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Introduction. In the previous papers [2] and [3], we have introduced
and studied spherical functions and a spherical transform on the space of
nondegenerate hermitian, or symmetric, matrices over a p-adic number
field. In [2], we have shown the injectivity of the spherical transform,
and in [3] we have closely studied the case of matrices of size 2. In this
paper, making use of the results in [3], we shall show the functional
equations for spherical functions and determine their possible poles.

Let k he a Sβ-adic number field with Sβ not lying over 2, έ? the ring
of integers of k and Π a prime element of k. Let X be the space of
nondegenerate symmetric matrices of size n with entries in k. Then
K = GLn(έ?) acts on X by k-x = kxιk, keK, xeX. For x e X, a character
χ = (χi9 . . . , χ j of (k*/k*2)n and s = (βlf , sn) e Cn, consider the following
integral:

( * ) L(x; X;s) =

where dk is the Haar measure on K normalized by I dk = 1, dt(k'x) is

the determinant of the upper left i by i block of k-x> and K' =
{keK:Uΐ=ίdi(k-x)Φθ}.

The right hand side of (*) is absolutely convergent for Refo), ,
Re(sn_!) ^ 0, and has an analytic continuation to a rational function in
q81, —-,q°n (cf. [1]). Thus we may regard L(x; X; s) as an element in
C°°(K\X), the space of all iΓ-invariant complex-valued functions on X.
We call L(x; X; s) a spherical function on X.

We introduce a new variable z = (zlf , zn) which is related to s as
follows:

= -*i + zi+1 - — (1 ^ i ^ n - 1)
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We shall show the following theorem:

THEOREM. (1) Let &n be the symmetric group on n letters. For
each σe@n, there exists a matrix C(σ, z) in GL4n(C(qZl, •••, q*n)) such that

L(x; X; σ{z)) = Σ C(σ, z)x x>L(x) %'; z) , for each x e X ,

where X ranges over the character group ((k*/k*2)n)A of (k*/k*2)n.
( 2 ) The function

Π (q**<~q**n-L(x;X;z)

is a polynomial in q±z\ , q±Zn.

A formula for C(σ, z) is given for the transpositions (a a + 1), 1 ^
a ^ n — 1. One can calculate C(σ, z) for arbitrary σe@n by using the
cocycle property C(στ, z) = C(σ, r(«))C(r, z).

In this paper, we shall consider also the hermitian cases and show
similar theorems. To prove the theorems, we need the explicit forms
of spherical functions of size 2 given in [3], The functional equations,
possible poles and zeros of spherical functions are related to the image
of the spherical transform: for example, in the unramified hermitian case,
the functional equations imply that the image is contained in

Π

(cf. Remarks at the end of §2 and §4).
In the real case, analogous functional equations for spherical functions

were given by Oshima and Sekiguchi [5, § 4, Proposition 4.6 and Theorem
4.10].

1. Prelminaries. We shall use the same notation as in [2]. We
denote by k0 a £-adic number field with p not lying over 2. As before,
we shall consider the following three cases:

(U) the unramified hermitian case (k is an unramified extension of
k0 of degree 2),

(R) the ramified hermitian case (k is a ramified extension of k0 of
degree 2),

(S) the symmetric case (λ; = kQ).
Denote by £? and ξβ = (77) the ring of integers of k and the maxima]

ideal of fc, respectively, where Π is a fixed prime element such as Π e k0

in Case (U) and Π2ekQ in Case (R). For the hermitian cases, let * be
the nontrivial λvautomorphism of k.

For a positive integer n, let G = Gn = GLn(k) and K= Kn = GLn(έ?).
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For a matrix A = (aij)eMm>n(k)f A* denotes the matrix (α**) e MntJJc) in
Cases (U) and (R), and A* denotes the transposed matrix of A in Case
(S). For a positive integer n, let X = Xn = {A e G: A* = A} and X(^) =
XJL&) = iΠi l ίnί^) ' For each case, the group G acts on X by sr # = gxg*
(xeX, geG). For each xeX and an integer i, l^ί^n, let a?(<) be the
upper left i by i block of x and cJ{(#) the determinant of x(i).

Denote by <%?(G, K) the Hecke algebra of G with respect to K.
Let C°°(K\X) be the space of all if-invariant complex-valued functions
on X and S(K\X) the subspace of C°°(K\X) consisting of all compactly
supported functions in C^iKXX). By the convolution product, C°°(K\X)
and S(K\X) become <M?(G, iQ-modules. We are interested in the Stfifi, K)-
module structure of S(K\X).

