MULTIPLIERS AND TRANSLATION INVARIANT OPERATORS

Hang-Chin Lai and Tsu-Kung Chang

(Received March 23, 1987)

Abstract

This paper characterizes various spaces of translation operators and multipliers on Banach-valued function spaces. A relationship between invariant operators and multiplier operators is established. It explores a necessary and sufficient condition for each invariant operator to be a multiplier.

1. Introduction and preliminaries. Throughout we let G be a locally compact abelian group with Haar measure $d t, A$ a commutative Banach algebra, Y and X Banach spaces. Denote by $L^{1}(G, A)$ the space of all Bochner integrable A-valued functions defined on G. It is a commutative Banach algebra under convolution. $L^{p}(G, X)$ is the space of all X-valued measurable functions defined on G whose X-norms are in usual L^{p} space. It is a Banach space for each $p, 1 \leqq p \leqq \infty$.

A bounded linear operator T from a Banach function space $E(G, Y)$ to another $F(G, X)$ is invariant if T commutes with the translation operators $\tau_{a}(a \in G)$. Throughout this paper, the space of all invariant operators from $E(G, Y)$ to $F(G, X)$ is denoted by

$$
(E(G, Y), F(G, X))
$$

Our purpose in this paper is to characterize the space of invariant operators under some appropriate conditions.

If X and Y are A-modules, it is known (see Rieffel [12] and also Lai [7], [8]) that

$$
\begin{equation*}
\operatorname{Hom}_{A}\left(X, Y^{*}\right) \cong\left(X \otimes_{A} Y\right)^{*}, \tag{1.1}
\end{equation*}
$$

in which a linear operator $T \in \operatorname{Hom}_{A}\left(X, Y^{*}\right)$ corresponding to a continuous linear functional ψ on $X \otimes_{A} Y$ is given by

$$
(T x)(y)=\psi(x \otimes y) \quad \text { for all } \quad x \in X, \quad y \in Y
$$

Here $\operatorname{Hom}_{A}\left(X, Y^{*}\right)$ is the space of all A-module homomorphisms from X to Y^{*}, the topological dual space of Y, that is, each $T \in \operatorname{Hom}_{A}\left(X, Y^{*}\right)$ satisfies

$$
T(a x)=a T(x) \quad \text { for all } \quad a \in A, \quad x \in X
$$

[^0]where T is a continuous linear operator from X to $Y^{*} ; X \otimes_{A} Y$ denotes the A-module tensor product space of X and Y.

If X is a Banach A-module, then $L^{p}(G, X), 1 \leqq p \leqq \infty$, is a Banach $L^{1}(G, A)$-module. In [7] and [8], Lai has characterized various spaces of module homomorphisms for Banach-valued function spaces defined on a locally compact Abelian group G under certain appropriate conditions. The module homomorphism space is generally called the multiplier space. It is well-known that, in the scalar-valued function spaces over G, a bounded linear operator is a multiplier if and only if it is an invariant operator. For example,

$$
\begin{equation*}
\operatorname{Hom}_{L^{1}(G)}\left(L^{1}(G), L^{1}(G)\right) \cong\left(L^{1}(G), L^{1}(G)\right) \cong M(G) \tag{1.2}
\end{equation*}
$$

where $M(G)$ denotes the space of bounded regular measures on G, that is, if T is a bounded linear operator on $L^{1}(G)$, then the following statements are equivalent:
(a) $T(f * g)=T f * g=f * T g$ for all $f, g \in L^{1}(G)$.
(b) $\tau_{s} T=T \tau_{s}$ for $s \in G$, where $\tau_{s} f(t)=f\left(t s^{-1}\right)=f(t-s)$.
(c) There is a unique measure $\mu \in M(G)$ such that

$$
T f=\mu * f \quad \text { for any } \quad f \in L^{1}(G) .
$$

Moreover, it is also known that

$$
\begin{equation*}
\operatorname{Hom}_{L^{1}(G)}\left(L^{1}(G), F(G)\right) \cong\left(L^{1}(G), F(G)\right) \cong F(G), \tag{1.3}
\end{equation*}
$$

where $F(G)=L^{p}(G)(1<p<\infty)$ or $C_{0}(G)$, the space of continuous functions on G vanishing at infinity, and the relationship between both sides of \cong is given by the following equivalent statements: Let T be a bounded linear operator of $L^{1}(G)$ to $F(G)$. Then $\tau_{s} T=T \tau_{s}$ for all $s \in G$ if and only if there exists a function $g \in F(G)$ such that $T f=$ $f * g$ for all $f \in L^{1}(G)$. For all of these properties, one can consult Larsen [10]. However, in the Banach-valued function spaces, an invariant operator need not be a multiplier. In [13], Tewari, Dutta and Vaiya proved the following theorem.

