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For ordinary differential equations and functional differential equations with finite

delay, it is well known that uniform boundedness and uniform ultimate boundedness

imply the existence of a periodic solution by a fixed point theorem (cf. [2], [5], [10]). In

order to obtain a similar existence theorem for a periodic solution of a nonlinear

Volterra equation, Burton has extended the boundedness concept to one called the g-

boundedness [2].

In this paper, we shall discuss the existence of a periodic solution of an

integrodifferential equation by using stability properties of a bounded solution. As will

be seen later, our result can be applied to the existence of a strictly positive

(componentwise) periodic solution for a model in the dynamics of an rc-species system in

mathematical ecology discussed by Gopalsamy [4], while the results obtained by Burton

[2] and Arino, Burton and Haddock [1] cannot be applied.

We consider a nonlinear integrodifferential equation

(1) x(t) =/(ί, x(t)) + I £(ί, 5, x(s), x(t))ds .

This equation can be written as

Γ°
(2) x(t) =/(ί, x(t)) + £(t, t + 5, x(t + s), x(t))ds .

— oo

In the case where/in (1) contains a term with finite delay, we can obtain the same

conclusion, but we shall consider equation (1) here in order to make the statements

simple.

Letx\ (— oo, A)^>Rn, — oo<^^oo,beacontinuous function. For t<A, definex tby
the relation xt(s) = x(t + s), srgO. We denote by BC the space of all /^"-valued bounded

continuous functions on (— oo, 0].

We impose the following assumptions on (1).

(A) f:RxR"-+R" is a continuous function and E(t, s, x,y) is defined and

continuous for — oo <s^t< oo, xeR" and yeR".

(B) There is a Γ>0 such that f(t+T,x)=f(t,x) for all teR, xeR" and

E(t+T,s+T9x9y) = E(t,s,x,y) for all tεR, s^t, xεR" and yeR".
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(C) For any r>0, there exists an L1(r)>0 such that

for all t e R, whenever x(s) is continuous and | x(s) \ ̂  r for all s ̂  t.

(D) For any ε>0 and r>0, there exists an S>0 such that

for all teR, whenever x(s) is continuous and \x(s)\^r for all s^t.
For E(t, t + s, x(t + s), x(t)\ this is written as

-s

for all tεR.

REMARK 1 . It follows from conditions (C) and (D) that f_ ^ E(t, s, x(s), x(f))ds is
continuous in t, whenever x(s) is continuous and | x(s) \ ̂  r for all s ̂  t.

Under the above assumptions, if t0eR and 0eBC, there exists a solution of (1)
which passes through (/0, φ) (cf. [3]). Moreover, a solution x(t) can be continuable up to
t= oo if it remains in a compact set in Rn, because x(t) is bounded as long as x(t) remains
in a compact set in Rn.

In addition to the conditions (A), (B), (C) and (D), we make the following
assumption:

(E) The equation (1) has a bounded solution u(f) defined on [0, oo) which passes
through (0, φ), φ e BC.

REMARK 2. If u(t) is a solution of (1), then u(t+ T) is also a solution of (1).

Let K be the bounded closed subset in R" such that φ(s) ε K for all s ̂  0 and u(t) e K
for all f ^0. For any 0, ψeBC, we set

p{θ,ψ)= sup
-j^s^

P(θ, Ψ)=
7=1

Clearly, p(0π, 0)->0 as «->oo if and only if θn(s)->θ(s) uniformly on any compact subset
of (—00, 0] as «-»oo.

Now we introduce some stability properties with respect to the set K and the metric

P

DEFINITION 1. The bounded solution u(t) of (1) is said to be uniformly stable
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with respect to K and p, if for any ε > 0 and any t0 ̂  0, there exists a δ(ε) > 0 such that
p(w, , xt) <δ(ε) implies p(ut, xt)<ε for all t^ £0, where x(t) is a solution of (1) such that

xt(s)e K for all s^O.

Then we have the following theorem.