Now we recall the spherical functions and the spherical transform
on S(K\X):
in Case (U),

ζ(a; s) = ζ(x; βlf , sn) = ( Π

F : S ( ί Γ \ X ) - > C ( r , '•-,?»),

F{f){z) = \ AxXix-1; z)dx , f e S(K\X)\

in Cases (R) and (S),

L(x; X; s) = L(a?; Z l f , Zn; βlf , sn)

= ( f(x)-L(χ-1; 1; z)dx , / e
JX

where a e l , seC n , K' = {keKiJlΐ^diik'X) Φ 0), lt is a character of
&*/fc*2 for which Ẑ ZΓ) = 1, dk is the Haar measure on K normalized by

S dk = 1, do; is the G-invariant measure on X normalized by I dx = 1,

and the variable z is related to s by the following formula:

(1.1) in Cases (R) with (=±) = 1 and (S),
\ p /

-«ι + ^+i - Y (1 ̂  ί ^ Λ - 1)

4

in Cases (U) and (R) with f — ) = - 1 ,
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Si = —Zi + zί+1 — — — — (1 <^ ̂  <; w — 1)

2 21ogg

ra+ 4 "2b£7'

In Cases (R) and (S), the number of the ways of the choice for X is 2π,
and hence 0 χ means the direct product of 2n copies. The integrals ζ(x; s)
and L(x; X; s) are absolutely convergent for Refo), , R e ^ ^ ) ^ 0, and
have analytic continuations to rational functions in q°ι, •••, q8n (cf. [1]).

Now we introduce the following integrals: in Case (U),

Φ(s; f) = Φ(8ίf , sn; f) = ί Π |d*(a?)l"/(a?)da?
Jx ' «=i

in Cases (R) a n d (S),

Φ(X; s; f) = Φ(Xlf . - . , Z r e ; S l , . . - , 8 , ; / )

SB

where / e S(K\X), s e C\ X' = {x e X: Π*% dt(x) Φ 0} and Z = (χlf , ZJ
is a character of (fc*/&*2)\

Since / has compact support in X, (dn(x): #eSupp(/)} is compact in
&*. Hence the integrals Φ(s; /) and Φ(X; s; f) are absolutely convergent
for Refo), , Reίs^O ^ 0, and have analytic continuations to rational
functions in q*\ •••, q*n (cf. [1]), more precisely in q2*1, •••, q28n in Cases
(U) and (R). For each xeX, let ch^ be the characteristic function of

K x and v(K x) = \ dy. Then it is easy to see that Φ(s; chj = v(K- x) ζ(x; s)

and φ(X; s; chm) = v(K-<c)-L(x; X; s). For each / 6 S(K\X), let / v e S(K\X)
be determined by fv(x) = fix'1) for every xeX. Then we have Φ(z; f) =
F(fv)(z) and Φ(Z; 2; /) = Fχ(fv)(z), where the variable 2 is related to s by

(1.1).
We shall determine the functional equations, possible poles and zeros

of Φ(s; f) and Φ(X; s; f) (cf. Theorems in the beginning of §2-§4). The
symmetric group @w on n letters acts on {zly , zn} by σ(z3) = ^ ( i ) , 1 5g

The following lemma enables us to reduce the proof of the functional
equations for arbitrary size n to the case n = 2. In Case (S), we shall
decompose Φ(X; z; f) and give a similar identity for each summand in § 4.

(1.2) LEMMA. Let a be an integer with 1 ^ a ^ n — 1 and, /or eacΛ
fljeX', ϊβί x be the lower right 2 by 2 block of xfa+1). When Refe), •••,

Re(sn_!) ^ 0> the following identities hold for every f in S(K\X):

in Case (U),



SPHERICAL FUNCTIONS 655

Φ(s; f)=\ Π l<*,(aθlf* Π l<W*)lf^+ί' /(a0C.(2; sa, -sa/2)dx
JX' iφa,a±l j=a±l

in Case (R),

Π |rf*(*)| *Zi(d*(*)) Π l<^)lβ«/2+θ>
' iφa,a±l i=α±l

x Uda+1(x))f(x)L8(x; Xa9 1; ββ, -

where the suffix s in ζ8 ( ) αraϊ Ls( ) means that they are written in
the variable s.

PROOF. Assume that Re(sx), *, Re(sn_i) ^ 0 and fix an a with 1 ̂
a ^ n — 1. For each a e l , let αsΛ be the (2, 2)-entry of 2f. In each case
we have da(x) = da+1(x)xA. Hence we have, in Case (U),

Φ(s; f) = ( Π \dt{x)\ * \da+1(x)\°«+°«+i\x*\°«f(x)dx
JX' iΦa,a+l

and in Case (R),

π
X' iΦa,a+l

Define an action of K2 = GL2(έ?) on X through the embedding

A.-. o
K% -* K, k ̂  k

\ 0 lm_...

where 1OT denotes the identity matrix of size m. Then we obtain, in
Case (U),

Ψ\o9 J ) — I Ĵ Ĵ  \U/i\JU)\ \^a+l\^//\ l v I I J \>v JUjU/JO
jX'iΦa,a+l J K2

= \\ Π \di(k-z)\'
JXjκ'2iΦa,a+l

Π |di(x)l" |rf«+i(*)| + «

where ίΓJ = {fceiΓ2: (k x)Λ Φ 0}. Since we have

(k x)A = the (α + 1, a + l)-entry of ί

= the (2, 2)-entry of Λ * = dJI \k x) ,

we see that

.M-xn-dk = ζ,(x; sa, 0)