Theorem A ([13; Theorem 3]). If $\operatorname{dim} A>1$ and A has unit of norm 1 , then there is a bounded linear invariant operator T of $L^{1}(G, A)$ such that

$$
T \notin \operatorname{Hom}_{A}\left(L^{1}(G, A), L^{1}(G, A)\right)
$$

Using this result, they disprove Akinyele's results about the equivalence between the multiplier and invariant operator on $L^{1}(G, A)$. In [13], they proved that

$$
\begin{equation*}
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, A)\right) \cong M(G, A) \tag{1.4}
\end{equation*}
$$

provided A has an identity of norm 1 . This result is extended by Lai [8] as in the following theorems.

Theorem $\mathrm{B}([8 ;$ Theorem 9]). If A has an identity of norm 1 and X is a Banach A module, then the following statements are equivalent:
(a) $\quad T \in \operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, X)\right)$.
(b) There exists a unique $\mu \in M(G, X)$ such that

$$
T f=f * \mu \quad \text { for all } \quad f \in L^{1}(G, A) .
$$

Moreover,

$$
\begin{equation*}
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, X)\right) \cong M(G, X) . \tag{1.5}
\end{equation*}
$$

Evidently, if $X=A,(1.5)$ is reduced to (1.4).
Theorem C ([8; Theorem 6]). Let X be a Banach A-module and A have an identity of norm 1. If the topological dual and bidual spaces X^{*} and $X^{* *}$ of X have the RadonNikodym property in the wide sense with respect to G, then the following statements are equivalent:
(a) $T \in \operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{p}(G, X)\right), 1<p<\infty$.
(b) There exists a unique $g \in L^{p}(G, X)$ such that

$$
T f=f * g \quad \text { for all } f \in L^{1}(G, A) .
$$

Moreover,

$$
\begin{equation*}
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{p}(G, X)\right) \cong L^{p}(G, X), \quad 1<p<\infty \tag{1.6}
\end{equation*}
$$

Recently, Quek [11, Theorem 9] proved that if X has the Radon-Nikodym property in the wide sense, then the isometric isomorphism of (1.6) in Theorem C holds. Quek's result improves Theorem C, since if X is embedded as a closed subspace of $X^{* *}$ in the norm topology, Theorem 2 of Diestel and Uhl [1; p. 81] implies that X has the RadonNikodym property in the wide sense whenever $X^{* *}$ does.

As the remark in [13; p. 229] indicated, it would be interesting to characterize the set of all bounded linear invariant operators on various Banach-valued function spaces over G. In this paper, we shall characterize various spaces of translation operators and multipliers under some appropriate conditions. Moreover, we establish a relationship between invariant operators and multipliers, and reduce a necessary and sufficient condition for each invariant operator to be a multiplier. Finally, we summarize our results as follows. Throughout we let X and Y be Banach spaces and A a commutative Banach algebra. Then we have:
(i) A bounded linear operator from $L^{1}(G)$ to $F(G, X)\left(=L^{p}(G, X)(1 \leqq p \leqq \infty)\right.$ or $\left.C_{0}(G, X)\right)$ is invariant if and only if it is a multiplier.
(ii) The space $\left(L^{1}(G, Y), L^{p}(G, X)\right)(1<p<\infty)$ is isometrically isomorphic to $\mathscr{L}\left(Y, L^{p}(G, X)\right)$, the space of bounded linear operators of Y to $L^{p}(G, X)$.
(iii) If $p=1$ in (ii), then

$$
\left(L^{1}(G, Y), L^{1}(G, X)\right) \cong \mathscr{L}(Y, M(G, X)),
$$

where $M(G, X)$ is the space of X-valued bounded regular measures on G.
(iv) If $L^{1}(G, X)$ is an order-free $L^{1}(G, A)$-module, that is, $\varphi \in L^{1}(G, X)$ and $L^{1}(G, A) * \varphi=\{0\}$ imply $\varphi=0$, then

$$
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, X)\right) \cong \operatorname{Hom}_{A}(A, M(G, X))
$$