THEOREM 1. Under the assumptions (A), (B), (C), (D) and (E), if the bounded
solution u(t) 0/0) is uniformly stable with respect to Kand p, then u(t) is an asymptotically
almost periodic solution of (\).

PROOF. Let {tk} be a sequence such that ίk-+co as k-*co. For each tk, there exists
a positive integer Nk such that NkT^tk<(Nk+\)T. If we set tk = NkT+sk, then 0^sk

<T. If we set uk(t) = u(t+tk), then w fc(f) is a solution of the system

(3) χ(ί) =/(ί + sfc, x(ί)) + E(t + sk, s + sk, x(s), x(ί))ds .
J — oo

Since u(f) is uniformly stable with respect to K and p, u\f) is also uniformly stable with
respect to K and p with the same pair (ε, δ(ε)) as the one for u(f).

By our assumption (C), there exists an L > 0 such that | ύ(t) \ ̂  L for all t ̂  0. Taking
a subsequence, if necessary, we can assume that sk-^s4t e [0, 7^ as k-> oo and the sequence
(u(t+tk)} converges uniformly on any compact set in (—00, oo) as &->oo.

Since •$*->£* and u(tk + s) converges uniformly on any compact set in (— oo, 0], for
any ε>0 there exists a positive integer n^ε) such that if k, m^n^ε), then

(4) ρ(uko,uS)<δ(ε)/2 and \sk-sm\<δ(ε)/4L,

where δ(ε) is the number for the uniform stability of u(f) with respect to K and p.
Moreover, choosing a number N=N(ε)>0 such that ΣjL v + i l/2J'<δ(ε)/4, we can

find an «2(ε)>0 such that if k, w^«2(ε), then tm^N+ 1 and

p>Γ ?wΓVsm-S k)= sup \
se[-JV,0]

for all / ̂  0. Thus we have

(5) p«,<+Sk_sJ<(5(ε)/2 for all ί^

This implies that if k, m^n2(ε), then P(M?, w^k_Sm)<^(ε)/2. Thus, if A:, m^n0(ε) =

^ε), «2(
ε))' we have

Since um(i) = u(t+tm) is a solution of

Γ
J-00

um(t+sk — sm) is a solution of (3). However uk(f) is uniformly stable with respect to A^and
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p, u™k.Sm(s)eKfor all s^O and p(w$, n£_sj<δ(ε) if k, w^/ι0(ε), and hence we have

p(«fk,«Γ+,fc-O<fi fora11 ^°

if/:, rn^.n0(ε). On the other hand, (5) implies that if/:, w^«0(ε),

P(«Γ,"Γ+ak-O<fi for all f ^ O .

Thus, if A:, m^n0(ε), we have

p(M*,O<2ε for all f ^ O ,

which implies that if /:, m ̂  «0(
ε)>

|M(f + f*)-w(f + OI^ SUP |w(ί + ίfc + s)-w(ί + ίm + s)|<8ε
S6[- l ,0]

for ε^ 1/8 and all ί^O. Thus we see that for any sequence {tk} such that /k->oo as /r-»oo,
there exists a subsequence {tk} of {/J for which u(t+ tk) converges uniformly on [0, oo)
as j ->oo. This shows that u(t) is asymptotically almost periodic in t.

This theorem is similar to a result obtained by Yoshizawa for the functional
differential equation with finite delay [9]. Hino [7] also has extended Yoshizawa's result

to the functional differential equation on the phase space considered axiomatically by
Hale and Kato [6].

In what follows, we need the following definitions.

DEFINITION 2. The bounded solution u(t) of (1) is said to be weakly uniformly
asymptotically stable with respect to A'- and p, if it is uniformly stable with respect to K

and p and there is a δ0>0 such that if f 0 ^0 and P(X , xt )<δQ, then p(wf, xt)->Q as
f->oo, where x(t) is a solution of (1) such that xt (s)eK for all srgO.

DEFINITION 3. The bounded solution u(t) of (1) is said to be globally weakly
uniformly asymptotically stable with respect to K and p, if it is uniformly stable with

respect to Kanά p and p(wί5 xt)->0 as /->oo, whenever x(t) is a solution of (1) such that
xt(s) e K for s ̂  0 at some t0 ̂  0.