= K- ι (*)| « / 1 K + x(*)l—^.(2; sOT - s α / 2 ) ,
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and this completes the proof in Case (U). In Case (R), we obtain in a
similar manner,

Xf i
Π Udlx))* \da+1(x)\°a+'«+ί

x (XaXa+ι)(da+1(x)) f(

= L «JL
= \χι iφR±

xf(x)L,(x;Xa,l;sa, 0)dx

x Ud .(x; Xa,l; sa, - sJ2)dx .

q.e.d.

Now we establish Lemma (1.5), which will be used to determine
possible poles of the spherical functions.

Let a be an integer with 1 sί a ^ n — 1, and define the following
domains:

(1.3) ^o = {s = («„ . . . . sn): Re(8i) ^ 0 (1 ̂  i ^ n - 1)} ,

IβeC R e ^ ° ( 3 ^ t ^ n - l ) , Re( S l )^-l) i f χ

I s 6 C Re( S ι +s 2 + l/2)^0 ί 1 J " - 1

, a±V), \ if 2
^0 (i=«±l)ί

^ (
j g . ! Re(8α

l ) f n _ n Λ

( c ,. j)^0 (8^ί^n-l), -l^Re(et)^0)
/ 2 ) ^ 0 ί

if
n-2

α 0 α > ι α , 2 and & = '{?&„.
α=l

Let σ α =(α α + 1) 6@n. Then σ« acts on {zl9 , «„} as the transposition
of ^α and «β+1, and so σa acts on {sx, , sn} as follows: in Cases (R) with

=λ) - 1 and (S),

— sa — 1

Si-

if j = a

— if j = a ± 3
2

otherwise



SPHERICAL FUNCTIONS 657

in Cases (U) and (R) with ( — ) = - 1 ,
\ p /

- β . - 1 -
π\/~ϊ

\ogq

+ ^ + ̂  + *'

if j = a

if i = a ± 1
2 " 21ogg

s, otherwise.

In particular, we see that σa(&0) = ^ β f l and σ β (^ β f 2 ) = ^ α , 2 .

α 4 Λ T.FMTVΓΔ 7 " ^ / < ^ — ί ^ 7 1 I I I . ΛΓ /T . . . / T / C ^ Λ T h e m £& Jo
• */ XJΣjalaLJΛ.* ±Jt/L> ^z/ — ΊE? w v-Ί^i^y^n—2 "i"i+1 UQ\H2> )• J. IVxύίv *~£/ I/O

connected and the convex hull of & is equal to Cn.
PROOF. Since 3ίa is connected and contains ϋ ^ for any a, we see

that <& is connected. For each j, since σά{^3) = £&s, we have & Π
otf^) ^ 0 9 and so <Tii7i+1 Gj{^) Π σ<σi+1 σ^S^) ^ 0 > for every i
with i < j . Hence we see that 3f is connected.

Let

0 in Cases (R) with ( — ) = 1 and (S)
\ p /

π^-1 in Cases (U) and (R) with (—^) = - 1 .
t =

For any aeC with Re(α)^l/2, we see that P=(0, , 0, α, ~ α - l / 2 - ί , 0) 6
s o w e ^et» for 2 '^ ΐ ^ Λ — 2,

σn^{P) = Λ ,0, α + ^ — - — - " + (Λ - i - l)ί ,
V 2

- (Λ - i)ί, 0,

2

—α —

and 0Ί0 2 σn__2(P) — (—a — (n — l)/2 — (n — l)ί, O •) 6 £&. Hence we see
that, for any α, e C with Re(α<) ^ 1/2 (1 ^ i ^ w - 1) and b e C,

—αx + α2 — 1 — 2ί, —α2 + α3 — 1 — 2£, ,

—an_2 + αn_! — 1 — 2ί, —<&„_! — — — ί, bj

is contained in the convex hull i& of ^ , and so for any b^C with

Re(6,) ^ 1/n (1 ̂  ΐ ^ w. - 1 ) and bn e C, (-&lf , - 6 J belongs to ^ . Since
(Ci, , cn) e ^ o f ° r any ^ 6 C with Re(cJ ^ 0, we have i t = Cn. q.e.d.

For any integer m, let C(g*fl, , gw"Λ) be the rational function field,
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C[q±mz\ , q±m*n] the polynomial ring in q±mz\ , q±mZn, and C[q±mz\ ,
q±«*nγ» tfo s u b r i n g of C[q±mz\ ---,q±mZn] consisting of all polynomials
which are invariant under the action of @n.