(v) If X and X^{*} have the Radon-Nikodym property in the wide sense and $L^{p}(G, X), 1<p<\infty$, is an order-free $L^{1}(G, A)$-module, then

$$
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{p}(G, X)\right) \cong \operatorname{Hom}_{A}\left(A, L^{p}(G, X)\right)
$$

(vi) As in Theorem A, we can find a bounded linear invariant operator T of $L^{1}(G, A)$ to $F(G, X) \quad\left(=L^{p}(G, X) \quad(1 \leqq p \leqq \infty)\right.$ or $\left.C_{0}(G, X)\right)$ such that $T \notin$ $\operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right)$ provided that A has a faithful algebra representation on X, that is, $a \in A$ and $a X=\{0\}$ imply $a=0$. However, if X is an order-free Banach A module, then

$$
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), F(G, X)\right) \subset \operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right)
$$

(vii) Let A have unit of norm 1 and X be a unit linked Banach A-module. Then each invariant operator $T: L^{1}(G, A) \rightarrow F(G, X)$ is a multiplier if and only if $A=\boldsymbol{C}$, where $F(G, X)=L^{p}(G, X)(1 \leqq p \leqq \infty)$ or $C_{0}(G, X)$.

The authors would like to thank the referees for their valuable comments.
2. Invariant operators. We will prove first that if $A=\boldsymbol{C}$ in (1.5) and (1.6) then every invariant operator of $L^{1}(G)$ to $L^{p}(G, X), 1 \leqq p<\infty$, will be a multiplier. Actually we have the following theorem.

Theorem 1. Let X be a Banach space. A bounded linear operator T : $L^{1}(G) \rightarrow F(G, X)$ is an invariant operator if and only if it is a multiplier, where $F(G, X)=L^{p}(G, X)(1 \leqq p \leqq \infty)$ or $C_{0}(G, X)$.

To prove this theorem we need the following result which was informed by Seiji Watanabe.

Lemma 1. Let (S, B, μ) be a positive measure space (not necessarily finite), X a Banach space and x_{1}, x_{2} two strongly measurable X-valued functions on S. Suppose that $x^{*}\left(x_{1}(s)\right)=x^{*}\left(x_{2}(s)\right) \mu$-almost everywhere for each bounded linear functional x^{*} on X. Then $x_{1}(s)=x_{2}(s) \mu$-almost everywhere.

Proof of Theorem 1. Let T be an invariant operator from $L^{1}(G)$ to $F(G, X)$. For any $x^{*} \in X^{*}$, define a mapping $T_{x^{*}}: L^{1}(G) \rightarrow F(G)=F(G, C)$ by

$$
T_{x^{*}} f=x^{*} \circ T f \quad \text { for all } \quad f \in L^{1}(G)
$$

Then $T_{x^{*}}$ becomes a bounded linear invariant operator. Indeed, $T_{x^{*}}$ is clearly bounded and linear. Now let $\tau_{s}, s \in G$, be a translation operator. We have

$$
\tau_{s}\left(T_{x^{*}} f\right)(t)=T_{x^{*}} f\left(t s^{-1}\right)=x^{*} \circ T f\left(t s^{-1}\right)=x^{*} \circ \tau_{s}(T f)(t)=x^{*} \circ T\left(\tau_{s} f\right)(t)=T_{x^{*}}\left(\tau_{s} f\right)(t)
$$

for all $f \in L^{1}(G)$ and $t \in G$, that is,

$$
\tau_{s} T_{x^{*}}=T_{x^{*}} \tau_{s} .
$$

This shows that $T_{x^{*}}$ is invariant whenever T is.
By (1.3) and [10, Theorem 3.1.1], we see that the invariant operators and multipliers are equivalent in the case of scalar-valued function spaces. It follows that for any $x^{*} \in X^{*}$,

