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0. Introduction. We consider a homotopy class Ξ of C1 -mappings of a compact
1-essential manifold Mn into a compact Riemannian manifold TVW + 1. For/e Ξ,f$v(M) is
an w-dimensional integral varifold in TV. Then Ω = {ftv(M)\fe Ξ) is a subset of the
space Vn{N) of ^-dimensional varifolds in TV. In this paper, we will show that there exists
an ^-dimensional integral varifold Vo in the closure of Ω such that
|| y0 || (TV) = inf{|| K|| (TV): VeΩ}, and study the regularity of the weight || Vo ||.

Let M be a smooth compact 1-essential manifold (§ 1, (A) and [6]) of dimension n
with the following property:

(0.1) If any loop in a connected open set U is contractible in M, then U is contained in
a coordinate neighborhood in M.

Let (TV, g) be a smooth compact Riemannian manifold of dimension n + 1 . Then we
assume the following condition:

(0.2) There exists a continuous mapping f0: M^>N such that the induced map
fm: π1(M,p)-^πι(NJ0(p)) is injective,

where π^M.p) denotes the fundamental group of M. (In case n = 2, we can assume a
condition weaker than (0.2). See § 1, (B) (2).)

Let Gn(N) be a fibre bundle over TV associated with the bundle of linear frames L(TV)
with fibre Gn(N)p over /?, where Gn(N)p is the Grassmann manifold of λi-dimensional
subspaces of the tangent space Γp(TV). We denote by π: Gn(N)-+N the canonical
projection. Then an ̂ -dimensional varifold Ve Vn(N) is a Radon measure on Gn(N).
The weight || K|| of V is a Radon measure on TV. In particular, we have
/^(M)(Gπ(TV))=||/#KM)||(TV) = Volume(M,/^) for Cι-mappings / (see §2, (B) and
[1]). Put

Ξ = {f: M->TV:/is a C^-mapping and homotopic to/0} ,

Ω={fχM):feΞ} (c=
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Let spt || V\\ denote the support of the Radon measure || V\\ on N9 and A~B

denote the subtraction for subsets of N. For a hypersurface S in N, v(S) is an n-

dimensional varifold in N. For VeΩ, put

sing || K|| = spt || F| | ~{peN: p satisfies the condition (*) below} .

Condition (*): There exist finite smooth hypersurfaces S( (i= 1, , k) imbedded in N

for some r > 0 such that

where U(p,r) = NΓϊ {q: dg(p, q)<r}. pespt || V|| is called a singular point if

p 6 sing || K||. We say that p is a regular point of spt || F | | if /?ereg|| K||, where

r e g | | K | | = s p t | | F | | ~ s i n g | | K | | .

Our therorem is as follows.

THEOREM. Let M, N and Ω be as above. Then there exists an n-dimensional inte-

gral varifold Vo in N such that

(1) VoeΩ,

(2) ||Ko||(JV) = inf{||K||(^):FeO}>0,
(3) Jfk(sing||Ko||) = 0 for k>n-Ί,

where 3tfk is the k-dimensional Hausdorff measure on N.

We emphasize that this theorem is independent of the choice of a Riemannian

metric of N. In case n=l, the result is well-known due to the existence of minimizing

closed geodesies.

The contents of this paper are as follows.

§ 1. Examples and notation.

§2. Fundamental lemmas and preliminaries on geometric measure theory.

§ 3. Normalization of area-minimizing sequence.

§4. Regularity.

White [11] gave the following result related to our theorem.

THEOREM ([11, §5 Cor. 1]). Suppose

(1) M and N are smooth compact manifolds,

(2) 3^dimM=dimΛf-1^7,

(3) fo${πγ{M)) is of finite index in π^N),

(4) the integral current f^M is not homologous to 0 in some sense {see [11], Theorem

3-6).

Then there exists a mapping F: M-+N of least mapping area in the homotopy class off0,

and the image of F is a smooth submanifold of N together with a singularity set of

dimension ̂  dim M — 1.

White's theorem says, under the conditions (2), (3) and (4), that VoeΩ (to be exact,

VoE {fχv(M) \f is a Lipschitz map and homotopic to/0}) and Jtk(sing\\ Vo ||) = 0 for
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k>n — 1. Our theorem, of course, does not assume these conditions. In particular, our

theorem also gives a condition for || Vo \\(N)>0.

1. Examples and notation. (A) Examples of compact 1-essential manifolds

with property (0.1) are as follows:

(1) Compact manifolds which admit a metric with non-positive sectional

curvature.

(2) The real projective space PnR.