(1.5) LEMMA. Let & be as in (1.3) and f(z)eC(qmZί, •••, qms»). If
f(z) is holomorphic in £& for the variable s, then f(z) is contained in
C[q±mβl, •••, q±mZn].

PROOF. By (1.4), it is known (cf. [4, Theorem 2.5.10]) that f(jz) is
holomorphic in Cn for the variable s, and so we see that f(z) is holo-
morphic in Cn for the variable z by (1.1). Since f(z) is assumed to be
a rational function in qmzi, •••, qmZn, we have f(z)eC[q±mzi, •••, q±mZn],

q.e.d.

2. The unramified hermitian case.

THEOREM. For any f e S(K\X),

Π Γ + ΓVΓ ΓV ;̂/)
q2zJ — q2zi~X

belongs to C[q±2zi, •••, q±2Zn] and is @^-invar iant .

(2.1) LEMMA. ί\>r an?/ x e X and seC,

is a polynomial in q2' and q~2', and satisfies the following identity:

Ϊ T F ^ Γ ' "2/" (T + ί-1-1 v" 2 + 21og9/*

PROOF. By [3, §2, Theorem 1], we see that

Transforming the variable z into s and letting st = s and s2 = — s/2, we
get

r 1 ^ 2 +2iogg/ q ' e d

PROOF OF THEOREM. Let a be an integer with 1 ^ α ^ n — 1 and
for each a e Γ let £ be the lower right 2 by 2 block of a5S?+1). By (1.2),
we have the following identity for se&0:



SPHERICAL FUNCTIONS 659

{22) £ α * 1 + Cg_,Φ(g;/) = ( Π |d,(*)l" Π |dX*)| ̂ + ί

The right hand side of (2.2) is absolutely convergent in &ttA = σa

since the integrand is σ«-invariant by (2.1). We see that

Π \dt(x)\u Π \dj{x)\ ̂ +'i
φa,a±l j=a±l

is bounded for s e S α > 2 and

1 + q 28« 2

is a polynomial in q±8«. Since / has compact support, the right hand side
of (2.2) is absolutely convergent in ^ α , 2 . Thus we see that the right
hand side of (2.2) is absolutely convergent in 3ίu, and so

is holomorphic in ^ α . Since the integrand is ^-invariant and
^ α , we see that

Ljφψ f )

is 0 α-invariant. On the other hand

is holomorphic in ^ α and (Tα-invariant. Thus

i*i<i** q**j - q***-1 V ' J }

is holomorphic in i f (= Uϊ=ί ̂ β ) and ©^-invariant, and hence is holomorphic
in l U s ^ ί ^ ) . Now the result follows from (1.5). q.e.d.

REMARK. The theorem implies that the image of the spherical trans-
form F is contained in

This observation together with [2, §3, Theorem] and [3, §2] leads us to
the conjecture that, in Case (U), the spherical transform
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F: S{K\X) q2lSC

is an Jg^(G, iΓ)-module isomorphism.

3. The ramified hermitian case. Let X* be the character of &*/&*2

determined by X*(Π) = 1 and %*(e) = (—λ for any unit e in <?. Since
\p I

every character X of k*/k*2 is assumed to satisfy %*(/7) = 1, we see that
χ = l or X = Z*

THEOREM. Lei feS(K\X) and let X = (Zlf •• χn) δe α character of

(i) 7w case Zέ = χ* /or 1 ^ i ^ n - 1.

Π

belongs to C[q±Ul, , g±2z«] awώ is ^-invariant.
(ii) Jw general,

Π

belongs to C[q±2zi, •• ,g ί ± 2 Z n ], a n d / o r
in C(q2zi, , g22") a ^ d a character Xσ of (fc*/fc*2)n s^c/i

Φ(Z; σ(«); /) = CσtX(z).φ(Xσ; z; f) .

In particular, for σ = (a a + 1) e@TO, ^e have the following:
in case Xa = 1,

otherwise

in case JLa -— X >

(3.1) LEMMA. For cw&y a; e X2, α character X of k*/k** and seC,

(l - ( ^ y * - 1 ) " 1 ^ ; %*, Z; β, —I) and ( l-^ 2 - 1 )^^; 1, X; s, - | )

are polynomials in qu and q~u, and satisfy the following identities:

L.(x; X*, X; s, -±)

1 " ( T ) ^
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L,(x;X*,X;-s-l,s-ψ)

q-"~ι - q~
— 1 = 1

Δ J<>gg

 2 2 l 0 g g > > if ( ^ ) = - l ,
— o 2 ' 1 — a 1 \ to /

(1 - «-"-%.(*; 1, X; s, —Ϋ

' 2

— (/ ^JL/βl Xt ±, A Λ, — o — 1 ,

2 2 log q

PROOF. By [3, §3, Theorem 1], we see that

L(s; r , X; g)

;/ (^i) = -l

and

{q*** — ̂ H I V ^ Λ L ^ ; 1, χ ; a;) e C[g±2fl, g±2

and it satisfies the following identity:

Transforming the variable z into s and letting sγ

obtain the result.
s and s2 = — β/2, we

q.e.d.

