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I. Introduction. In [5], Hudson classified simply connected closed 5-manifolds

with SΌ(3)-actions admitting at least one singular orbit up to 5O(3)-equivariant
diffeomorphisms. In [9], Oike classified simply connected closed 5-manifolds with
effective £/(2)-actions up to ί/(2)-equivariant diffeomorphisms. It is interesting to know
what types of Lie groups other than SO(3) and U(2) can act smoothly and effectively on
simply connected closed smooth 5-manifolds. In this note we shall particularly consider
such actions on simply connected rational cohomology 5-spheres and classify compact

connected non-commutative Lie groups other than SO(3) and U(2) acting smoothly and
effectively on the spaces up to isomorphisms. By the restriction to non-commutative Lie
groups, we avoid the difficulty of classifying 5-manifolds with torus actions. The results
which we obtained are Theorems C and D in Sections IV and V respectively, according
to the codimension of the principal orbits of actions. Theorem C and its remarks say
that all actions of compact connected non-commutative Lie groups on simply connected

rational cohomology 5-spheres with codimension two principal orbits are classified
completely up to isomorphisms. The classifications of transitive actions and actions with
codimension one principal orbits on the same spaces are almost due to Oniscik, Asoh
and Oike and the results are in III. In II, we recall some necessary facts on smooth
actions of compact Lie groups for our later use and we shall list up all the compact
connected Lie groups which can act smoothly and almost effectively on simply
connected closed 5-manifolds. We refer to Bredon [2] for the basic definitions and well
known facts on transformation groups.

The author would like to express his thanks to the referees for many useful
comments and helpful suggestions.

II. Preliminaries.

1. First of all, we set notation and recall the well-known results used in this note.
Let (G, M, φ) be a smooth and effective action φ : G x M->M of a compact connected
Lie group G on a simply connected ^-dimensional closed smooth manifold M. Let (K)
be some isotropy type of this action. We denote the set of points on orbits of the
isotropy type (K) by M(K) and the set of fixed points of the restricted Abaction on M by
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Mκ or F(K, M). We always denote the principal isotropy type by (//) and the dimension

of the principal orbit by d. Then the orbit space M* is simply connected and (n — d)-
dimensional and if n — d<2, then M* is a manifold with or without boundary ([2, p.

186]). The following results are well-known ([2, p. 184 -p. 186 and p. 191]).

(1.1) Let E and B be the sets of the exceptional orbits and of the singular orbits,
respectively. Then dim(B\JE)<n- 1, dim£<«-2, dim(£* U E*)<n- d- 1 and
dimE*<n-d-2.

(1.2) Let T be a maximal torus of H and let Mj denote the union of those

components of Mτ which intersect M(H} nontrivially. Then the Weyl group W(T) =

N(T)/Tacts naturally on.Mj and the natural map/: Ml/W(T)^M/G is a homeomor-
phism and the action of the Weyl group W(T) on MΎ

0 has the type of finite principal
isotropy group (HΓ\N(T))/T.

(1.3) Differentiable slice theorem. Let G(x) be an orbit of type G/K. Then there
exists an equivariant tubular neighborhood G x κ Dk of G(x), where k is the codimen-
sion of G(x) in M and K acts orthogonally on the &-disk Dk via the slice representa-
tion σ: K

Let (Gl9 Λ/ l 5 </>!) and (G2, M2, φ2) be two actions. We say that (G1? M l9 φj is

isomorphic to (G2, M2, <p2), if there exist a Lie group isomorphism h\ G1-^G2 and a
diffeomorphism /: M1^M2 satisfying f(φ1 (g, x)) = φ2(h(g),f(x)), for every geGl and
for every xeM^. If G± = G2 = G and // is the identity map, then (G, Ml5 φj is

equivariantly diffeomorphic to (G, M2, φ2). Hence if (G, Λf l 5 φj is equivariantly
diffeomorphic to (G, M2, φ2), then they are isomorphic.

Let A\ and Λ^ be compact connected G-manifolds with boundaries dXl and δA^,

respectively. Assume that M(f) = Xί U f X 2 is obtained from Xί and A"2 by identifying
their boundaries under a G-equivariant diffeomorphism/: dX1-+dX2.

(1.4) Let /,/': dXl->dX2 be G-equivariant diffeomorphisms. Then M(/) is
equivariantly diffeomorphic to M(f') as G-manifolds, if one of the following conditions

is satisfied:
(1) /is G-diffeotopic to/x,

(2) /"*/' is extendable to a G-equivariant diffeomorphism on A^,
(3) /y1"1 is extendable to a G-equivariant diffeomorphism on A"2 (cf. [2, p. 48] or

[11, Lemma 5.3.1]).

(1.5) ([2, V 6.2 Corollary]) Let (G, M, φ) have the principal isotropy type (//) and

only one singular isotropy type (K) and let the orbit space M* be diffeomorphic to a
contractible manifold Y. Then the set of G-equivariant diffeomorphism classes of proper

G-spaces over Y is in one-to-one correspondence with

Γ=[dY, (N(H) Π N(K))\N(H)]/π0( W(H)) ,
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where [ , ] is the set of the homotopy classes and π0(W(H)) acts naturally on the set.