(B) Examples of mappings f0: M-+N are as follows:

(1) Let M be the w-torus Tn and let N be a compact manifold which has an (n +1)-

torus as a covering space. Then there exists a continuous mapping f0: M->N such that

f09 maps π^M.p) injectively into a part of infinite abelian subgroup of nx{NJ0{p)).

(2) We denote by Lg(γ) the length of the curve y in N with respect to a metric g.

Our assumption (0.2) is, in general, necessary for inf{Lg(f(y)) : / e S , y is a non-

contractible loop in M}>0. But, in case n = 2, Theorem holds good under a weaker

assumption. For example, we take M=T2 and N=P2RxS, where S is a circle. We

choose generators of πx{T2,p) and π^N, q) so that π1(Γ2,/7) = <α1, α2> and nx{N, q) =

<βi> ftX where 2β1 =0. Then we can construct a mapping/0: T2^N such that/o^αj) =

/?! anf fo#(%2) = kβ2 f°Γ anY integer ^(#0). In this case, / 0 # is not injective, but

inί{Lg(f(y)):fe Ξ, y is a non-contractible loop in Γ 2}>0. Indeed, by « = 2 every loop

7G[2mαJ for a non-zero integer m contains a subloop yx such that ^ e l α j , where

yeβraαj implies that y is free homotopic to a loop yoe2mα1. Therefore, we have

Lg(/(y))^Lg(/(y1))^Λ(>0) for/e S. (see §2, Lemma 2.1 and §3, Lemma 3.1).

(C) We use the following notation in this paper:

For peN and r>0, let

,r) = Nn{q:dg(p,q)<r}

Bp(0,r)=Tp(N)f){a:\a\^r}

Up(0,r)=Tp(N)0{a:\a\<r},

where Tp(N) is the tangent space to N at p and \a\2=g(a, a). When peN is fixed, we

denote /?(/?, r) (resp. 2?p(0, r), ) by Z?(r) (resp. 5(0, r), ) for simplicity. When we say

that (y1, , y n + 1) is a normal coordinate of U(p, r), we assume Q(d\dγ, dldyj)(p)=δij

and/'(/?) =0(/ = l, , n + \). For a normal coordinate^1, -, yn + ί) of U(p, r), a polar

coordinate (a1, , βΠ + 1 w) of U(p, r) is defined by γ=aιu and ( ^ ) 2 + +(an + 1)2 = 1.

Let Expp: Tp(N)^N be the exponential map. For r > 0 and a fixed peN, let

μr(α) = rα for aeTp(N)

, r).
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Let Gn(N)p be the Grassmann manifold of ^-dimensional subspaces of Tp(N). We
denote by Gn(N) a fibre bundle over N associated with the bundle of linear frames L(N)
with fibre Gn(N)p over p. We denote by π: Gn(N)-+N the canonical projection. We fix a
real number so( > 0) with the following property:

(1.1) For 0<r<2^ 0 and each pe TV, U(p, r) is a convex normal neighborhood of p.

2. Fundmental lemmas and preliminaries on geometric measure theory.

(A) We put

(2.1) a = inf{Lg(γ): γ is a non-contractible loop in TV} .

For fe Ξ, f*g is a possibly degenerate Riemannian metric of M.

LEMMA 2.1. There exists a constant Co( > 0) depending only on the dimension n of
M such that

(2.2) a^Co{Volume(M,/*0)}1/'1 for feΞ.

PROOF. Let y be a non-contractible loop in M. By the assumption (0.2),/(y) is
also non-contractible in TV for/e Ξ. Therefore we have Lf*g(y) = Lg(f(y))^a by (2.1).
Thus, we have

(2.3) inf{Lf*g(γ): fe Ξ, γ is a non-contractible loop in M) }>a .

Next, we fix a (non-degenerate) Riemannian metric h of M. f*g + εh is a non-
degenerate Riemannian metric of M for ε>0. By (2.3) we have

(2.4) L^+

for a non-contractible loop y in M and /e Ξ. By Gromov [6] and (2.4), there exists
a constant Co(>0) depending only on the dimension n of M such that
a^C0{Vo\ume(MJ*g + εh)}lln for/e S and ε>0. Since limε_0 Volume(M,/*0 + ε/O =
Volume(M,/*#), we are done. q.e.d.

(B) We choose and fix an arbitrary Riemannian metric h of M. Then the ̂ -dimensional
integral varifold v(M) in M is defined. Thus f$v(M) is an ^-dimensional integral varifold
in TV for/e Ξ. The weight \\f$v(M) \\ is a Radon measure on TV (cf. [1]). Then we have

(2.5) f,v(M)(Gn(N))= HΛKM) || (TV) = Volume(M,/*#)

for/e Ξ. By Lemma 2.1 and (2.5), we have

b = inf'{f»v(M)(Gn(N)) :feΞ}^ (a/C0)
n.