$$
x^{*} \circ T(f * g)=T_{x^{*}}(f * g)=f * T_{x^{*}} g=f *\left(x^{*} \circ T g\right)=x^{*} \circ(f * T g)
$$

for all $f, g \in L^{1}(G)$. Hence by Lemma $1, T(f * g)=f * T g$ for all $f, g \in F(G)$. Note that every function in $F(G, X)$ is strongly measurable. Hence

$$
T \in \operatorname{Hom}_{L^{1}(G)}\left(L^{1}(G), F(G, X)\right) .
$$

The "if part" of the theorem is trivial. Indeed, for $f, g \in L^{1}(G), t \in G$, and a multiplier T,

$$
\left(T \tau_{t}\right)(f * g)=T\left(f * \tau_{t} g\right)=T\left(\tau_{t} g * f\right)=\left(\tau_{t} g\right) * T f=\tau_{t}(g * T f)=\tau_{t}(T(g * f))=\left(\tau_{t} T\right)(f * g) .
$$

Note also that $L^{1}(G) * L^{1}(G)=L^{1}(G)$ by Cohen's factorization theorem. Therefore every multiplier is invariant.
q.e.d.

Applying Theorem 1, we can establish the following theorem for invariant operators.

Theorem 2. Let X and Y be Banach spaces. Then the following two statements are equivalent:
(i) $\quad T \in\left(L^{1}(G, Y), L^{1}(G, X)\right)$.
(ii) There exists a unique $L \in \mathscr{L}(Y, M(G, X))$, a bounded linear operator of Y to $M(G, X)$, such that

$$
T(f \otimes y)=f * L y \quad \text { for all } \quad f \in L^{1}(G), \quad y \in Y .
$$

Moreover,

$$
\begin{equation*}
\left(L^{1}(G, Y), L^{1}(G, X)\right) \cong \mathscr{L}(Y, M(G, X)) . \tag{2.1}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii). Let $T \in\left(L^{1}(G, Y), L^{1}(G, X)\right)$. For each $y \in Y$, we define $T_{y}: L^{1}(G) \rightarrow L^{1}(G, X)$ by

$$
T_{y} f=T(f y) \quad \text { for all } \quad f \in L^{1}(G) .
$$

Evidently, T_{y} is translation invariant whenever T is, so that $T_{y} \in\left(L^{1}(G), L^{1}(G, X)\right)$. Applying Theorem 1 , we see that T_{y} is a multiplier, that is,

$$
T_{y} \in \operatorname{Hom}_{L^{1}(G)}\left(L^{1}(G), L^{1}(G, X)\right)
$$

It follows from Theorem B, by taking $A=C$, that there exists a $\mu_{y} \in M(G, X)$ such that

$$
T_{y} f=f * \mu_{y} \quad \text { for all } \quad f \in L^{1}(G)
$$

and $\left\|T_{y}\right\|=\left\|\mu_{y}\right\|$. Note that $\left\|T_{y}\right\| \leq\|y\|_{Y}\|T\|$. Thus the mapping $Y \rightarrow M(G, X)$, defined by $L: y \rightarrow \mu_{y}$, is bounded linear such that

$$
T(f y)=f * L(y) \quad \text { with } \quad\|L\| \leq\|T\| .
$$

(ii) \Rightarrow (i). Conversely, if $L \in \mathscr{L}\left(Y, M(G, X)\right.$), we define a mapping T_{L}^{1} : $L^{1}(G) \times Y \rightarrow L^{1}(G, X)$ by

$$
T_{L}^{1}(f, y)=f * L(y) \quad \text { for all } \quad f \in L^{1}(G), \quad y \in Y
$$

Then T_{L}^{1} is a bilinear continuous operator, and by the universal property of tensor product, there exists a linear map

$$
T_{L}: L^{1}(G) \hat{\otimes}_{\gamma} Y=L^{1}(G, Y) \rightarrow L^{1}(G, X)
$$

such that

$$
T_{L}(f \otimes y)=f * L(y) \quad \text { for all } \quad f \in L^{1}(G), \quad y \in Y
$$

and satisfying $\left\|T_{L}\right\| \leqq\|L\|$. This T_{L} is translation invariant since

$$
\tau_{s} T_{L}(f \otimes y)=\tau_{s}(f * L(y))=\tau_{s} f * L(y)=T_{L}\left(\tau_{s} f y\right)=T_{L} \tau_{s}(f y)=T_{L} \tau_{s}(f \otimes y)
$$

for all $s \in G, y \in Y, f \in L^{1}(G)$. Hence $T_{L} \in\left(L^{1}(G, Y), L^{1}(G, X)\right)$. By the first paragraph in the proof, we obtain $\left\|T_{L}\right\|=\|L\|$.