REMARK 1.6. (G, M, φ) in (1.5) is proper ΊfN(H) acts transitively on (G/K)H and
this condition always holds if (G/K)H is connected ([2, V 4.3 Proposition]).

1.7. Let (G, M, φ) be an action. Then there exists a compact connected Lie group

G' such that G' is a finite covering group of G and is a direct product of simply
connected simple Lie groups and a torus. Let p be the projection. Then an action
(G', M, φ') is defined by φ'(g'9x) = φ(p(g'),x) for g'eG' and xeM. This action is

almost effective (i.e. only the finite subgroup p~l(\) acts trivially on M) and G'x, the
isotropy subgroup at x of the G'-action, equals p~1(Gx) for every xeM and hence
G'/G'X = G/GX. Let us define H/ = p~1(H). Then Hr is the principal isotropy subgroup of
(G', M, φ'). Since G7 also acts almost effectively on the principal orbit G'//Γ, we have:

(1.8) H' does not contain any positive dimensional closed normal subgroup of G'.

Conversely, suppose that we have found an almost effective action (G', M, φ').
Then we can construct an effective action (G, M, φ) from the almost effective action.
Indeed, denote Z(G')Γ\H' by L, where Z(G') is the center of G', and denote G'jL, K'jL,

H'lL by G, K, H, respectively. Furthermore we consider the induced G-action φ defined
by φ(\g]9 x) = φ'(g, x) for [g] e G'/L = G and xeM. Then (G, M, φ) is an effective action
and (K) is a singular isotropy type and (H) is the principal isotropy type.

2. From now on, we assume that M is a simply connected closed smooth 5-
manifold. Let (G, M, φ) be an action and let (G', M, φ7) be the action defined in 1.7.
Then G and G' also act effectively and almost effectively on the principal orbit G/H=
G'/H\ respectively. Hence by the theorem of Eisenhardt [6, II Theorem 3.1], dimG =
dim G'<d(d+ l)/2 and if the equality holds, then G/H is a natural sphere Sd or a real
projective space RP(d). Let d(G') = d(G) be the smallest dimension of the principal orbits

of all G'- (or G-) actions on M. This dimension was computed by Mann [7, Theorem 1],
and dimG'< 15 since d<5. By both conditions, we have the following result.

LEMMA 2.1. Let G act smoothly and effectively on a simply connected smooth 5-

manifold and let (G', dim G', d(G')) be a triple ofG', dim G' andd(Gf) defined above. Then
(G', dimG', d(G')) is one of the following.

(Γ, l , l ) , (Γ2,2,2), (S/wι(3), 3, 2), (T\ 3, 3), (S/wι(3) x Γ, 4, 3), (Spin(4), 6, 3),
(SpinQ) x Γ2, 5, 4), (Spin(4) x Γ, 7, 4), (SC/(3), 8, 4), (S/wι(5), 10, 4), (S£/(3) x Γ, 9, 5),

(Spin(4) x S/wι(3), 9, 5), (Spin(6), 15, 5).

In the rest of this note, we classify the actions {(G, M, φ)} such that G is a non-

commutative Lie group and M is a rational cohomology 5-sphere.
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III. Classification of transitive actions and actions with codimension one principal
orbits.

1. Transitive actions. Let (G,M,φ) be an action with the codimension zero
principal orbit G/H. Then G acts transitively on M and hence M is equivariantly
diffeomorphic to a principal orbit G/H, where G acts effectively on G/H by left
translation. For this reason, we consider a pair (G, L) of Lie groups, where L is a closed
subgroup of G, G/L is a closed 5-manifold and G acts effectively on G/L by left
translation. Two such pairs (G1? Lv) and (G2, L2) are isomorphic if there exists an
isomorphism σ: Gl^>G2 satisfying σ(L1) = L2. Let (Gl9 M1? ,-pj) and (G2, M2, φ2) be two
actions with the codimension zero principal orbits Gl/H1 and G2///2, respectively. Then
(G1? M l9 (pj) is isomorphic to (G2, Λf2, φ2) if and only if (G1? H^) is isomorphic to

(G2, H2).
Now we shall classify the pairs (G, //) such that G/H is a simply connected rational

cohomology 5-sphere. The covering group G' of G defined in II. 1.7 is a direct product of
a simple Lie group G1 and a rank one Lie group G2. Moreover, the restricted Gj-action
on GV//' = G/H is also transitive (see [8, Theorem I]). Hence G'///' = Gj//^, where //j =
GίΓ\H. Since Gj is simple and GJ///J is a rank one homogeneous space, (G1? //J is
isomorphic to (Sί/(3), 5t7(2)), (5£7(3), 50(3)) or (50(6), 50(5)) by [10, Theorem 4].
Hence we have:

THEOREM A. Let (G, M, φ) be an action with the codimension zero principal orbit
G/H. Then the pair (G, H) is isomorphic to one of the following.

(1) (517(3), SU(2)), (2) (t/(3), t/(2)), (3) (50(6), 50(5)), (4) (517(3), 50(3)),
where H is a natural subgroup ofG in all cases and M is the Wu-manifold in (4), while it is
the natural sphere in the other cases.