THEOREM 2. ί/«ί/er ίAe assumptions (A), (B), (C), (D) έwirf (E), // the bounded
solution u(t) 6>/(l) is weakly uniformly asymptotically stable with respect to K and p, then
the equation (1) has an mT-periodic solution p(t) for some integer m^.1 such that p(f) e K
for allteR.

PROOF. Set uk(t) = u(t + kT), k= 1, 2, - . Then there exists a subsequence {ukj(f)}

of {uk(t)} which converges to some function w(t) uniformly on any compact set in
(—oo,0] asy'->oo, where w(t) is a bounded continuous function on (— oo, 0]. Thus
P(UQJ, v^0)^0 as y'->oo, and therefore there is a positive integer p such that
P(WOP, ukp + l)<δ0, where ^0 is the number for weakly uniformly asymptotic stability of
u(f) with respect to K and p. Set m = kp + l—kp and consider the solution um(t) =
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tι(t+mT) of (1). Then we have

and u™ T(s)eK for all s^Q, which implies that

(6) ρ(u?, ut) -> 0 as t -> oo ,

because u(t) is weakly uniformly asymptotically stable with respect to K and p.
On the other hand, u(t) is asymptotically almost periodic in / by Theorem 1, and

hence

(7) u(t)=p(*) + q ( t ) ,

where p(t) is almost periodic in t and q(f) is a continuous function such that q(f)-+Q as
f->oo. Since it follows from (6) that

u(t + mT)-u(t) -> 0 as f -> oo ,

we have

p(t)-p(t+mT)^>Q as f -> oo .

Therefore p(t)=p(t + mT) for all teR, because p(i) is almost periodic in t.
Now we shall show that p(t) is a solution of (1). If we set uk(t) = u(t + kmT\ k =

1, 2, , then we have

u(t+kmT)=p(t) + q(t + kmT} ,

and hence u\t)^p(f) uniformly on any compact set in R as fc-»oo. Thus it is clear that
p(i)eK for all /e/?. For t^a> — oo, we have

(8) w

fc(ί) = w

fc(α) + [f(s9 uk(s)) + £(5, υ, u\v\ uk(s))dv \ ds
Ja J - oo J

for sufficiently large k, because u\t) is a solution of (1). There exists a c>0 such that
I «*(/) I ̂  c and \p(t)\^c for all / e Λ. Then, by the condition (D), for this c and any ε > 0,
there exists an S = S(ε, c)>0 such that

r*

J —

and

f.-s
\E(s,v,p(υ),p(s))\dυ£e.

J — oo

Thus we have
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E(s, v, u\v), u\s))dv - E(s, v, p(v), p(s))dv
) J — 00

fs-S

I E(s, v, u\v), u\s}} \dv+\ I E(s, v, p(v), p(s)) \ dv
J — oo

I E(s, v, u\v\ u\s}) - E(s, v, p(v), p(s)) | dv

Γs

^ 2ε + I £(s, v, uk(v), uk(s)) - E(s, v, p(v), p(s)) \ dv.
Js-S

Moreover, if k ϊ; k0(ε) for some k0(ε) > 0,

I E(s, v, u\υ\ u\s))-E(s, v, p(v), p(s))\dv<ε,

s-S

Js-S

because E is continuous and uk(v) converges to p(v) uniformly on [s — S, s] as /c-»co.

Thus we have

(9) E(s, v, u\v\ uk(s))dv -+ E(s, v, p(v), p(s))dv
J — oo J — oo

as k-+ao. Therefore, by our assumption (C) and Lebesgue's convergence theorem, we
have

ί Γs

E(s,υ,uk(v),u\s))dυds^ \ \ E(s, v, p(v\ p(s))dvds
Ja J ~ oo

as A:-»oo. Letting fc->oo in (8), we obtain

p(t) = p(a) + γ(s, p(s)) + £(s, v, p(υ\ p(s))dv V ds
Ja (, J -oo J

for all t^a. This shows that/?(0 is a solution of (1). Thus the equation (1) has an mT-
periodic solution, because p(t)=p(t + mT).