Since the set {μ: μ(Gn(N))^c} of Radon measures on Gn(N) is compact for any c>0,
there exist a sequence {/} c Ξ and an ^-dimensional varifold Fo in TV such that
\imi^QOf#v(M)= Vo and lim^ QDfi^v(M)(Gn(N))=b. By TychonofFs theorem (see also
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[1, 2.6(2)]), we have V0(Gn(N)) = b. Thus we have the following:

LEMMA 2.2. Put b = inf{f^v(M)(Gn(N)): fe Ξ}. Then we have b>0. Moreover,
there exist a sequence {/j} c Ξ and an n-dimensional varifold Vo in N such that

(1) l i π w / . , t ; ( M ) = K 0 ,
(2) V0(GJίN)) = limi^J'nttM)(GH(N)) = limi_.aD | | />(M) \\ (N)=\\ Vo \\(N) = b .

LEMMA 2.3. The varifold Vo is stationary.

PROOF. We take a C°°-isotopic deformation h: RxN-+N with h(0,p)=p for
peN, and put ht(p) = h(t,p). Then we have hje ΞforfeΞ and teR. Furthermore, by
\imi_O0fi»v(M)=V0, we have \imi_O0(hJi)ifv(M)=ht9V0. Therefore we have

* ύ lim^ „ {hJdAM){Gn(N)) = ht% V0(Gn(N)).
q.e.d.

By Lemma 2.3 and Allard [1, 4.4, 5.1, 5.5], the varifold Vo has the following
properties (2.6), (2.7) and (2.8):
(2.6) There exists a real number M(^0) such that r'n \\ Vo \\ B(p, r)exp(Mr) is non-

decreasing in 0 < r < s o for eachpeN, where the number s0 is defined in (1.1). In
particular, the «-dimensional density <9"(|| Vo \\,p) exists at each pointpeN, i.e.,

θ"(\\ Ko||,Jp) = lim r^oα(/i)-1r-"|| Vo \\ B{p, r)eR .

There exists a constant Cί such that

for peN.

(2.7) θ"(| | Vo \\,p) is upper semi-continuous for peN. In particular, <9"(|| Vo\\,p)>0
for pespt \\ Vo ||. Moreover, we have

Yo\\(u)= ί
J N

\Wo\\(u)= u(p)Θn(\\Vol p)dJίTnp for

J
(2.8) Vo is an ^-dimensional rectifiable varifold in N.

FoτO<r^s0, μ1/Γ#(K0 Lπ~ιB(p, r)) is an ^-dimensional varifold in Tp(N) such that
the support of \\fi1/r9(V0 Lπ" 1 ^/?, r)) \\ is in ^ ( 0 , 1). We have,

(2.9) IWfiurtiVoLn^BfarftWBJiO, l)-r~n \\ Vo\\ B(p, r)\<o(r), for

For each/?eΛ^, there exist a sequence {tk} of real positive numbers, ίk-^0 (λ;->oo), and
an ^-dimensional varifold C(p) in Tp(N) with the following property:

(1) spt || C(p) 1
(2.10) (2) \im^ODμ1

(3) \\β1M(V0 Lπ'ιB(p9 tk)) \\ dBp(0, l) = 0.
(4) || C(/7) || Bp(09 r) = Θ\\\ Vo \\9p)*(n)r\
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(see Allard [1, 3.4]). Then, there exists a subsequence {fi(k)} of {/} such that

(5) l i m ^ μίM(fHmv(M) L π " 1 ^ , tk)) = C{p\

(6) l i m ^ \\μί/tks(fi{mv(M) L π ' 1 ^ , tk)) \\ Bp(0, l)= || C(p) \\ £ p ( 0 , 1),

since l i m ^ μ 1 / M ( / # ι < M ) Lπ" 1 ^/?, tk)) = filM(V0 L π " 1 ^ , tk)) for each £ (cf. [1, 2.6

(2)]). Furthermore, since Vo is stationary, we have the following:

(2.11) C(p) is stationary. Namely, if h: Rx Tp(N)^Tp(N) is a C°°-isotopic defor-

mation with ht(q)=h(t,q) = q for (t, q)eR x (Tp(N)~ C/p(0, 1)) and h(0,q)=q,

then we have || C(/?) || £p(0, 1)^ || Λί#C(/?) || 5p(0, 1).

By (2.10), (4) and (2.11), C(p) has the properties in [1, 5.2, (2) Theorem]. In particular,

|| C(p) || is a cone with vertex Oe Tp(N) (cf. [1, 5.2, (2) Theorem, (a) and (b)]).