Finally, the one-to-one correspondence between $\left(L^{1}(G, Y), L^{1}(G, X)\right)$ and $\mathscr{L}(Y, M(G, X))$ is obvious. Therefore we obtain

$$
\left(L^{1}(G, Y), L^{1}(G, X)\right) \cong \mathscr{L}(Y, M(G, X))
$$

According to Theorem C with $A=C$ and Theorem 1, the invariant operators of $L^{1}(G, Y)$ to $L^{p}(G, X)$ for $1<p<\infty$ can be characterized as in the proof of Theorem 2.

Theorem 3. Let X and Y be Banach spaces. If X and X^{*} have the Radon-Nikodym property in the wide sense with respect to G, then the following two statements are equivalent:
(i) $T \in\left(L^{1}(G, Y), L^{p}(G, X)\right)$.
(ii) There exists $L \in \mathscr{L}\left(Y, L^{p}(G, X)\right), 1<p<\infty$, such that

$$
T(f \otimes y)=T(f y)=f * L(y) \quad \text { for all } \quad f \in L^{1}(G), \quad y \in Y
$$

Moreover,

$$
\left(L^{1}(G, Y), L^{p}(G, X)\right) \cong \mathscr{L}\left(Y, L^{p}(G, X)\right)
$$

Remark 1. (i) Note that if $Y=\boldsymbol{C}$, then Theorems 2 and 3 reduce to Theorem 1.
(ii) If $Y=\boldsymbol{C}=X$, then the spaces in Theorems 2 and 3 coincide with the spaces of usual multipliers, that is,

$$
\begin{aligned}
& \left(L^{1}(G), L^{1}(G)\right) \cong \operatorname{Hom}_{L^{1}(G)}\left(L^{1}(G), L^{1}(G)\right) \cong M(G), \\
& \left(L^{1}(G), L^{p}(G)\right) \cong \operatorname{Hom}_{L^{1}(G)}\left(L^{1}(G), L^{p}(G)\right) \cong L^{p}(G) .
\end{aligned}
$$

3. Multipliers of vector-valued function spaces. Let $Y=A$ in Theorems 2 and 3 be a commutative Banach algebra. Then we have the following characterizations.

Theorem 4. Let A be a commutative Banach algebra (not necessarily with identity) and X a Banach A-module. Suppose that $L^{1}(G, X)$ is an order-free $L^{1}(G, A)$ module. Then

$$
\begin{equation*}
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, X)\right) \cong \operatorname{Hom}_{A}(A, M(G, X)) \tag{3.1}
\end{equation*}
$$

Proof. Let $T \in \operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, X)\right)$. Then for any $t \in G$ and $f, g \in L^{1}(G, A)$,

$$
g *\left(T \tau_{t}\right) f=T\left(g * \tau_{t}(f)\right)=T\left(\tau_{t}(g) * f\right)=\tau_{t}(g) * T f=\tau_{t}(g * T f)=g * \tau_{t}(T f),
$$

and hence $L^{1}(G, A) *\left(T \tau_{t}-\tau_{t} T\right) f=\{0\}$ for all $t \in G$ and $f \in L^{1}(G, A)$. Since $L^{1}(G, X)$ is order-free, it follows that T is invariant, that is, $T \in\left(L^{1}(G, A), L^{1}(G, X)\right)$. According to Theorem 2 with $Y=A$, there exists a unique $L \in \mathscr{L}(A, M(G, X))$ such that
(a) $T(f a)=f * L(a)$ for all $f \in L^{1}(G), a \in A$.