2. Actions with codimension one principal orbits. Let (G, M, φ) be an action with
codimension one principal orbits. Then by (II. 1.1) E is empty and we get the following
decomposition of M (e.g., [11, Section 1]). There exist just two singular orbits G(xί) =

and G(x2) = G/K2, where λ^ and K2 are some closed subgroups of G such that

1 Γ \ K 2 . We denote the codimensions of G/Λ^ and G/A^2 in M by kί and &2,
respectively. Then & f >2 (/= 1, 2) and there exists a G-equivariant decomposition

(2.1) M=X1UX2 and X1KX2 = dXl=dX2 = G/H,

where Xi is the mapping cylinder of the projection pt: G/H-^G/K^ Moreover Xt is G-
equivariantly diffeomorphic to G x κ. D

ki and there is a G-equivariant diffeomorphism/
of G/H such that M is G-equivariantly diffeomorphic to

(2.2) M(f9 σ1? σ2) = (G x />*') U7(G x Z)k2),
Xl ^2

where /= R[a] e W(H) for some aeN(H), and Λ[β] is the right translation defined by
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R[a](gH) = gHa = gaH for every g f ί e G / H . Here K( acts on Dki via the slice repre-

sentation σt : Ki^O(ki) and this ^-action is transitive on the (/:,— l)-sphere dDki. Hence

(2.3) the fiber bundle KJH-^G/H^G/Ki is a (kt- l)-sphere bundle.

2.4. From (2.1) and (2.3), we get the cohomology groups of two singular orbits
and by Lemma II.2.1 G' must be S3xS\ S3xS3, S3 x Γ2, S3 x S3 x S1 or Spin(5).

Hence from (2.2), we have:

THEOREM B. Let (G, M, φ) be an action with codίmension one principal orbits.
Then G is SO(5), S3 x S1, SO(3) x S1, t/(2), SO(4) x S1, SΌ(3) x SΌ(3) or £7(2) x S1. IfG
is not ί/(2), then the action is isomorphic to one of the following.

/ Y \ /Λχ\
(1) (SO(5)9S

5

9φ),φ(A,( )) = ( Y where (τx, y)εS5 ^R5 x R.
\yj \ y J

(2) (S3 x S1, S5, φm,J, φmfll(to, 0, to', O) = (w'ί"m, ίπO,
7, t')eS5^HxC and (m, n)=l.

(3)

(4) (50(4)

(5) (50(3) x

where (Tx,Ty)eS5^R3xR*.

(6) (SOφxS1, W5(k)9

w an odd integer and W5(k) = {(zQ, z1? z2, z3)eC4 | ̂  |z f \
2= 1, Zo + zJ

REMARK 2.5. In (2) if a pair (m, «) is not equal to (m',ri}, then φm „ is not

isomorphic to c/v,n' In (6) if fc^fc', then φk is not isomorphic to <pfc,.

REMARK 2.6. In any case, M is the natural sphere. Hence this result is the same
as the 5-dimensional case of the classification theorem of actions on simply connected

Z2-cohomology spheres by Asoh [1]. Hence we omit the proof.

REMARK 2.7. When G is C/(2), by [9, Theorem] the action (t/(2), M, ψ) with the
same conditions as in Theorem B is isomorphic to the following (1) or (2):

(„

where k^Q and (k, 2m-l)=l.

(2) (t/(2), Ml φh), where M5

k=(U(2)x 0(2)D
2)(jfk(S3 xD2) is diffeomorphic to

the Wu-manifold S£/(3)/SΌ(3) which is not a Z2-sphere. (for detailed definitions of /k,
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Ml and φk, see Oike [9].)

IV. Classification of actions with codimension two principal orbits.

1. In this section we shall show the following result.

THEOREM C. Let (G, M, φ) be an action with codimension two principal orbits.

Then G is 53, 5O(3), 5O(3) x 51, £7(2) or 5O(4). If G is neither 5O(3) nor 67(2), then the
action is isomorphic to one of the following.

(A
(1) (5(7(2), 5£/(3)/5O(3), φ), φ(A,

(2) (5/7(1), S5, φ), φ(q,(q',z)) = (qq',z) where (q\ z)eS5

(3) (50(3) *Sl

9S
5

9φ)9 φ((A9 t), τ(τx, y, z)) = τ(τ(Ax), ty9z)) where

5 5 c = / ? 3 χ C x / ? .

(4)
/ Y \ ίλ\\

(50(4), S5, φ), φ(A, )) = ( where (τx, Ty)eS5^R4 x R2.
\yj \ y J

REMARK 1.1. When G is 5O(3), F(5O(3), M) is empty or consists of k points (see
3.2 and 3.3). Hudson classified all 5O(3)-actions on simply connected closed 5-

manifolds. Especially, if M is a simply connected rational cohomology 5-sphere, then

the result is as follows.

(1) If F(5O(3), M) is empty, then (5O(3), M, ψ) with the same conditions
as in Theorem C is isomorphic to

/ x \ ίAx\
(50(3), 55, φ), φ(A9 }) = ( where (τx, Ty)eS5^R* xR3.