(C) We consider the following condition on fe Ξ:

(2.12) There exists no pair {£>l5 D2} of Jf "-measurable sets in M such that D10D2 =

0,fXD1)=fXD2), and

If/satisfies (2.12), the weight \\f9v(M) \\ off$v(M) coincides with the variation measure

of the ^-dimensional integral current f%M on N, i.e.,

(2.13)

By a slight modification of/ given in Lemma 2.2, we may assume that each/ satisfies

(2.12). Thus, we can replace the sequence {f^v(M)} by the sequence {/#M} of n-

dimensional integral currents as far as the weight \\f$υ(M) || is concerned. But note that

l i m ^ ^ A f = Γ does not imply || T\\(N) = \\ Vo \\(N). For an integral current T on N

(resp. Tp(N))9 put M(T) = \\ T\\(N) (resp. || T\\(Tp(N))).

3. Normalization of area-minimizing sequence. Let {/} c Ξ be the sequence

given in Lemma 2.2. Let s0 be the number given in (1.1). In this section, we fix peN.

LEMMA 3.1. We fix r with 0<r^so. We can modify / to get Ft satisfying the

following conditions'.

(1) Fte Ξ9 || Fi9v(M) \\(N)^\\fχM) \\(N).

(2) Put

Fr1 U(r) = YdkX\ {countable sum),

where F^1 U(r) is the inverse image of U(r) by Ft and each X\ is a connected component of

Fi~ιU(r). Then each Xf is homeomorphic to Dn = RnΠ{x: | J C | < 1 } .

PROOF. Let Ξ' = {f: M-+N:f is a Lipschitz map and homotopic to/ 0 } . Ξ is

dense in Ξ'. Thus it suffices to construct a Lipschitz map Ft from / satisfying the

properties (1) and (2).

We put
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.(3.1) f. -1 U{r) = £ f c Wf (countable sum),

where each W\ is a connected component of / * £/(r). The proof is divided into several
steps.

(1) Suppose that there exist W\ and non-contractible loop y in M such that
y^Wf. Then, /(y) is contractible in N by /(y)<= U(r). This is a contradiction to our
assumption (0.2). Therefore, each W\ is contained in a coordinate neighborhood in M
by our assumption (0.1).

(2) Suppose that there exists W\ which is represented as WΪ = A~B for a
connected open set A and a closed set Bin M such that AZDB. For simplicity, we denote
/ and W\ by/and ^from now on. A is contained in a coordinate neighborhood in M.
Let (a1, , <3W + 1 w) be a polar coordinate of t/(2.s0). We define a map β: N-+B(r) by

for qeN~U(2r)

for ?e£/(r)

a\q\ - - ,an + 1(q); 2r-u(q))] for qe U{2r)~U(r).

F(x)= \

1

and /JKΛ1^)* * * *, an + 1(q):

Then we define F: M^N by

for

for xeM~A.

We have F(A)czB(r). Since no open set in dB(r) is area-minimal in N, we can slightly
modify this F to get F with F(A)aU(r) and || Fί#ι;(M) \\(N)^ | | /^(M) ||(iV).
Furthermore, by «^2, we easily see Fe Ξ. Thus we may assume ππ_1(H/f, *) = {1} in
(3.1). In particular, in case n = 2, we may assume that W\ is homeomorphic to D2.

(3) Suppose that n = 3 and there exists W\ such that πx(W\, *)#{1}. Then we will
construct ^ e S from / in such a way that X\τ>W\^ nγ(X^ *) = {1}, and
||Fi#t7(Af)|j(iV)^||/ifKAf)||(iV).

For brevity, we denote W\ and/ by ^and/from now on. A typical case is shown
in Figure 1:

M 3 N4 /(z-axis)

/(0)

FIGURE Γ
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In Figure 1, WOf ι{p) is a circle in the xj-plane. W is a tubular neighborhood of this

circle. (5, (ι = 1, 2) is a circle in the j>z-plane through the origin and a point of W0f~ί(p).

We consider the following cone Y in R3:

y={(rα,/(2-r)) : - 1 ̂ t^ 1, 0 ^ r ^ 2 , and αe/? 2 with \α\= 1}.

Then, 3y={(>*α, ± ( 2 - r ) ) : 0 ^ r ^ 2 , a n d α e / ? 2 with | α | = l } .

Put yo = {(rα,0): 0 ^ r ^ 2 , a n d α e / ? 2 with | α | = l}.

