p / 2}\right\|_{2, \delta}\right)^{2}=\left(\|f\|_{p, \delta}\right)^{p}$, by (3). From $M_{q}(f ; t) \leqq M_{(2 q / p)}(u ; t)^{2 / p}, t>0$, (13) follows; also, (14) and (15) follow, in the case $p<q \leqq+\infty$. Next, rewriting the definition of $\|f\|_{p, \delta}$, we obtain

$$
\left(2^{s} \int_{0}^{+\infty} M_{p}(f ; t)^{p} t^{s} d t\right)^{1 / p}=\|f\|_{p, \delta}
$$

This shows (15) in the case $p=q=\lambda$. The case $p=q<\lambda$ follows from (13). Finally, (14) can be proved for $p=q$, as follows: Letting $v=|f|^{p / 2}$, we have $M_{p}(f ; t)^{p}=M_{2}(v ; t)^{2}$, a decreasing function of t by Lemma 4. It follows that, for $t>0$,

$$
\int_{0}^{t} M_{p}(f ; s)^{p} s^{\delta} d s \geqq C M_{p}(f ; t)^{p} t^{1+\delta} ;
$$

this tends to 0 as $t \rightarrow 0^{+}$.
4. The Mackey topology of $A^{p, o}(B), 0<p<1$. Let $f \in A^{p, s}(B), 0<$ $p<+\infty$, and $c \geqq 1$. Then Theorem 2 implies that

$$
\left(\int_{B_{k}}\left|f\left(z^{\prime}, 0^{\prime \prime}\right)\right|^{c p}\left(1-\left|z^{\prime}\right|^{2}\right)^{c(n+1+\delta)-k-1} d z^{\prime}\right)^{1 /(c p)} \leqq C\|f\|_{p, \delta}
$$

an extension of Lemma 2. In particular, we have $\|f\|_{e p, c(n+1+\delta)-n-1} \leqq$ $C\|f\|_{p, \delta}$, so $A^{p, \delta}(B) \subset A^{c p, c(n+1+\delta)-n-1}(B)$. This shows that Condition (1) of the proof of [9, Theorem 3] is satisfied. Moreover, $A^{p, s}(B)$ is an F-space with $\left(A^{p, \delta}(B)\right)^{*}$ separating points of $A^{p, s}(B)$, by [7, (19)]. Thus, in the following, it suffices to see that Condition (2) in the proof of [9, Theorem 3] is satisfied.

Theorem 4. The Mackey topology of $A^{p, s}(B), 0<p<1$, is induced by the topology of $A^{1, \sigma}(B), \sigma=p^{-1}(n+1+\delta)-n-1$.

Proof. Fix $\beta>\sigma$. Put $(J(w))(z)=J(z, w):=\left(1-|w|^{2}\right)^{-\sigma} K_{\beta}(z, w), z$, $w \in B$. Then $J(w) \in A^{p, s}(B)$. We can see that $M:=\sup \left\{\|J(w)\|_{p, \delta} \mid w \in B\right\}<$ $+\infty$. Indeed, we have

$$
\left(\|J(w)\|_{p, \delta}\right)^{p}=A_{0}^{p}\left(1-|w|^{2}\right)^{p(\beta-\sigma)} \int_{B} \frac{\left(1-|z|^{2}\right)^{\delta}}{|1-\langle z, w\rangle|^{p(n+1+\beta)}} d z
$$

where the integral is $\approx\left(1-|w|^{2}\right)^{n+1+\delta-p(n+1+\beta)}$ as $|w| \rightarrow 1$. Put $V=\{f \in$ $\left.A^{p, \delta} \mid\|f\|_{p, \delta} \leqq M\right\}$ and $W=\left\{f \in A^{p, \delta} \mid\|f\|_{1, \sigma} \leqq 1\right\}$. We denote by [V] and [V], respectively, the absolutely convex hull of V and its $A^{p, \delta}$-closure and show that $W \subset \overline{[V]}$. Take $f \in W$. Then $f \in A^{1, \beta}$, so we can see that $f=$ $K_{\beta}[f]$ in the same way as in (1). Since $f_{r} \rightarrow f$ in $A^{p, \delta}$, as $r \rightarrow 1$, we need
only to show that $f_{r} \in \overline{[V]}, 0 \leqq r<1$. Now

$$
f_{r}(z)=\int_{B} J(r z, w)\left(1-|w|^{2}\right)^{\sigma} f(w) d w, \quad z \in B
$$