\y / \Λy/
(2) If F(5O(3), M) consists of k points, then k>2 and (5O(3), M, ψ) with the

same conditions as in Theorem C is isomorphic to (5O(3), Mhh' Jk, φjίJ2. . .jk) (for

detailed definitions of Mhh' 'Jk and φjίJ2. . .Jk, see Hudson [5, II, III and IV]).

REMARK 1.2. When G is (7(2), F(U(2), M) = S1 (see 4.3) and the action

(£7(2), M, φ) with the same conditions as in Theorem C is isomorphic to

(£7(2), 55, φ), φ(A9

 T(zί9 z2, z3)) = ( "' ) (see Oike [9, Theorem]).
\Λ (Z2, Z3)/

In the rest of this section, we shall prove Theorem C.

2. Since M is compact connected simply connected and d=39 M* is a compact

connected simply connected 2-manifold with or without boundary. Hence M* is a 2-disk

D2 or a 2-sphere 52. By (II. 1.1), dim(5* U E*) < 1 and dim£*<0. Then we have:

LEMMA 2. 1 . M* = D2, B* = dM* = 51 and E* = 0.

PROOF. Suppose that dM* = 0. Then M* = 52 and all orbits are of the same

dimension. Hence from Conner's result [4], G has rank one and acts almost freely (i.e.,
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all isotropy subgroups are discrete) on M. Hence G is 50(3) or 53. Let/? : M->M* be the
projection. Then H\p-\x\ Q) = 8k(G/Gx; Q)^[Hk(G; Q)]G* = Q (k=Q, 1, 2) for every
xeM. Hence from the Vietoris-Begle mapping theorem p* : //2(M*; Q)^H2(M\ Q).
This is a contradiction. Therefore dM**0. Hence M* = D2. Since B* = dD\ E* = 0

([2, IV Theorem 8.6]). q.e.d.

Let G(x) be a singular orbit of type G/K and let N be the boundary of a G-
equivariant tubular neighborhood of G(x). Then G acts effectively on the 4-manifold N
and its orbit space N* is an interval. Hence G acts on TV with the codimension one
principal orbit G/H and two singular orbits G/K^ G/K2, where H^K^ f}K2 and K^K.
Hence from III. 2, we get:

(2.2) N is G-equivariantly diffeomorphic to (G x Kι Z)kl) [)f (G x K2 D
k2) and dDki =

Ki/H, where ki is the codimension of the singular orbit G/Kt in N (i=\9 2).

Since F(G, Af)c=5* = S'1, we have:

(2.3) F(G, M) is empty, consists of a finite number of points or is S1.

From the list in Lemma Π.2.1, G' is 5/?m(3) = 53, 5/?m(3) x Γor Spin(4) = S3 x S3.
We shall prove Theorem C in each of these cases as well as the cases in (2.3).

3. The case where G' is S3. In this case, G is S3 or 50(3) and H° is trivial. Let Γbe
a maximal torus of G and let (K) be a singular isotropy type. Since dim K> 1, K° is Γor
G. Then A: is Γ, 7V(Γ) or G, since K^N(K°) =

3.1. Suppose that F(G, M) = 0. We first show the following.

LEMMA 3.1.1. Singular isotropy types are unique and the type is (T).

PROOF. We first find that F(T9M) = S1, because the singular isotropy type is
(T) or (N(T)\ F(T,M) is a rational cohomology sphere and F(Γ, Af)ΠG(x) =

F(Γ, M(K}) Π G/A' consists of one point or two points if K is N(T) or Γ, respectively. Next

suppose that singular isotropy types are not unique. Then the types are (T) and (N(T)).
Hence the orbit of type G/N(T) is the isolated singular orbit, i.e., its slice representation

σ: 7V(Γ)->0(3) has no trivial representations as a direct summand (see [12] or [2, p.
213]). Hence the induced N(T)jT^Z2 -action on F(T, M) has finite fixed points. This

contradicts that F(T, M)/Z2 = M*K) = Sl. Finally suppose the unique singular isotropy

type is (N(T)). Then F(T9 M)Γ\G(x) consists of one point for any singular orbit G(x).
We consider a fiber bundle G/K=RP(2)->M(K}

P-±B* =Sl and define a map
c: MfK)^M(K} by c(x*) = G(x) Π F(T9 M) for every x*eM(*K). Then c is a cross-section
and hence M(K) is isomorphic to G/KxS1. The equivariant diffeomorphism fί:
G/Kx 51 = G/K x F(T, M(K))-+M(K) is defined byf^gK, x) = φ(g, x). We identify £* with
F(T9 M). Let U be a closed invariant tubular neighborhood of M(K} in M and let

q: dU-+M(K} be the projection of the induced bundle with the fiber K/H=Sl. Then q
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induces a diffeomorphism q: (dU)*-+Mfκy Set W=M—int U. Then H^is a G-manifold

with only one isotropy type (//) and W* is a 2-disk. Hence W is equivariantly

diffeomorphic to G/Hx D2. Thus dU=dW is equivariantly diffeomorphic to G/HxS1.