THEOREM 3. Under the assumptions (A), (B), (C), (D) and (E), if the bounded
solution u(t) of(\) is globally weakly uniformly asymptotically stable with respect to Kand
p, then the equation (1) has a T-periodic solution p(t) such that p(t) e Kfor all t e R, which
is globally weakly uniformly asymptotically stable with respect to K and p.

PROOF. Since u(f) is uniformly stable with respect to Λ^and p, it is asymptotically

almost periodic in t by Theorem 1, and hence u(t)=p(t) + q(t), where p(f) is almost
periodic in / and q(t) is a continuous function such that q(i)-+Q as /-»oo. Since u(t+ T) is
also a solution of (1) such that uτ(s) e AT for all s^Q and u(t) is globally weakly uniformly
asymptotically stable with respect to ^and p, we have p(ut, ut + τ)^0 as f-> oo, and hence
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p(t)=p(t+ T) for all teR. Thus we can show that p(t) is a 7^-peπodic solution of (1) by
the same arguments as in the proof of Theorem 2.

Now we shall see that/?(0 is uniformly stable with respect to Λ^and p. Set uk(t) =
u(t+kT), k=l, 2, . For any t0e[Q, oo), let x(t) be a solution of (1) such that xto(s)eK

for all srgO and p(/?,o, xto)<δ(ε/2)/2, where δ(ε) is the number for uniform stability of
u(t). Since uk(t)^»p(i) uniformly on any compact set in (—00, ί0], we have

p(<,Ao)<<5(ε/2)/2,

if k is sufficiently large. Since u\t) is uniformly stable with respect to K and p with the
same pair (ε, <5(ε)) as the one for u(t), we have p(u^pt)<ε/2 for all t^t0. Moreover, we
have

p(wfo, χtQ) ^ p(wfo, ptQ) + P(AO> *ί0)
< δ(ε/2),

which implies that p(u^xt)<ε/2 for all t^t0. Therefore, if p(pto, xto)<δ(ε/2)/2, then
p(pt, xr)^p(/?,, wf) + p(wf, x,)<ε for all t^tθ9 which shows that/?(0 is uniformly stable
with respect to K and p.

Since u(ή is globally weakly uniformly asymptotically stable with respect to Kand p
and since ptQ(s) e K, χtQ(s) eKfor all s^Q, we have p(wf, /?f)-^0 as f-> oo and p(wί? xr)-^0 as
ί^oo. Therefore p(^ί? .xr)->0 as ί->oo.

This shows that/?(ί) is globally weakly uniformly asymptotically stable with respect

to K and p.

REMARK 3. In particular, consider the case where E(t, s, x, y) has the form

(10) E(t, s, x, y) = K(t-s)G(t, x, y).

Here K(σ) is an n x m matrix function such that ĵ ° | K(σ) \dσ<co and G(t, x, y) is a
continuous m x 1 vector function such that G(t+ Γ, x, y) = G(t, x, y) for some Γ>0 and

all teR, xeRn and yeRn. Then for any ε>0, there exists an 5>0 such that

\K(t-s)\ds^ε for all ί e Λ .
D

Therefore, without the continuity of λ^σ), we can show that p(t) in the proof of
Theorems 2 and 3 is a solution, because (9) in the proof of Theorem 2 can be prove in the
following way: For any ε>0, there exists a &0(ε)>0 such that if k^.kQ(ε)9

Γs Γs

K(s - v)G(s, u\υ\ u\s))dv - K(s- v)G(s, p(v\ p(s))dv
J — oo J — oo

S\K(s-v)\\ G(s, u\v), zΛs)) \dυ+ S\K(s-υ)\\ G(s, p(v), p(s)) \ dv

\K(s-v)\\G(s, u\v\u\s})-G(s,p(v), p(s))\dv ^2εG* + K*ε,
s-S
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where G* = max{|G(/, x 9 y ) \ : teR, \x\^c9 \y\^c} and K* = ̂  \ K(σ) \ dσ. Thus we can

see that

Γs

K(s - vffls, u\v\ uk(s))dv -> K(s- υ)G(s9 p(v\ p(s))dv
o J - oo

as A:->oo. Therefore, Theorems 2 and 3 hold without the continuity assumption on K(σ).