Let $\varepsilon>0$. Since $J(r z, w)$ is uniformly continuous on $\bar{B} \times \bar{B}$, we can choose closed subsets of $B, B_{j}, 1 \leqq j \leqq m$, with the interior being mutually disjoint, so that $\cup B_{j}=B$ and $|J(r z, w)-J(r z, u)|<\varepsilon$ for $z \in B, w, u \in B_{j}$, $1 \leqq j \leqq m$. Taking arbitrary $w_{j} \in B_{j}$ and putting $d \mu(w)=\left(1-|w|^{2}\right)^{\sigma} f(w) d w$, we define $S_{\varepsilon}(z)=\sum_{j=1}^{m} J\left(r z, w_{j}\right) \mu\left(B_{j}\right)$. Then $S_{\varepsilon} \in[V]$ and $\left|f_{r}(z)-S_{\varepsilon}(z)\right|<\varepsilon$, $z \in B$. This completes the proof.

Note. After submission of the manuscript, K. Izuchi showed that Theorem 2 can directly be derived from [7, Theorem 4] by computation, without any use of H_{δ}. In this connection, we note here that [7, Theorem 4] is, conversely, an easy consequence of Theorem 2 and others. This method seems to have an advantage of being applicable in the setting of the domain D. We shall state the result as follows:

Theorem 5. Suppose $f \in H^{p}(D), 0<p<+\infty$. Let $p \leqq q \leqq+\infty$ ($p<$ q, when $k=n$ in (17) and (18)) and put $\alpha=p^{-1} n-q^{-1} k, 1 \leqq k \leqq n$. Then the following hold.

$$
\begin{gather*}
M_{q}(f, k ; t) \leqq A(n, k, p, q)\|f\|_{p} t^{-\alpha}, \quad t>0 \tag{16}\\
M_{q}(f, k ; t)=o\left(t^{-\alpha}\right) \text { as } t \rightarrow 0^{+} \tag{17}
\end{gather*}
$$

(18) For $p \leqq \lambda<+\infty$,

$$
\left(\int_{0}^{+\infty} M_{q}(f, k ; t)^{\lambda} t^{\lambda \alpha-1} d t\right)^{1 / \lambda} \leqq A(n, k, p, q, \lambda)\|f\|_{p}
$$

Proof. First suppose $p<q \leqq+\infty$, and take $c>1$ so that $c p<q$. Then [7, Theorem 2, (4)] implies that $H^{p}(D) \subset A^{c p, c n-n-1}(D)$ with $\|f\|_{e p, e n-n-1} \leqq$ $C(n, c)\|f\|_{p}$ for $f \in H^{p}(D)$. Theorem 3, (13) shows that $M_{q}(f, k ; t) \leqq$ $A(n, k, p, q)\|f\|_{p} t^{-\alpha}, 1 \leqq k \leqq n$. Next let $p=q$ and $1 \leqq k \leqq n-1$, (16) being trivial in the case $k=n$. Then [7, Theorem 2, (4)] again implies that $R_{k, n} f \in A^{p, n-k-1}\left(D_{k}\right)$ with $\left\|R_{k, n} f\right\|_{p, n-k-1} \leqq C(n, k)\|f\|_{p}$ for $f \in H^{p}(D)$. Applying Theorem 3, (13) to $R_{k, n} f$ on D_{k}, we obtain $M_{p}(f, k ; t) \leqq$ $C(n, k, p)\|f\|_{p} t^{-\alpha}$. (17) and (18) can similarly be verified.

References

[1] J. A. Cima and W. R. Wogen, A Carleson measure theorem for the Bergman space on the ball, J. Operator Theory 7 (1982), 157-165.
[2] P. L. Duren, B. W. Robmerg, and A. L. Shields, Linear functionals on H^{p} spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32-60.
[3] T. M. Flett, Mean values of subharmonic functions on half-spaces, J. London Math. Soc. (2) 1 (1969), 375-383.
[4] T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768.
[5] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
[6] D. Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.
[7] N. Mochizuki, Inequalities of Fejér-Riesz and Hardy-Littlewood, Tôhoku Math. J. 40 (1988), 77-86.
[8] W. Rudin, Function Theory in the Unit Ball of \boldsymbol{C}^{n}, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
[9] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.

College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