(2,2)

(2, 2ί)

Image P{Yy
(2, - 2 )

FIGURE 2

Then, by the identification of {(2α, 0): | α | = 1}(c Y) with WΓI/" ! (^) in Figure 1, we can

regard Y to be contained in M, We will show that we can get a desirable F by a

modification o f / o n y ~ 3 y .

We define a map P: Y-+R* by

P[(rα,/(2-r))] = (2-r)(rβ, 1,0-

Then we have />[(2α, 0)] = (0, 0, 0) and P[(0, 20] = (0, 2, 20- Furthermore, P is injective

for rΦl. Therefore,/: Y-+Ndefines G=fP1: P(y)-^^V. Take a C°°-function φ , 0 on

[0, l ] x [ - l , 1] with 0 ^ φ , 0 ^ 1 , v(\,ή=\, φ , ±1) = 1 and t;(0,0)=0. Put

As[(2 - r)(rα, 1, 0] = G[(2 - r)v(s, t)({2 - (2 - r ) φ , t)}α, 1,0].

Then, Λs maps ^ y ) into M and satisfies

*! = <?, A s(P(r))czG(P(y)) for j e [ 0 , l ] ,

As[(2-r)(rβ, 1, ± l)] = G[(2-r)(rβ, 1, ± 1)] for jε[0, 1],

Ao[(2-r)(rα, 1,0)]=/? for re[0, 2] and αe/? 2 with |α\ = 1.

By P[(rα, ± (2 - r))] = (2 - r)(rα, 1, ±1) and P[(rα, 0)] = ( 2 - r)(rα, 1,0), {hs}seI defines a

homotopy map {i/s}se/, i/ s : y->A ,̂ such that Hι(q)=f(q) for g e F , Hs(g)=f(q) for

qeδYand se[0, 1], and H0(q)—p for #e y0. Therefore, we take F=H0, and then Fis a
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desirable map on Y.

(4) In the same way as in (3), for the case n g;4, we can construct F, from/ so that

π/Jr?,*) = { l}O"=l,2, ,/ i-2). q.e.d.

Let {tk} be the sequence of real numbers with the property (2.10). Then, we can

further assume

(3.2) so^tl9

The following lemma will be used in §4.

LEMMA 3.2. There exists a sequence {Fk} c Ξ satisfying the following properties:

(1) {Fk} satisfies Lemma 2.2 (withf replaced by Fk).

(2) \\FkAM)\\ = \\Fk*M\\.

(3) There exist constants C2, C3 and rke(tk/2, tk]for each k so that the following

hold:

(A) M[μlM(FuMLB(rk)MC2 far * = l , 2 , - .

(B) M[dμίίrk,(FuMLB(rk))]^C3 far * = 1 , 2 , .

(C) Put Fk~
1U(rk) = ΣhXk (countable sum), where each Xk is a connected com-

ponent of Fk"
ιU(rk). Then each X\ is homeomorphic to Dn.

REMARK. (1) We will show in §4 that the sum on the right hand side of

Fk~XU(rk) in (3) (C) is essentially finite.

(2) By (3) (C), the rectifiable current μ 1 / r k #(F k #M \-B(rk)) is an integral current for

each k (cf. [3, 4.2.16. (2)]). The sequence {(μ1/rkFk)9Yjhv(eXk

v)}ΐ=1 of ( « - l)-dimensional

integral varifolds in N has a convergent subsequence, because of

(Fk,M LB(rk))]= \\(μιlr/k\ΣfcK^Ϊ)|| Tp(N)

and (3) (B) (see §2 (C)). Furthermore, there exists a sequence {Pk} of integral polyhedral

chains (cf. [3, 4.2.20 and 21]) such that, for ε>0,

N(Pk) S M[dμllrk,(FuM LB(rk))] + ε/k .

Therefore, we approximately replace δμ1/r.k#(Fk$M LB(rk)) by Pk (or p$(Pk), where

p: Tp(N)~{0}-+dB(0, \) is the canonical projection). Then, we may assume, for

each k and A, that the mapping μί!rkFk: dXk^dB(0, 1) is a Lipschitz map Gk:

dDn-+δB(0, 1).

(3) By \^tjrk^2 for λ: = l ,2, ••• in Lemma 3.2 and limk_>ooμ1/ίfc#(Ko L

π~1B(tk)) = C(p) in (2.10), we have also lim k^ 0 O/i 1 / r k #(F 0Lπ~ 15(r f c)) = C(/7). So, taking

a subsequence of {Fk} if necessary, we also have
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in the same way as in (2.10), (5) and (6).