(3.2) PROPOSITION. Le£ feS(K\X) and let % = (£,•••,
character of (fc*/fc*2)\ For αti integer a with 1 ^ α ^ w — 1,
(αα + l)e@n and let &a be the domain defined in (1.3). Then

(i) in case la = %*,

σα =

is holomorphic in 3ίa and σa-invariant;
(ii) in case la = 1,

is holomorphic in &a and satisfies the following identity:
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where

otherwise .

PROOF. Let a be an integer with 1 ̂  a ̂  n — 1 and for each xeX'
let 2f be the lower right 2 by 2 block of x^+1). Let χα = X*. By (1.2),
we have the following identity for s e ^ :

x Π \dAx)\'"n+''Ud^)) r{da+1(x)) f®>Lf> Γ>}' s«> ~ s ^ ) dx

The right hand side of (3.3) is absolutely convergent in
since the integrand is <7α-invariant by (3.1). We see that

iΦa,a±l j=α±l

is bounded for s e ^ f l ) 2 and

L(ig; X*, 1; 8m -8J2)

is a polynomial in q±8a. Since / has compact support, the right hand
side of (3.3) is absolutely convergent in &a and so

Φ(X; z; f)

is holomorphic in &a. Since the integrand is <7α-invariant and (7α(^«) =
&a, we see that

Φ(X; z; f)

is <jα-invariant, and this completes (i).
Let Xa = 1. By (1.2), we have the following identity for s e &0:

(3.4) (β*«+i - ( ^ I V α W ; 2; /) = ί Π idάxWUdάx))
\ \ p / / JX' iΦa,a±l

x Π \dj(x)\'^'aί(dJ(x)) f(x)Qΐz''+ίO--q-ΐ'''-1)L(x;l,l;sat -sa/2)dx
j=a±l

Denote by A(X, z) the above integrand. Then we have by (3.1),

% if i = α ± l
(3.5) A(X, z) = AOC', σa(z)) , where ZJ = ,

IZy otherwise .
Considering the identity (3.4) for %', we see that the right hand side of
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(3.4) is absolutely convergent in 3ίaΛ = σa(&0). By the same argument
as in case Xa — %*, we see that the right hand side of (3.4) is absolutely
convergent in 3fa and so

I, z;

are holomorphic in £&af we have by (3.5),

ί; z\ f)) = (Vα+1 - (— )q2z* )Φ(X' z; f) . q.e.d.

PROOF OF THEOREM. Let Xi = X* for 1 <; i ^ n - 1. Since

is holomorphic in &a and σα-invariant, we have by (3.2),

Π

is holomorphic in ^ ( = U2=ί ̂ β ) and ©^-invariant. Hence it is holomorphic
in Uσq@w0"O^), and the result follows from (1.5) in this case.

Now we consider the general case. Let ε = (^—},
\ p J

G{z)= Π (β-' + eβ-O and Ki5 = ^ ~ ^ (1 ̂  i, i £ n) .

Then by (3.2), G(z)Φ(X; z; f) is holomorphic in ί f ( = Uα=1 ̂ α ) , and
Kaa+1Φ(X; z; f) is holomorphic in ^ α is Xa = %*. On the other hand, i ^
is holomorphic in ^ unless j Φ i±l. For each i with 1 ^ i ^ ^ — 2,
we obtain the following identity for s e

(3.6) σt(G
((τ{z)ΦW, z; j) li Λ, = I ,

where
% if j = i±l

otherwise .

Hence we see that G(z)Φ(X;z;f) is holomorphic in ^ U U?=i2σ,(^). For
any i, j with l ^ i < i ^ ^ — 2, using (3.6) repeatedly, we can express
<W -i σί{G{z)Φ{X) z; /)) as a product of ±G(z)Φ(X; z; f) for a suitable
2 and some of Kj>j+1 or <Ty(7y_i σι+1(Ku+1) = KltJ+lf i^l^j. The factor
-SΓy,y+1 appears only if % — X*, and then Kjj+1Φ(X; z; f) is holomorphic in
^y. Hence we see that the product is holomorphic in ^ , and so
G(z)Φ(X;z;f) is holomorphic in ^ U { lΛ^^-2 o ^ + 1 σd(^)}. Thus we
obtain G(z)Φ(X; z; f) e C[q±2z\ , g±2β»], by (1.5). We get easily the formula
for Φ(X; σa(z); f) by (3.2). q.e.d.
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4. The symmetric case.