We denote the diffeomorphism by/. Let iS=/-1(l x Sl)adU. Then 5 is a 1-sphere and

G(x)Γ\S consists of one point for any xedU. We have q(S) = F(T,M), since

q(x) for any xeS. We consider the following commutative diagram:

dU

_ P*q'
G/HxS -G/KxS1

= S

where p: G/H-+G/K is the projection, q' is the restriction of q, f2 is the equivariant
diffeomorphism defined by/2(g//, x)=φ(g, x) and we identify (dU)* with S. Then q' is a

diffeomorphism and hence £/ is equivariantly diffeomorphic to N x S, where TV is the

total space of the £>2-bundle associated with p and M=U\$W is diffeomorphic to
(NxS)\Jfof2(G/HxD2). Hence πί(M)=Z2 by van Kampen's theorem. This is a

contradiction. q.e.d.

Now we construct an example.

(3.1.2) Let k be any positive integer and let pk: G/Zfc->G/Γ be the natural

projection. Then this is a fiber bundle with the fiber T/Zk = Sl. Let Nk be the total space

of the associated £>2-bundle. Then we define a G-manifold M(k) by M(k) =

(G/Zk x D2) U id (Nk x S1), where id: d(G/Zk x D2) = G/Zk x S1^G/Zk x S1 = d(Nk x S1)

and G acts naturally on G/Zk and Nk and acts trivially on D2 and S1.

PROPOSITION 3.1.3. L^r G be S3 or SO(3) and let (G, M, φ) te an action with two

isotropy types (T) and (Zfc).

(1) 7/Ά:= 1, then the action is equivariantly diffeomorphic to the following (i) or (ii):

(i) (3.1.2) fork=l.

(ii) The case (1) /« Theorem C if G is S3, while the case (1) in Remark 1.1 //G w
50(3).

(2) Ifk>29 then the action is equivariantly diffeomorphic to (3.1.2) for the same k.

PROOF. If k=l, then (G/K)H = G/T is connected. If £>2, then (G/K)H =

(G/T)z« = N(T)/Tand N(H) = N(T). Hence 7V(//) acts transitively on (G/K)H. Hence

every action is proper by Remark II. 1.6. By (II. 1.5), it turns out that the number of G-

equivariant diffeomorphism classes of G-manifolds is two if k= 1 and is one if k>2.

q.e.d.
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Since we have H2(M(k)\ Q) ^Q by the Mayer- Vietoris exact sequence, M(k) is not
a rational cohomology sphere. Therefore if F(G, M) = 0, then the action (G, M, φ) with
the same conditions as in Theorem C is equivariantly diffeomorphic to the case (1) (ii) in
Proposition 3.1.3.

3.2. Suppose that F(G, M) consists of k points. Then G is SO(3). Indeed, suppose
that G is S3. Let D5 be a slice at xeF(G, M) such that D5 n F(G, M) = {x}. Then S3 acts

on dD5 via the slice representation σ: S3-+SO(5) and the action has no fixed points.
Hence the representation σ is irreducible. Therefore σ must be the weight 2 repre-

sentation: S3->SΌ(3)->SΌ(5) (cf. [2, p. 44]). Hence this S3 -action on D5 is not effective.
This is a contradiction. Thus G is SO(3} and such 5Ό(3)-actions on simply connected
closed 5-manifolds were classified by Hudson [5]. In this case, (5Ό(3), M, φ) is
equivariantly diffeomorphic to the case (2) in Remark 1.1.

3.3. Suppose that F(G, M) = Sl. Let N be a G-equivariant tubular neighborhood
of F(G, M) and let q\ N-+F(G, M) be the projection. Then G acts effectively and
transitively on dq~\x) = S3 for every xeF(G, M). Hence G/H=S3. Thus G = S3 and

//={!}. Since (G/K)H is connected, any action is proper by Remark II. 1.6 and the
actions are unique up to G-equivariant diffeomorphisms by (II. 1.5) and are G-
equivariantly diffeomorphic to the case (2) in Theorem C.

4. The case where G' is S3xSί. Let L1=(l x Sl)nH'cιL = Z(G')nH'cZ(G') =
Z2 x S1. Then G'/L^ is isomorphic to S3 x S1 and acts almost effectively on M. Hence we
may assume that L{ is trivial. Then G = G'/L is S3xSl, 50(3) xS1 or t/(2). Since

dim //'=!, H'° is a one-dimensional torus.

4. 1 . Suppose that F(G, M) = 0. We shall show that this case cannot occur. Let K'

be a singular isotropy subgroup. Then 1 <dim K' <4. Hence K'° is Γ2 or S3 x 1. We first
show that the action has unique singular isotropy type. If there exist at least two singular
isotropy types, then the action has one isolated singular orbit. Let G/K be the isolated

singular orbit. Then K acts orthogonally on a slice Dk and dDk/K is an interval, where
k is 3 or 4 if K'° is T2 or S3 x 1 , respectively. Hence the Abaction on SDk has the
codimension one principal orbit K/Hanά two singular orbits K/K^ and K/K2, where K'°,
K(° and K'2° are either J2 or S3 x 1 and K'^K\ (i= 1, 2) (cf. 2. and II. 2). Hence T2 and
-S3 x 1 cannot be the identity components of the singular isotropy subgroups at the same

time. Hence all singular isotropy subgroups are of the same dimension. Moreover dDk =

Sk~1 is A^-equivariantly diffeomorphic to

Kι K2

where k1=k2=k-l and/e W(H) is right translation on K/H. Since Dk<-*Kx Ki D*t-+K/Ki

is a fiber bundle and the base space consists of finite points, K x κ. Dkί is equivariantly
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diffeomorphic to KjK.xD^. Hence we have fl*'1^*"1; Z)^// k ~\KIK ( x S'*"1; Z) by
the Mayer-Vietoris exact sequence. This is a contradiction. Now let (K) be the unique
singular isotropy type.