EXAMPLE (cf. [4]). Consider a system of integrodifferential equations

r fί ι
(11) xfc) = xjt) < bit) - atίfixίf) - Σ *u(0 Kift ~ v)Xj(v)dv \,

I i = 1 J - oo J

where δ^ί) and a^t) (ij= 1, 2, , «) are continuous and positive Γ-periodic functions

on R and Λ^: [0, oo)-*[0, oo) (ij= 1, 2, ,«; /Vy) denote delay kernels such that

fJoJo

We assume that

where

f00

Kij(s)ds = 1 and sK^ds < oo (i, j = 1, 2, , n\ i Φj).
Jo

b\> Σ aίj(b1j/aljj) j i = l, 2, , n ,
7=1

teR teR

=a lj = infant), a £ = sup flfj.(f), (i, 7 = 1, 2, , n).
teR teR

If we set

[ n ~Ί /

7 = 1 J/

then 0<βi<oίi for each /. Then if w(ί) is a solution of (11) through (0, φ) such that

0 < ft g φi(s) <? αt for all j ̂  0, then we have ft ̂  w f(/) ̂  αf for all ί ̂  0. Let A: be a bounded
closed set in R" such that

K={(χι> X2> ' ' ' »-^Je^" : βi^Xi^oίi for each /} .

Moreover, if we assume that there exists a positive constant m such that

n

U ^j 7'ΐ 5 5 5 ? ί

Λ = ι

we can see that the bounded solution u(f) of (11) is globally weakly uniformly
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asymptotically stable with respect to K and p by using a Liapunov functional

F(ί,W( •),*(•))

= Σ Γl l°g"M- l oβ*ιWI + Σ I °°K0.(s) j Γ fli/s + v) I u»-x» \dO\ds\,
i=l \_ j=l Jo Uί-s J J

because we have

n

Therefore, by Theorem 3, the system (11) has a Γ-periodic solution p(f) such that

REMARK 4. In the case where a^t) and i f(f) are almost periodic in t, Murakami
[8] has shown that the system (11) has an almost periodic solution under the same
conditions.

Finally, we shall discuss the existence of an almost periodic solution of the equation

(1).
We define almost periodic functions with parameters in the usual way (cf. [11]).
Let R* = R~ xR"xR", where /?'=(-oo,0].

DEFINITION 4. E(t, t + s,x,y) is said to be almost periodic in t uniformly for
(s, x,y)eR*, if for any ε>0 and any compact set AT* in R*, there exists a positive
number L(ε, K*) such that any interval of length L(ε, K*} contains a τ for which

(12) |£(* + τ, t + s+τ,x,y)-E(t,

for allteR and all (s, x, y)e A:*.

For the properties of an almost periodic function with parameters, see [11].
We assume the conditions (A), (C), (D), (E) and
(B') /(/, x) is almost periodic in t uniformly for x e Rn and E(t, t + s,x, y) is almost

periodic in t uniformly for (s9 x, y)eR*.

Let K be the bounded closed subset in Rn such that φ(s) e K for all s ̂  0 and u(t) e K
for all /^O, where u(i) is the bounded solution of (1) under the condition (E).

DEFINITION 5. The bounded solution u(f) of (1) is said to be totally stable
with respect to K and p, if for any ε>0 there exists a δ(ε)>Q such that if t0^Q,

p(utQ, xtQ)<δ(ε) and if h(i) is a continuous function such that | h(t) \<δ(ε) for t^ t0, then

P(MP xt)<ε for all ί^ί0»
 w^ere x(t) is a solution of

(13) x(0=/(ί,
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such that xt (s)e K for all s^ϋ.

Then we have the following theorem.