PROOF OF LEMMA 3.2. We already showed (2) in §2, (C). Let {fm} be the
sequence given in (2.10), (5) and (6) for the point p. For brevity, we denote {fi{k)} by
{/J from now on. Since (3) (C) is shown by Lemma 3.1, we have only to fix C2,
C3 and rke(tk/2,ίk] for each k. Since we may assume ||Λ#t;(Λf)|| = ||Λ#Λf||, we
have limk^^M[μ1M(fk,MLB(tk))] = φ)Θn(\\Volp) by (2.10). We take C2 =
*(n)Θn(\\ VOIPH 1. Then we have M[β1M(fuM LB(tk))]^C2 (k= 1, 2, )•

Since M\Jk%M LB(ή] is non-decreasing in t, it is differentiate for Ĵ f1 -almost all t.
Let

Ak = (tk/2, ίJΠ{ί: dλί[/k$M LB(ή]/dί exists} .

We have, for ίe^4k,

(3.3) M{dμm(f*M LB(t))]^dM\μmif*M LB(s))]/ds\s=t,

(3 4 ) d[μm(fk,M LB(t))]/dt= -nΓιM[μm(h*M LB{t))}

+ Γ1dM[μmίfk*M LB(s))]/ds\s=t.

Put

*{fHM LB(t))]-M[μυu*(fk*M LB(u))],

We have

(3.5) lim m

Put ^ = (/k/2,/jΠ{ί:
(1) The case AkΓιBk = 0. Then, δk(ή^O for /Gy4k. By (3.4) and (3.5) there exists

rke(tk/2, tk] such that

(3.6) 2-

-M[μ2M(fHM LB{tJ2))]} + 2-1ntkM\μ1M(fk$M LB(tk))].

By (3.3) and (3.6), we have

Furthermore, by δk(t)^O and (3.5) we have

M[fii/rMk*M LB(rk)M

Therefore, we can take C3 = (n + 2)C2 in this case.
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(2) The case AkCιBkφ0. Put s = supAk0Bk. If seAkf\Bk, then we have

(3.7) M[dμ1/s,(fHM LB{s))]^nM[μιls,{fk,M LB(s))],

by (3.3) and (3.4). By δk(ή^0 for teAk0(s, tk] and (3.5), we have

(3.8) M[fliM*M LB(s))]^M[μ1/tJfk,M LB(tk))].

In this case, we can take rk = s and C3 = nC2.

If s$Ak or tφBk, we take rkeAkf)BkΓ\(s, tk] sufficiently close to s. For this rk, we

can show (3.7) and (3.8) (with s replaced by rk). q.e.d.

Now, we may further assume the following in Lemma 3.2:

(1) l i m ^ J i F ^ ( M ) Lπ-12>(r1)||Λ(r1) = ||Ko L π " 1 ^ ) ! ^ ^ ) .

(2) M ^ M L ^ ^ Q for £=1,2, •••.

(3) Put Fk~
ιU(rι) = ΣhZk (countable sum), where each Z\ is a connected

component of Fk~
ιU{rι). Then each Z\ is homeomorphic to Dn.

The reason is the same as in (2.10), (5) and (6), Lemma 3.2 and the above remark (3).

4. Regularity. In this section, we will prove the following theorems.

THEOREM 1. We have

(1) \\C{p)\\Bpφ, l ) ^ φ ) for pesptllKoll,
(2) jr ι"(sing||C(p)||-55 |,(0,l)) = 0 for /7espt||K0|| and m>n-Ί.

THEOREM 2. We have

^rm(sing||Fo | |) = 0 for

THEOREM 3. Vo is an n-dimensional integral varifold.

We ίix/76spt|| VJ. By (2.7) we have Θn(\\ Vo\\9p)>0. Here we use Lemma 3.2 and

the remark after it. We take an element Xh

k

(k) of {Xh

k} for each k, where {Xk} is as given

in Lemma 3.2, (3) (C). By Lemma 3.2, (3) and θ"(| | Vo\\9p)>0, we may assume that the

sequence

(4.1) {(βυrΛ)AXΐk))}ΐ=i

has a subsequence, which converges to a non-zero varifold. For simplicity, we write the

subsequence in the same notation as in (4.1). Thus, there exists a varifold Y in Tp(N)

such that spt|| Y\\ c£(0, 1) and

(4.2) forLk-.«,(fiiirkFύ

lim^oo \\(μίlrJk)AXh

k

(k))\\m 1)= II ̂ 11 (̂0, 1) .

| |F | | is a cone and Y is stationary under any isotopic deformation h of Tp(N) with

h(t9q) = q for (t,q)eRx(Tp(N)~U(0, 1)) and h(09q) = q, by (2.11).
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Furthermore, by ||K0||(iV) = inf{||/lft;(Aί)||(iV):/e S}, we have:

(4.3) For each k, take a Lipschitz mapping Gk\ Xk

(k)^B(0, 1) such that Gk(q) =

fii/rk

Fk(Φ for qedXh

k

{k) and Gk(Xh

k

ik))c: £/(0, 1). Then, we have

lim infk^J\GkXXh

k^)\\B(0, 1)£ || 7||2?(0,

LEMMA 4.1. We have \\ Y\\Bφ, l ) ^

PROOF. We prove this by induction on n. Let Dk = Rkf){x: | x | < l } . We refor-

mulate the conditions on Y as follows: There exists a sequence {F^}®^,

F(

k

n): Dn^Dn + \ such that the following hold:

(1) F[n) is a Lipschitz map satisfying F{

k

n\dDn)cndDn + ι and F^(Dn)<=Dn + K

(2) (>

(4.4) (3)

(4) || y ( π ) | | is a cone with vertex 0.

(5) For each k, take a Lipschitz mapping Gk: Dn^>Dn + 1 such that Gk{q) =

F(

k

n\q) for ? e3Z)" and Gk(Dn)czDn + 1. Then, we have lim infk^J\Gk*v(Dn)\\Rn + 1

Under this condition (4.4), we must prove || Y{n)\\Rn + ί^<

If n=t 1, then || y ( 1 ) | | is an ^ - m e a s u r e on a line in D2 through 0. Thus, we have the

assertion in this case. We assume that the assertion is true for n^m— 1. Let n = m. We

take a vector a such that αespt | | F ( m ) | | Π {x: | x \ = 1/2}. We defined μr: Rm + 1^Rm + 1 by

μr(x) = r (x-α) . Let ί/(α, r)=Rm + 1 d{x: \x-a\<r}. Applying Lemma 3.2 and the

remark after it (with Fk and M replaced by F{

k

m) and Dm, respectively), we have a

sequence {rk}, rk>0 and r k ^ 0 , so that the following hold:

(1) l i m ^ J μ 1 / r k . ( F ^

(4.5) (2) Let JF
(

fc

m)~1 C/(β, rΛ) = X ^{, where W{ is a connected component of

F{

k

m)~ιU(a, rk). Then each W{ is homeomorphic to Dm.

Thus, in the same way as in the argument before this lemma, we may assume that there

exist a sequence {W$k)} and a varifold £>(#0) satisfying the following:

(3) \imk^JμllrkFr
(4) \imk^J\(μι/rkF[
(5) || D || is a cone with vertex 0.

(6) For each k, take a Lipschitz mapping G k : fr{(ll)-> £>m + 1 such that Gk(q) =

μιirkFT\q) ίorqeδWJ

k

ik) and Gk(WJ

k

(k))<=Dm + 1. Then we have

lim inf^JlGuviiVΪ*l)||Λm + 1 ^ | | D\\Rm + 1 .

Furthermore, we have by (4.4), (4):

(7) || D || is a cylinder with direction aj\a\. (We say that measure μ on Rm+1 is a
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cylinder with direction c if μ(A + tc) = μ(A) for AczRm + 1 and teR.)

Therefore, we may assume that each /z1/rk7
Γ(

k

m): Wj

k

k)^Dm + 1 is also a cylinder map.

Thus, by the induction assumption used in the same way as in [3, Proof of 5.4.15],

we have || D \\Rm + 1 ^α(m). By (2.7) (with Vo replaced by Y(m)), we have

II y(»')||/r + i ^ | | / ) | | / r + 1. q.e.d.

If necessary, we take a subsequence of {Ffc}, and rearrange {Xh

k} for each k. Then

we have the following:

LEMMA 4.2. There exists an integer N(p) with the following properties for some

ε>0:

(1) Fk

ι U(rk) is represented as

where the cardinality of H is N(p),

\\(μιlrkFk)AXΪ)\\B(0,\)^a(n)/2 for heH

and ΣHeH\\(fiυrk

Fk)AXlD\\B(0, \)<φ.

(2) FI1 U{rλ) is represented as

where \\Fk9v(Xh

k)||B(r,)^r?α(«)/2 for heH and £„6f/,||Fk,υ(XJ)||B{rx)<εrl*{n)lk.

Furthermore, there exists an integer N such that N(p)^N for each pespt\\ Vo ||.

PROOF. This lemma follows from (2.6), (2.10), the remark after the proof of

Lemma 3.2, and Lemma 4.1. In particular, if necessary, we replace rx by a sufficiently

smaller number. q.e.d.

We will call ΣheHXh

k (resp. ΣΛ e HZj;) the essential part of Fk

ιU(rk) (resp.