Here $L(a) \in M(G, X)$ and $f * L(a)$ is an X-valued Bochner integrable function over G, since $L^{1}(G)$ acts on $M(G, X)$ under convolution and $f * L(a)$ vanishes on the singular part of $M(G, X)$. Hence it is an element of $L^{1}(G, X)$ and the relationship between T and L in (a) is well posed.

Moreover, for $f, g \in L^{1}(G), a, b \in A$,

$$
T(f a * g b)=T((f * g) a b)=(f * g) * L(a b)
$$

and

$$
T(f a * g b)=f a * T(g b)=(f * g) * a L(b) .
$$

Note also that $L^{1}(G) * L^{1}(G)=L^{1}(G)$ by Cohen's factorization theorem and that $M(G, X)$ is an order-free $L^{1}(G)$-module by Theorem B with $A=\boldsymbol{C}$. It follows that

$$
L(a b)=a L(b) \quad \text { for all } \quad a, b \in A .
$$

This shows that L is an A-module homomorphism, that is,

$$
L \in \operatorname{Hom}_{A}(A, M(G, X)) .
$$

Conversely, for $L \in \operatorname{Hom}_{A}(A, M(G, X)$), we define
(b) $T_{L}(f a)=f * L(a)$ for all $f \in L^{1}(G), a \in A$.

Then $f a \in L^{1}(G, A)$ and T_{L} is a bounded linear mapping from $L^{1}(G, A)$ to $L^{1}(G, X)$, since $L^{1}(G) * M(G, X)$ is contained in the space $L^{1}(G, X)$. We show that T_{L} is an $L^{1}(G, A)-$ module homomorphism. Indeed, for any $f, g \in L^{1}(G)$ and $a, b \in A$, we have

$$
T_{L}(g b * f a)=T_{L}((g * f) b a)=(g * f) * L(b a)=(g * f) * b L(a)=g b *(f * L(a))=g b * T_{L}(f a) .
$$

Since $\left\{g b: b \in A, g \in L^{1}(G)\right\}$ is total in $L^{1}(G, A)$, it follows that T_{L} is an $L^{1}(G, A)$-module homomorphism.

It is easy to show $\|T\|=\|L\|$ for T and L in the relations (a) and (b). Therefore the isometric isomorphism of (3.1) is proved. q.e.d.

By the same argument as in Theorem 4, we have the following theorem.
Theorem 5. Let A be a commutative Banach algebra and X a Banach A-module. Suppose that X and X^{*} have the Radon-Nikodym property in the wide sense with respect to G and that $L^{p}(G, X)$ is an order-free $L^{1}(G, A)$-module. Then
$\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{p}(G, X)\right) \cong \operatorname{Hom}_{A}\left(A, L^{p}(G, X)\right) \quad$ for $\quad 1<p<\infty$.
If A has unit of norm 1 and X is a unit linked Banach A-module, that is, $e x=x$ for all $x \in X$, where e is a unit of A, then $M(G, X)$ and $L^{p}(G, X)$ become unit linked A-modules. Thus $M(G, X)$ and $L^{p}(G, X)$ are isometrically isomorphic to $\operatorname{Hom}_{A}(A, M(G, X))$ and $\operatorname{Hom}_{A}\left(A, L^{p}(G, X)\right)$, respectively.

Thus we have the following:
REmark 2. If A has an identity of norm 1 and if X is unit linked in Theorems 4 and 5 , then
(3.1) is isometrically isomorphic to $M(G, X)$, and
(3.2) is isometrically isomorphic to $L^{p}(G, X)$.
4. Necessary condition for an invariant operator to be a multiplier. This section gives a main characterization for an invariant operator to be a multiplier in Banach function spaces. Although a multiplier is an invariant operator, the converse is not true. For example, one can consult Theorem A. We will prove the following theorem.