T H E O R E M 1. Let feS(K\X) and let X = (X19 •••,%„) be a character
of (fe*/fe*2)w. Then

Π (q^

belongs to C[q±z\ •• ,g±*n], and for each <τe@n, there exists a matrix
•G(σ;z), independent of f, in GLin(C(q±z\ •••, q±Zn)) such that

Φ(X; σ(z); /) = Σ C(σ; z\ΓΦ{Xf; z; f) ,
X'

where X' ranges over the character group ((fc*/fc*2)n)Λ.

In Theorem 1, taking / to be the characteristic function for K x
(xeX), we obtain Theorem in the introduction.

To prove Theorem 1, we need to decompose Φ(X; z; / ) . We shall
give the functional equations for each summand of the decomposition in
Theorem 2.

Let P be the subgroup of G consisting of all lower triangular matrices
and, for u = (uί9 , un) e (k*/k*2)n, let Xu = {x 6 X: dt(x)=ux ^(mod fc*2),
1 ^ i ^ n}. Then Xf can be expressed as

Xf — ΌXU (disjoint union) ,
u

where u ranges over all representatives of (fc*/fc*2)n. For pePand xeX,
we have (P B)«) = P«)'#M>I

 a n ( i s o d^p-x) = dt{x) (modfc*2). Now we
define

(4.1) Φu(z; f) = Φu(s; f) = ( Π |rf4(aj)|" /(*)cfa .

Then, for χ e ((k*/k**)T,

lΦ{l;z;f)= Σ Az. •*.(«;/)
«e(A;*/A;*2)n

( 4 . 2 )
A X u = Π Z ( ( ί* ι • • • % < ) .

V ί=i

Note that Φu(s; f) is absolutely convergent in £^a and has an analytic
continuation to a rational function in q'1, •••, q'n (cf. [1]).

To begin with, we consider the case n = 2. For a character X of
k*/k** for which Z(/7) = 1, let χ be the character of k*/k*2 defined by
χ(/7) = - 1 and χ(e) = Z(e) for e e ^ * .

(4.3) LEMMA. Let n = 2 and f e S(K\X). Arrange ue (fc*/fc*2)2 in
the following order: (1,1), (δ, δ), (Π, Π), (Π8, Πδ), (1, δ), (δ, 1), (77, Πδ),
(Πδ, δ), (1, 77), (77, 1), (δ, Πδ), (Πδ, δ), (1, 77δ), (775,1), (δ, 77) and (77, δ). Let
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(1 - 6g~'

+ g^-'Xg2*2 -

(1 - g- - g2**)

Then

where ij

M(zlf z2) =

and if (—j = — 1,

ι; /) = Σ
i>e<* /* 11

2 ) 2

zιt z2; f) ,

a

β
7

π

β
a

7

7

7

7

7\

7

β

al

a a

lf z2) =
α δ\ la b

b a) \b a

ja β 7 7\

β a Ί Ί

Ύ Ύ a β \d c) \d

c d\ Ic d\ Ic d\ Ic

\Ί Ύ β a!

REMARK. AS is well-known, there are seven G-orbits in X which
are represented by

1 0

0

1 0\ iΠ 0

o o
1 0 o
o ny \o my \o

1 0

1 0\ //7 0\ /10\ (1 0
.0 I)' \0 77/' [o δ

δ 0 I 0

δ 0

,0 77,

in case

01

,0 77/' \0 Πδj' \0 77δ/' lθ 77

in case

and
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1 0

0 1

Π 0

0 π) " = 1 ,

Note that the above decomposition of the matrix M(zlt z2) corresponds to
the G-orbit decomposition of X.

PROOF. Arrange X = (Xu X2) in the following order: (1,1), (1, X*),

(x*, l), a*, x*y, a, ϊ), a, n> (Γ, ϊ), cr, x*); (ϊ, i), (ϊ, r), cr, i), (r, %*);
(ϊ, ϊ), (1, X*), (X*, ΐ ) and (£*, %*). Arrange tt e (fc*/fc*2)2 as above. Then,
for the characteristic function / = chx.,., xeX, we have

(4.4) v(K'x)L{x; X;z)= Σ 2 Az..Φ.(«; / ) ,
ue{k*/k*2)2

where AZtt (= ±1) is as given in (4.2). Let M(x; z) e M1Q(C(qZ1, qzή) for which

L(x; Z; z2, zx) = Σ M(x; z)x vmL(x; X'; z19 z2) .
Z'e((ifc*/A;*2)2)Λ

L e t Xt = 1 or X* and zj = z, - π l / ^ Ί / l o g g, i = 1, 2. Then

' i ( » ; Zi, z2; «i, «2) = ^(»; Zx, Z2: zl, zί)

(4.5) • L(x) %19 Z2: z l f z2) = L(aj; Zx, Z2: zl, z2)

i ( » ; Zi, Z2: Zi, z2) = i ( » ; Zx, Z2: z19 z[) .