Fk

ιU(rι)). Thus, we have essentially the following conditions:

(1) F^Uir^^^Zi and F,1 U(rk) = ΣkeHXϊ> w h e r e z ^ x l and Z\ and
X\ are homeomorphic to Dn.

(4.6) (2) \imk^Fh9v(ZΪ)=Wh, \imk^Jμί/rkFk)χXh

k)=Yh,

r^^ \\ Wh\\B{rx),

bWBiO, 1)=| | Yh\\B(0, 1).

(3) || Yh \\B(0, l)^α(/ι) for heH.

( 4 ) Σ.e/z l l w h II = II v o " - π " 1 t / i r o i i , ΣπeJ γhW = W C(P) H
LEMMA 4.3. There exists a number Γ(>1) with the following property. If

|| Yh\\B(0, l)<Γα(«), then there exists an open neighborhood U around p such that

spt || Wh || Π U is a C^-hyper surf ace in N.
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Furthermore, in this case we have \\ Yh || = \\R" L t/(0, 1)||, where \\Rn L ί/(0, 1)|| w i*e

5£n-measure on a hyperplane through 0 of Tp(N) restricted to ί/(0, 1).

PROOF. If \\Yh\\B(0, 1)<C<X(Λ), we have || Wh\\U(r)<Cφ)rnexp(Mr) for

0 < r < r l 5 by <9"(|| »"Λ | |,p) = α(w)"1 | | Yh\\B(0, 1) and (2.6). And we have Θn(\\ W% q) ^ 1

for<?espt|| Wh\\ Π £7^) by Lemma 4.1. Furthermore, Wh is stationary. Thus, by Allard's

regularity theorem, there exists a number 7(> 1) with the following property:

If || Yh\\B(0, 1)< Γα(«), there exists an open neighborhood £/ around p such that

spt || W*|| Π U is a C^hypersurface in TV.

The C°°-differentiability of spt|| H^Λ|| Π U follows from Schoen-Simon-Almgren [9,

Lemma 2.3]. Since Yh is a tangent varifold of Wh at /?, | |y h | | = | | / r Lί/(0, l) | | holds

in this case. q.e.d.

By Lemma 4.3 and (2.8), if || Yh\\B(0, 1)< Y<x(n), then there exists a smooth

hypersurface S imbedded in TV such that Wh Lπ'1(U) = v(S). Therefore, ifpe spt|| Vo\\ is

a singular point, there exists Yh in (4.6) such that || YΛ||5(0, 1)^ Yoc(n). The following

lemma can be proved in the same way as Federer [4, Lemma 2]. Therefore, the regularity

around p depends only on one of spt|| Yh\\ ~dB(0, 1).

LEMMA 4.4. IfΘ^lφ1^ Lsing(|| Wh\\~dB(rl)),p]>0, then there exists a sequence

{rk}ΐ=2, which satisfies (4.6) and J^\ύng\\Yh\\ -35(0, l ))>0.

LEMMA 4.5. We have 3tfm(smg\\Yh\\~dB(<d, l)) = 0 for m>n-Ί.

PROOF. Let n = 2. We take a vector αespt | | Yh\\ Π{JC: \χ\= 1/2}. We denote

(μί/rkFk)tV(Xh

k) by F{

k

2\v(D2). Then, in the same way as in the proof of Lemma 4.1, there

exists a sequence {rfc}, rk->0 (&->oo) satisfying (4.5) (with F(

k

m) replaced by F{

k

2)). Thus

spt|| Yh\\ ddB(0, 1/2) is a smooth closed immersed curve in δB(0, 1/2) by Lemma 4.3 [see

also the proof of Lemma 4.1]. Then, by the non-existence theorem of branch points (cf.

[7], [8]) we have || Yh || = || R2 L £7(0, 1) ||. So, we are done in the case n = 2. Let n = 3. Then,

first of all, spt|| Y h\\ CιdB(0, 1/2) is a smooth closed surface immersed in dB(0, 1/2) by the

result for n = 2. Furthermore, spt|| Yh\\ Πδ5(0, 1/2) is totally geodesic by (4.3) and

Simons [10]. Then we have \\Yh\\B(0, l)=kφ) for an integer &>0. Next, from the non-

existence of branch points in the case n = 2 and the simple connectedness of S2, we have

|| Yh\\B(0, l) = α(3). Thus, we have || Yh\\ = ||/?3 !_£/(0, 1)||, and we are done in this case.

By induction on n, we have || Yh\\ =\\Rn L^/(0, 1)|| for n^6 by Simons [10], and

l ) ) = 0 for k>n-l (cf. [4, Proof of Theorem 1]). q.e.d.

We have completed the proofs of Therems 1, 2 and 3.
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