Theorem 6. Let A be a commutative Banach algebra of dimension greater than one with an identity of norm 1, and let X be a unit linked Banach A-module such that the corresponding representation is faithful (i.e., $a \in A$ and $a X=\{0\} \Rightarrow a=0$). Then there exists a bounded linear invariant operator T of $L^{1}(G, A)$ to $F(G, X)$ such that

$$
T \notin \operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right),
$$

where $F(G, X)=L^{p}(G, X)(1 \leqq p \leqq \infty)$ or $C_{0}(G, X)$.
Proof. Since A has an identity, say e, there exists a nonzero multiplicative linear
functional χ on A. Define $\psi: A \rightarrow A$ by $\psi(a)=\chi(a) e$ for all $a \in A$. Then ψ is a bounded linear operator on A. Since $\operatorname{dim} A>1$, we have $\{\chi(a) e: a \in A\} \varsubsetneqq A$. Thus there is an element $b \in A$ such that $\psi(b) \neq b$. For any $x \in X$ and $\phi \in F(G)=F(G, C)$, set

$$
\mu_{x, \phi}(a)=\phi \psi(a) x, \quad a \in A .
$$

Then $\mu_{x, \phi}$ is a bounded linear operator of A to $F(G, X)$. It is easy to see that the mapping

$$
L^{1}(G) \times A \ni(f, a) \rightarrow f * \mu_{x, \phi}(a) \in F(G, X)
$$

is bounded linear, so it follows from the universal property of tensor product that there exists a bounded linear map $T_{x, \phi}: L^{1}(G) \hat{\otimes}_{\gamma} A \rightarrow F(G, X)$ such that $T_{x, \phi}(f \otimes a)=$ $f * \mu_{x, \phi}(a)$ for all $f \in L^{1}(G)$ and $a \in A$. Let us identify $L^{1}(G, A)$ with $L^{1}(G) \hat{\otimes}_{\gamma} A$. Then $T_{x, \phi} \in\left(L^{1}(G, A), F(G, X)\right)$. Indeed, let $t \in G$. For any $f \in L^{1}(G)$ and $a \in A$,

$$
\tau_{t}\left(T_{x, \phi}(f a)\right)=\tau_{t}(f *(\phi \psi(a) x))=\left(\tau_{t} f\right) *(\phi \psi(a) x)=T_{x, \phi}\left(\left(\tau_{t} f\right) a\right)=T_{x, \phi}\left(\tau_{t}(f a)\right) .
$$

Since $\left\{f a: a \in A, f \in L^{1}(G)\right\}$ is total in $L^{1}(G, A)$, it follows that $T_{x, \phi}$ is invariant.
Suppose now that $T_{x, \phi} \in \operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right)$ for all $x \in X$ and $\phi \in F(G)$. Then

$$
\begin{aligned}
(f * \phi)(b-\psi(b)) x & =(f * \phi) b x-(f * \phi) \psi(b) x=b((f * \phi) x)-f *(\phi \psi(b) x) \\
& =b(f *(\phi \psi(e) x))-T_{x, \phi}(f b)=b T_{x, \phi}(f e)-T_{x, \phi}(f b) \\
& =T_{x, \phi}(f b)-T_{x, \phi}(f b)=0,
\end{aligned}
$$

and hence

$$
\|f * \phi\|_{F(G)}\|(b-\psi(b)) x\|_{X}=0
$$

for all $f \in L^{1}(G), \phi \in F(G)$ and $x \in X$. However, note that $L^{1}(G) * F(G) \neq\{0\}$. Therefore $(b-\psi(b)) x=0$ for all $x \in X$. Since the corresponding representation is faithful, it follows that $b-\psi(b)=0$, a contradiction. Thus $T_{x_{0}, \phi_{0}} \notin \operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right)$ for some $x_{0} \in X$ and $\phi_{0} \in F(G)$. Then $T=T_{x_{0}, \phi_{0}}$ is a desired operator.
q.e.d.

Remark 3. Note that

$$
\operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right) \neq \operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), F(G, X)\right)
$$

in general. If $X=A, p=1$, then Theorem 6 is reduced to Theorem A. Also under the same condition as in Theorem 6, we can show, by the same method, that there is a bounded linear invariant operator T of $L^{1}(G, A)$ to $F(G, X)$ such that $T \notin \operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), F(G, X)\right)$ where $F(G, X)=L^{p}(G, X)(1 \leqq p \leqq \infty)$ or $C_{0}(G, X)$.