(i) If K'° is Γ2, then K° is also Γ2. Since F(Γ2, M) is a positive dimensional
cohomology sphere, G is S3 x S1 or 50(3) xS1. (If G is (7(2), then it is known that
F(T2, M) is 51 x 5° ([9, (3.4)]).) Since rank G = rank A:, we may assume that K°=T2 =

ΓoxS1, where T0 is a maximal torus of S3 or 50(3). Since K^N(K°) = N(T2) =
7V(70)x51, K is Γ2 or 7V(Γ2). Assume that K is Γ2. Then T2 acts effectively and
orthogonally on a slice D3 via the slice representation σ: Γ2->0(3) and the Γ2-action on
dD3 = S2 has two fixed points and the principal orbit K/H=S1. Since (H°) is (Γ), we
have σ=σm n defined by

0

' ' ' " o
0 0 1

where ( t ί 9 f 2)e T2=T0x S1 and m and n are some positive integers with (m, ή)=\ or
ra = 0 and Λ = ! by (II. 1.8). We get n=l since L j = ( l x5 1 )Π// is trivial. Hence //=
{(ί, /~m), I /G5 1}. Therefore the action is proper and unique up to G-equivariant
diffeomorphisms by (II. 1.5) and [2, V 4.3 Proposition]. Hence M is G-equivariantly
diffeomorphic to G x T25

3, where T2 acts on 53=/)3U/)3 by σmΛ. Hence M is not a
cohomology 5-sphere. Next assume that K is N(T2). Then N(T2) acts effectively and
orthogonally on a slice Z>3 via the slice representation σ: 7V(Γ2)-»0(3). Since the
singular isotropy types are unique, σ has a one-dimensional trivial representation θ as a
direct summand. Hence we may assume that σ = σί®θ where σ1(7V(Γ2))c0(2) =

{( * j}c=0(3)and σ 1 |Γ 2 = σm>1. Let [α]EA^(Γ0)/Γ0^Z2 be a generator. Then we have

σx(α, 1)6^0(2), since σ:(α, 1) commutes with each element of σ^l x 5'1) = 5'0(2). Hence
we get m = 0 and σ^α, 1)= ±/2 from the relations between α and T0 in N(T0). Therefore
G is 50(3) x S1 and we can show in the same way as above that M is equivariantly
diffeomorphic to G x N(T2)S3. Hence M is not a cohomology 5-sphere.

(ii) If K'° is 53 x 1, then K' is 53 x Zk (k is a positive integer). Then we have //' =
Γ0xZk, because K'jH' is 52. Hence fc must be one since Ll=(l xS^ftH' is trivial.
Hence G is 50(3) x 51, A'is 50(3) x 1 and //is Γ0 x 1. Therefore the action is proper and

unique by (II.1.5) and Remark II.1.6. Thus the action is 50(3) x 51-equivariantly
/ \ / A \

diffeomorphic to (50(3) x5 J, 54x5 :, ^) given by ψ((A, t\ (( x ), z)) = ([ Λ x ) ίz),

where (τx, τy)εS4<=R3 xR2. Hence M is not a cohomology 5-sphere.

4.2. Suppose that F(G, M) consists of k points. We first show the following

lemma.



ACTIONS OF COMPACT CONNECTED LIE GROUPS 127

LEMMA 4.2.1. G is SO(3) x S1 and F(G, M) consists of two points.

PROOF. Let F(G, M) = {xt \ i = 1, 2, , k] and let Z>f be the slice at xt such that
Df nF(G, M) = {xi}. Then G acts effectively and orthogonally on dDf = S4 via the slice
representation σf : G-+SO(5) and its G-action on S4 has the principal orbit of type G/H
and two singular orbits G//^ and G/A:2, where H^K1(]K2 and Λ^G (j= 1, 2). We
investigate all the faithful representations with this condition and find out that σt is

(A
y@ρ for every i and G is SOtyxS1, where (γ®p)(A, t) =

0 ί
:SO(5\ for every

(Λ, OeS(9(3)x5<1. Therefore, (^)=(5O(2)x 1), (Kl)=(SO(2)x S1) and (A:2) =
(5(9(3) x 1). Next we shall show that A: = 2. Let 7\ be a maximal torus of H (i.e., Tl = H).
Then from (II. 1.2) there exists a homeomorphism /: Mol/W(Tΐ)^>M*=D2, where

H/(Γ1)=^(,SΌ(2))x5'1=Z2x5'1. Since dimM0

Γ l>2, M0

Γl = MΓl is a cohomology 3-
sphere and isotropy types of this ^(ΓJ-action are (1 x 1), (1 x 51), (Z2 x 1) and (W(TJ)
(see Figure 1). If we consider reduced IV(T1)°= 1 x S ̂ action on MΓl, then

Hence

where Z2 x 1 =

FIGURE 1

°, MΓl) is not empty and hence F(W(T1)°, MΓl) is a cohomology 1-sphere.

q.e.d.0, is connected and hence A; = 2.