Recall the explicit formula for L(x;X:z) given in [3, §4, Theorem 1]. It
is easy to see that M(x; z) has the form

M, 0

where Mt = JkΓ/α?; 2;) e M4(C(g01, gZ2)) is diagonal, 1 ^ i ^ 4. Let x =
(Πhε2). We obtain the following functional equation:

L(x; Xlt X2: z2y zλ) = f(x; Z; z) L(xm, X19 X2: z19 z2) ,

where

/(»; Z; z) =

if λ2

_ ^2-i/2
if 2|λi + λ2 and Zx = 1

if 2|λx + λ2 and Zx = Z*
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This immediately implies that

y i + 2̂-1/2̂ 1 0\ <fi + ε^2-v2 ^1 0\

Mx{x; z) =
qZί~1/2\0 l Γ ^ + ε g ^ l O - 1 ί f

£ V 2 - V 2 V Λ _ Λ - V 2 \ / 1 O\ α2zi — α2z2-i/l 0\

where ε = X*(detaj) and ε' = ( — )X*(det x).
V p I

The matrices M^x; z), i = 2, 3, 4, can be easily obtained from the above
formula for Mx(x', z) and the following relations, which are immediate
consequences of (4.5):

Λf8(a?; z19 z2) = Af̂ a?; «ί, ^2) and

Λf4(a?; «x, 2?2) = M^x; zu z2) .

Let X = Uϊ=1 ̂
α ) be the G-orbit decomposition, where the indices (I)

in that order correspond to the representatives given in the remark above.
It is easy to see that M(x; z) depends only on det# (modfc*2), and hence
is determined by the G-orbit to which x belongs. We write M(l;z) =
M(x;z) if xeX{l).

For n = (ulf u2) e (fc*/fc*2)2, define the number l(u), 1 ^ l(u) ^ 7, by
(ut) 1 (u2) 6 χ{l{u)). Let x G Xa\ Then Φu(z2t zλ\ ch^.J = 0 unless l(u) = I.
If ϊ(^) = ίf we obtain

Ψv\zu Z2 Cliff.jj

— Σ (A 1M(l; z)A)uυ'Φv(zιy z2: chκ.x)
ve{k*/k*2)2

where A = (Az.) (cf. (4.4)). Since every feS(K\X) is a finite C-linear
combination of ch^.,,, xeX, we obtain

0«(*2, 2» /) = i e ( Σ > 2 ) 2 (A-ιΛf(Z; z)A)uυ Φv(z1, z2: f) .

l(v)=Uu)

Thus we get
I; z)A)uυ if l(u) = i(^) = I

M ( ^ ^ ~ (0 otherwise.

Therefore we can establish the lemma by elementary calculation. q.e.d.

(4.6) LEMMA. Let feS(K\X), u = (u» , un) e (k*/k*2)n and let a

be an integer with 1 ^ a ^ n — 1. For eαcft xeX'9 let x be the lower 2

by 2 block of XT«+D #wd Y* — {% e ^ : ^(^) Ξ ^i ^(modfc*2), for l^i<^n,

i Φ a}. Let
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Fa(x; z;f)= Π |d,(aθl" Π WM'^
iφcc,a±l j=a±l

When Re(Si), , Re(8n_!) ^ 0, the following identity holds:

Φ«(s; /) = \ Fa(x; z; f)-Φv(sa, -s α / 2 ; a~chκ ~)dx ,

where v = (wα+1, t θ 6 (&*/fc*2)2 and a* is a positive constant depending on
the K2-orbit containing x.

PROOF. Assume that -Refo), , Re(sn_x) ί> 0 and fix an a with 1 ̂  a ^
n — 1. For each a e Γ , let df(Z) be the (2, 2)-entry of x. By the same
action of K2 on X as in the proof of (1.2), we obtain

Φu(z;f) = \ Π l*(»)lf«Mί«+i(*)| -+ -+1 l«l(20li-(
JXU iΦa,a+l JK2

= \ Π l<ί*Caί)| *- l<ίβ+xCaϊ>| -+ - + ' yC
JYuiΦa,a+l 2

w h e r e JKJ = {k e ίΓ2: df(lfc SO = itα + 1(/c*2)}. N o w

( ,|df(fc.aθ| «dfc = αt „ , \d*(y)\'«dy

and the constant a = α^ is given by

for a suitable Haar measure on {keK2: k-x = x). It is easy to see that
α* depends only on the if2-orbit containing x. Thus we obtain the re-
quired identity. q.e.d.

For u = (u19 , un) e (k*/k*2)n and an integer α, 1 ^ α ^ n — 1, we
say that u is of type 2 at α if 2|v/7(t6αuα+1) and X*(—uaua+1) = 1, and 'U
is of type 1 at α, otherwise. For n — 2, it is easy to see that Φu(z; f) €
C[q±z\ q±z*\ if u is of type 1 at 1, and (g2*2 - q^~ι)Φu{z) f)eC[q±z\ q±z>] if
u is of type 2 at 1; there is no common factor in {Φu(z; f): feS(K\X)}
if u is of type 1 at 1, nor in {(q2z* - ί* 1 " 1 )^*; / ) : feS(K\X)} if u is
of type 2 at 1.