However we have the following inclusion relation.
Theorem 7. Let A be a commutative Banach algebra with identity e of norm 1 and X an order-free Banach A-module. Then

$$
\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), F(G, X)\right) \subset \operatorname{Hom}_{A}\left(L^{1}(G, A), F(G, X)\right),
$$

where $F(G, X)=L^{p}(G, X)(1 \leqq p \leqq \infty)$ or $C_{0}(G, X)$.
Proof. Let $T \in \operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), F(G, X)\right)$. Fix $a \in A$ and $\phi \in L^{1}(G, A)$, and set $\xi=T(a \phi)-a T \phi$. We have only to show that $\xi=0$. To do so, let f be any element of $L^{1}(G)$. Then

$$
f *(e \xi)=(f e) * \xi=(f e) * T(a \phi)-(f a) * T \phi=T((f e) *(a \phi))-T((f a) * \phi)=0,
$$

and hence for any $x^{*} \in X^{*}$, we have

$$
f *\left(x^{*} \circ e \xi\right)(t)=\int_{G} f(t-s) x^{*}(e \xi(s)) d s=x^{*}\left\{\int_{G} f(t-s) e \xi(s) d s\right\}=x^{*}(f *(e \xi)(t))=0
$$

almost everywhere. Since $L^{1}(G)$ is faithful, it follows that $x^{*} \circ e \xi=0$ for all $x^{*} \in X^{*}$. By Lemma 1, $e \xi(t)=0$ a.e. and hence $A \xi(t)=\{0\}$ a.e. Since X is order-free, it follows that $\xi(t)=0$ a.e., that is, $\xi=0$.
q.e.d.

Remark 4. If $X=A, p=1$, then Theorem 7 is reduced to Corollary 5.2 in [13].
In view of Remark 3, we ask under what conditions

$$
\left(L^{1}(G, A), F(G, X)\right)=\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), F(G, X)\right)
$$

The answer is that A must be isometrically isomorphic to the complex field \boldsymbol{C}.
Theorem 8. Let A be a commutative Banach algebra with identity of norm $1, X$ be a unit linked, order-free, Banach A-module and A a faithful representation on X. Then each invariant operator $T: L^{1}(G, A) \rightarrow F(G, X)$ is a multiplier if and only if $A \cong C$, where $F(G, X)=L^{p}(G, X)(1 \leqq p \leqq \infty)$ or $C_{0}(G, X)$.

Proof. The proof of this theorem follows immediately from Theorem 1 and Remark 3.

References

[1] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[2] N. Dinculeanu, Vector Measures, Pergamon, Oxford, 1967.
[3] N. Dinculeanu, Integration on Locally Compact Spaces, Noordhoff International Publishing, 1974.
[4] G. P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429.
[5] R. Khalil, Multipliers for some spaces of vector-valued functions, J. Univ. Kuwait (Sci.) 8 (1981), 1-7.
[6] H. C. LaI, Multipliers of a Banach algebra in the second conjugate algebra as an idealizer, Tohoku Math. J. 26 (1974), 431-452.
[7] H. C. Lai, Multipliers for some spaces of Banach algebra valued functions, Rocky Mountain J. Math. 15 (1985), 157-166.
[8] H. C. LaI, Multipliers of Banach-valued function spaces, J. Austral. Math. Soc. 39 (Ser. A) (1985), 51-62.
[9] H. C. Lal, Duality of Banach function spaces and the Radon-Nikodym property, Acta Math. Hung. 47
(1-2) (1986), 45-52.
[10] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, Heidelberg, 1971.
[11] T. S. Quek, Multipliers of certain vector valued function spaces, preprint.
[12] M. A. Rieffel, Multipliers and tensor products on L^{p}-spaces of locally compact groups, Studia Math. 33 (1969), 71-82.
[13] U. Tewari, M. Dutta and D. P. Vaidya, Multipliers of group algebras of vector valued functions, Proc. Amer. Math. Soc. 81 (1981), 223-229.

Institute of Mathematics
National Tsing Hua University
Hsinchu, Taiwan
Republic of China

[^0]: Subject Classification (AMS 1980): 20B05, 43A22, 46G10.
 Key Words and Phrases: Banach module, homomorphism, invariant operator, multiplier, Bochner integral, vector measure, Radon-Nikodym property.