THEOREM 4. Under the assumptions (A), (B'), (C), (D) and (E), if the bounded

solution u(i) of (I) is totally stable with respect to K and p, then u(t) is an asymptotically

almost periodic solution of (1), and the equation (1) has an almost periodic solution.

PROOF. Let {tk} be a sequence such that /k->oo as fc->oo. If we set u\i) = u(t+tk),

then uk(t) is a solution of the system

(14) x(f)=/(f + f**(f)) +

Since u(f) is totally stable with respect to A^and p, uk(t) is also totally stable with respect

to Kand p with the same pair (ε, δ(ε)) as the one for u(i). For each positive integers k and

ra, we defined a continuous function hkm\ R-^Rn by

Γ°

J —

(15)
(*o

£(£ + ίm, ί + s + ίm,w'
/ — oo

ΓO

E(t + ίk, ί + S + ίk, Mm(ί + s),M'
X)

Then, clearly Mm(/) = M(ί+ίIII) is a solution of the system

P
J - oo

Taking a subsequence of {tk}9 if necessary, we may assume that w(s+/k) converges

uniformly on any compact interval in (— oo, 0]. Therefore there exists a positive integer

n^ε) such that

P(UQ, u™)<δ(ε) if k, w^«1(ε),

where £(ε) is the number for the total stability of u(t) with respect to K and p.

Now we shall show that there is a positive integer n2(ε) such that

There exists a c> 0 such that | u\t) \ ̂  c and | um(t) | ̂  c for all ί e R. Then by the condition

(D), for this c and <5(ε)>0, there exists an S=S(δ, c)>0 such that

-s
I E(t + tm, t + s + ίw,

— oo

and
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I E(t + tk, t + s + tk, u
m(t + s), um(t)) I ds ̂  <5(ε)/4 .

J-oo

Thus we have

I hkt Jit) I £ |/(f + ίm, um(t)) -f(t + ίfc, u
m(t)) I + δ(ε)/2

Γ
+ I E(t + f m, ί + 5 + ίm, MW(ί + 5), Km(ί)) - E(t + ίk, ί + S + ίk, ll"Ίί + S), l/m(ί)) I & ,

J-s

and hence if A:, w^«2(ε) for some «2(ε)>0,

and

fo
I E(t + tm, t + s + tm, um(t + s), um(t)) -E(t + tk,t + s + tk, u

m(t + s), um(t)) I ds < δ(ε)/4,
/-s

because/and E are almost periodic, which implies that

l^/c,m(0 I <(Kε) if A:, w^«2(ε).

Thus, if &, m^n0(ε) = max(n1(ε), «2(ε)), we have

P(UQ, u™)<δ(ε) and \ h k t m ( t ) \

Therefore, if &, m^«0(ε), we have

p(uϊ,u?)<ε for all ί^O,

since wk(i) is a solution of (14) which is totally stable with respect to K and p and

for all s:gO. This implies that if A:, m^«0(ε),

|^ sup
se[-l,0]

for all ε^ 1/4 and all /^O. Thus we see that for any sequence {tk} such that ίk-»oo as
^^oo, there exists a subsequence {tkj} of {tk} for which u(t+tkj) converges uniformly on
[0, oo ) asy'— >oo. This shows that u(t) is an asymptotically almost periodic solution of (1).

Now we have

where p(t) is almost periodic in t and q(f) is a continuous function such that q(t)^>Q as
/->oo. There exists a sequence {ίfc}, ίfc^oo as &-»oo, such that p(t+tk)^>p(t) uniformly

on R, f(t+tk,x)-+f(t,x) uniformly on RxS for any compact set S in Rn and
E(t+tk, t+s+tk,x, y)^>E(t, t+s,x, y) uniformly on R x K* for any compact set K* in
R*.

Now we set uk(t) = u(t+ ίk). Then uk(f) converges to p(t) uniformly on any compact
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set in R as &->oo, and uk(t) is a solution of (14). Thus we can show thatp(t) is a solution

of (1) by the same arguments as in the proof of Theorem 2.
This shows that the equation (1) has an almost periodic solution.
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