Let F(G, M) = {xl9 x2}. Since the number of isolated singular orbits is two, M is G-
equivariantly diffeomorphic to M(f) = D1\JfD2. Here D{ is a G-equivariant tubular

neighborhood of the fixed point xh i.e., Dt is a 5-dimensional disk and/: dD1^dD2 is a
G-equivariant diffeomorphism. Then we have the following lemma.

LEMMA 4.2.2. Let F be a SO(3) x SO(2)-equίvariant diffeomorphism on S4 such
that the following diagram is commutative:

S4 > S4

(4.2.3) r@P I I y®p
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Then F is SO(3) x SO(2)-diffeotopic to F' defined by

«y.
SoJ\V

where s0 is some element of SO(2) and ε= ± 1.

PROOF. Let S4={(Γw, τv)εR3 xR2\ \u\2 + \v 2= 1} and I={(τύ, τv)εS4

τ(\ u I, 0, 0), v = τ(\ v I, 0), I u |2 +1 υ |2 - 1}. Then we identify /with the orbit space S*/G and
denote the orbit m a p p : S4->/by p(G(x)) = G(x) Π/since S4/G is an interval and G(x) Π /

consists of one point for any x e S4, where G is 5Ό(3) x SΌ(2). Let F ( 1 = ( 1 1, where
/.A / M \ W VF2/

3 IT __ IT ί lc »2 otΛr| I Γ \2e/?3, F2 = F2 εR2and\F1\
2 + \F2

 2= 1. Then Fl =F1(u) and F2 = F2(v)

by the commutativity of (4.2.3). Hence for any I leS4, there exists (A(ύ), s(v))eG
\ t

such that u = A(ύ)-ύ, v = s(v) - v and

'u\=(FiM\=(AM °
\F2(υ)J V 0 s(Ό)J\F2(v)s

Moreover there exists (A(Fl), s(F2))eG such that Fi(u) = A(Fi)-Fl and F2(ί) = s(F2) - F2,

where /\ =F1(w) = Γ(|F1(w)|, 0, 0) and ^2 = ̂ 2(^) = Γ(I^2(^)I? °) = Γ((1-|^ι(")|2)1/2, 0).
Hence we have

Fr Urι("M=r(u) ° } A { F J °
\ , 0 y / V^2(ί)/ V 0 Φ)Λ 0 s(F2)ΛF2

( ιί\ (F
A )=( xv 1

/ u \ / u \ / i \ / i \ V ' ^F2/

Then F is a diffeomorphism with F( ~ \ = ( ~ 1, F( ~ \ = l ~ 1 and poF=Fop (cf. [2,

VI. 5]). Let/: /-> /be the identity map defined by j f " |=| 1 " ) = | "\ Then the map
\υj \JMJ \vj

h: [0, 1] x /-»/ given by

where 0 < f < l and ί(0 = Γ((l -|(1 -^F^ύ^t-J^u) |2)1/2, 0), define a diffeotopy be-
tween Fand /. Let //: [0, 1] x .S4^^ be a homotopy defined by

A(u}

o S(
Then H is dependent on F alone and hence // is a well-defined G-diffeotopy between

and H(1, We set/ί(l, ) = F ' = Thenbythe
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commutativity of (4.2.3) F( is an 5Ό(3)-equivariant diffeomorphism on S2 and F'2 is
an S<9(2)-equivariant diffeomorphism on S1. Hence F[εN(SO(2))ISO(Ί)^Z2 and
F2eN(\)/\ ^SO(2). Thus we get F' defined above. q.e.d.

By this lemma and (II. 1.4), we have M(f) = M(id) = S5. Thus the case (3) in
Theorem C is proved.

4.3. Suppose that F(G, M) = S1. In this case, we can show that G is U(I) and //is
£/(!) like 3.3. Hence by (II. 1.5), the £/(2)-action of this type is £/(2)-equivariantly
diffeomorphic to the case in Remark 1.2.

5. The case where G' is S3 x S3. Since d=3, we have dim//'= 3. Hence H'° is
isomorphic to S3.

LEMMA 5.1. F(G\ M) = S1.

PROOF. First suppose that F(G', M) = 0. Then all singular isotropy subgroups
are 4-dimensional. Let (#0 be a singular isotropy type. Then we may assume that K'° =
S^xS3. Then H'°=lxS3. This contradicts (II. 1.8). Next suppose that F(G\ M)
consists of a finite number of points. Let xeF(G', M) and let D5 be the slice at * such
that D5 Γ\F(G', M) = {x}. Then G' acts almost effectively and orthogonally on D5 via the
slice representation σ: G'->SΌ(5) and the action has two singular orbits G'/K^ and
G'IK2. Since 3<dimΛ: ι'<6, we have dim#; = 4. Therefore K'° is S1 x S3 or S3xSί.
This is a contradiction as in the first case. q.e.d.