THEOREM 2. Lβί / e S(K\X), u = (ulf , un) e (fc*/Λ*2)n

( i ) Γfee function G(z)Φu(z; f) belongs to C[q±z\ , <?±z*].
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(ii) For each σ e Θ n , there exists a matrix B(σ;z) in GLin(C(qZ1,- ,
qZn)) such that

Φu(σ(z); f)= Σ 2 B(σ: z)uv-Φv(z; f) .

(iii) // u is of type 1 at a, let ur e (k*/k*2)n such that u Φ u', u) = u3-
for j Φ α, a + 1 and

u'a 0 \ G ( u m 0

0 U'aj
 2 \0 Ua+1

Then, for σ = (α α + 1) e @n,

^ ^)w v = 0 unless v — u or uf ,

-= , -o(ίτ: ^Lu/ =
g2«α+i — g ^ α - l

((1 - q-^q^a^ if 2Jfvπ(uaua+1)

r«) ί/ 2)(vπ(uaua+1)

(iv) // u is of type 2 at a, let u = u{1), and u{2),
be defined as follows:

uf = Uj if j Φ a, α + 1

(δua, δua+1) if i = 2

Then, for σ = (α α + 1) 6 @n,

J5(ίτ: )̂«« :== 0

(Πua, Πua+1) if ί = S

(Πδua, Πδua+1) if i = 4 .

B(σ\

where

, uU) e (h*/k*2)

catl = ±{(χ -
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PROOF. Let u be of type 1 at a. By (4,5), we have the following
identity for se£&0:

(4.7) (q2** - q2z«+nΦu(z; f)

= \ Fa(x; z;f) {q2** - q2**^1) Φv(sa, -8J2, α; ch^rfcte ,

in the same notation as in (4.6). Since Fa(x; z; f) is <7α-invariant, we
see, by (4.3), that the right hand side of (4.7) is absolutely convergent
in 3ίaΛ = α α(^o) Since Fa(x; z; f) has compact support and

is a polynomial in q±8(x, the right hand side of (4.7) is absolutely convergent
in ^ α > 2 , and so (4.7) holds for s e ^ α . Hence (q2z* - q2z«^~ι)Φu{z) f) is
holomorphic in £^α, and by (4.3) we have

(4.8) σa((q2z« - (f'+^Φ.iz; /)) - aaΦu(z; f) + baΦu,(z; f) ,

where aa and ba are defined as in Theorem 2, (iii), and this establishes

(iϋ).

Let u be of type 2 at a. In a similar manner,

is holomorphic in <£§?α and

(4.9) σα((g
2*« - ^ + 1 - ^ ( ^ + 1 - q^-Φ^z; /)) = Σ cβf4.Φm<i,(β; /) ,

where cβ|< are defined as in Theorem 2, (iv), and this establishes (iv).
The assertion (ii) follows from (iii) and (iv). Finally, we prove the

first assertion. From the above argument, we see that G(z)Φu(z; f) is
holomorphic in ^ ( = UKί ̂ ) . By (4.8) and (4.9), we obtain the following
identity for s e <& Π cr/if):

(4.10) σi{G{z)Φu{z) /))
(qH g ) ^ q ) t

u{l) e(k*/k*2)n and 9,(2) is a polynomial in C[g±fl, •••, q±Zn], It is easy to
see that (q2Zi — q2zi~ι)~ι is holomorphic in ^ unless j Φ i ± 1, and
{ ( ^ _ g f 2 Z ί + 1-i)^ 2 Z i + 1 _ ^ - i ) } - ! i s holomorphic in 3?k for k Φ i. Hence we
see that the right hand side of (4.10) is holomorphic in \jkΦi £&k. The
left hand side of (4.10) is holomorphic in σ^), which contains £^ .
Hence we see that σi(G(z)Φu(z; /)) is holomorphic in ^ . Therefore we
see that G(z)Φu(z; f) is holomorphic in ^ U xyizlσ^). For any i, j with
l ^ i < j ^ n — 2, using (4.10) repeatedly, we can express
(G(z)Φu(z; /)) as a sum of terms of the form
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{a function holomorphic in ^Jxσά{G(z)Φw(z) /)) , we(&*/&*2)n .

Consequently, we see that G(z)Φu(z; f) is holomorphic in ^ U {Ui^^i^»-2

σtσt+1 σά(^)}, and so belongs to C[q±z\ , q±Zn] by (1.5). q.e.d.

PROOF OF THEOREM 1. Recall (4.2). We see that the result easily
follows from Theorem 2, in particular, the matrix C(σ, z) is given by
A-B(σ; z) A~\ where A = (AXu). q.e.d.

REMARK. Contrary to Case (U), our result does not provide enough
information to formulate a precise conjecture on the image of the spherical
transform.
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