Since F(G, M) is also S1, let U be a G-equivariant tubular neighborhood of
F(G,M) = S1 and let q\ U-^S1 be the projection. Then dq~l(x) = S3 and G acts
effectively and transitively on S3. Therefore G is SΌ(4) and H is 5(9(3). Let W=
Λf-int U. Then/7j: W-+ W* is the projection of the fiber bundle with the fiber G/H= S3

and IV* = D2. Hence W is G-equivariantly diffeomorphic to G/H xD2 = S3xD2.On the
other hand, the /)4-bundle q: U^S1 is orientable since the structure group is SΌ(4).
Hence U is G-equivariantly diffeomorphic to ΣPxS1. Therefore M is G-equivariantly
diffeomorphic to M(f) = (D*χ S ί ) \ J f ( S 3 x/)2), where G = SO(4) acts naturally on D4

and S3 and trivially on S1 and D2 while /: S3 x S1^>S3 x S1 is a G-equivariant
diffeomorphism. Now for such/there exist a smooth map α: S1 -+Z2 (= 7V(//)///) and a
diffeomorphism β: S^S1 such that f(q, t) = (q<*(i), β(t)) for (q9t)eS3xS1. We can
extend / to the 5Ό(4)-equivariant diffeomorphism F: D4 x S1-+D4x S1 defined by
F(sq9t) = (sq<*(t)9β(t)), 0<J<1. Then by (II. 1.4), M(f) = M(id) - S5 and this SΌ(4)-
action is SO(4)-equivariantly diffeomorphic to the case (4) in Theorem C.

This complete the proof of Theorem C.

V. Classification of actions with codimension three principal orbits.

1. In this section we shall prove the following result.
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THEOREM D. Let (G, M, φ) be an action with codίmension three principal orbits.

Then G must be

REMARK 1.1. By the proof of this theorem, M* is a simply connected 3-manifold
with dλf*=F(SO(3), M). Hence M* is a homotopy 3-disk and dM* = S2. Hence if the

Poincare conjecture is true, M* = D3 and by (II. 1.5) the number of S0(3)-equivariant

diffeomorphism classes of such actions is unique (see [5, Appendix]).

2. PROOF OF THEOREM D. Since d=2, G' is Spin(3) = S2 by the list in Lemma

II. 2.1. Hence G is S3 or 50(3) and H° is a maximal torus T of G. Since
//0c//c=7V(//0) = 7V(Γ), His Tor N(T). Then we have:

LEMMA 2.1. H=T, E=0 and

PROOF. Since M is simply connected and G is connected, its principal orbit and its

exceptional orbit are both orientable ([2, p. 188]). Hence H= T and E=0, because
G/N(T)=RP(2) is non-orientable. Next suppose that B = 0. Then all orbits are princi-

pal and M* is a connected simply connected 3-manifold. By (II. 1.2), there exists a
homeomorphism /: Mj/^(Γ)-»M*, where MΎ

0=MΎ is also a rational cohomology

sphere, W(T) = Z2 acts on Mτ and the W(T) action has a unique isotropy subgroup
( N ( T ) Γ \ H ) / T = { \ } . Hence Mτ is a rational cohomology 3-sphere and the projection

q: MT^>MT/Z2 = M* is a principal Z2-bundle. This contradicts the fact that M* is

simply connected. q.e.d.

Since G has no 2-dimensional subgroups, its singular isotropy subgroup is G. Hence
all singular orbits are fixed points and B = B* = F(G, M) is a submanifold of M.

LEMMA 2.2. B is 2-dimensional and G is isomorphic to 5*0(3).

PROOF. Let Bk (fc = 0, 1, 2) be the ^-dimensional components of B. Then B =
B0(JBί VB2 (disjoint union). Suppose that B0^0. Let yεB0 and let D5 be an equivar-

iant tubular neighborhood of y. We may assume D5 n B= {y}. Then G acts orthogonally

on dD5 = S4 via the slice representation σ: G->S0(5) and each orbit of the action is

G/H= S2. Hence S4/G is a simply connected 2-manifold. Adapt (II. 1.2) to this action on

S4, and a contradiction results as in the proof of Lemma 2. 1 . Next suppose that B{^0.

Let y e Bl and let B\ be the connected component containing y. Let N be an equivariant
tubular neighborhood of B^ such that NΓ\B = B° and let p: N^>Bl be the projection.

Then G acts effectively on dp ~ 1 (y) = S3 and each orbit of this action is G/H= S2 and the

orbit space S3/G is a simply connected closed 1 -manifold. This is a contradiction. Hence

B = B2. Let TV be an equivariant tubular neighborhood of B and let p: N-+B be the

projection. Then G acts orthogonally on dp~1(y) = S2 via the restriction top~1(y) of the

slice representation at yεB. We denote the restricted representation by σ. Then

σ: G-»S0(3) is the faithful representation since G acts effectively and transitively on

S2 = G/H. Hence G is isomorphic to SΌ(3), because G and SO(3) are closed manifolds of
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the same dimension. q.e.d.

Thus Theorem D has been proved.
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