ON SOME ARITHMETIC PROPERTIES OF CERTAIN QUADRATIC FIBRATIONS

Dedicated to Professor Ichiro Satake on his sixtieth birthday

Takashi Ono

(Received January 25, 1988)

Introduction. For a natural number n, consider the following two sets:

$$
\begin{aligned}
& A(n)=\left\{(x, y, t, u) \in Z^{4} ; \text { g.c.d. }(x, y, t, u)=1, x^{2}+y^{2}=t u, t+u=n\right\}, \\
& B(n)=\left\{(x, y, t, u) \in Z^{4} ; \text { g.c.d. }(x, y, t, u)=1, x^{2}+y^{2}=t u=n, t, u \geqq 1\right\} .
\end{aligned}
$$

Denote by $a(n), b(n)$ the cardinality of $A(n), B(n)$, respectively. In this paper the reader will find a proof of the following formulas:

$$
\begin{equation*}
\vartheta_{3}^{4}(\tau)=1+\sum_{n=1}^{\infty} a(n)\left(\vartheta_{3}^{2}(n \tau)-1\right), \quad \text { where } \quad \vartheta_{3}(\tau)=\sum_{k \in \mathbf{Z}} e^{\pi i \tau k^{2}} \tag{0.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{4 \zeta_{\mathbf{Q}^{(i)}}(s)^{2}}{\zeta_{\mathbf{Q}(i)}(2 s)}=\sum_{n=1}^{\infty} \frac{b(n)}{n^{s}}, \quad \text { where } \quad \zeta_{\mathbf{Q}(i)}(s)=\frac{1}{4} \sum_{(a, b) \in \mathbf{Z}^{2}} \frac{1}{\left(a^{2}+b^{2}\right)^{s}},(a, b) \neq(0,0) \tag{0.2}
\end{equation*}
$$

As the reader will also find in this paper, these formulas are special cases of more general formulas ((5.1), (6.7)) and are proved by looking at a quadratic map f whose fibres are circles. We shall arrange the matter so that the final results ((3.7), (4.11)) can be stated at least for any imaginary quadratic field of class number one. This paper has some points in common with my earlier paper (Hopf maps and quadratic forms over \boldsymbol{Z}, Contributions to Algebra, A Collection of Papers dedicated to Ellis Kolchin, Academic Press, (1977), 295-304) but is independent of it logically.

Notation and conventions. The symbols $\boldsymbol{N}, \boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{C}$ denote the set of natural numbers $(0 \notin N)$, integers, rational numbers, real numbers and complex numbers. For a complex number $c \in \boldsymbol{C}, \bar{c}$ is its conjugate, $N c=\bar{c} c=|c|^{2}$ and $T c=\bar{c}+c$. For a commutative associative ring R with unit, we denote by R^{\times}the group of invertible elements of R, by R^{n} the product of n copies of R and by R_{n} the ring of matrices of degree n over R. For $a \in R_{n}, \operatorname{tr} a$ is the trace of a. When $a=\left(a_{i j}\right) \in R_{n}$, we often write a_{i} for $a_{i i}$. For a set $*$, we denote by $[*]$ the cardinality of $*$. Given functions $a, b: \boldsymbol{N} \rightarrow \boldsymbol{C}$, we define functions $a \circ b$ and $a * b$ by $(a \circ b)(n)=\sum_{x+y=n} a(x) b(y)$ (Cauchy product), $(a * b)(n)=$ $\sum_{x y=n} a(x) b(y)$ (Dirichlet product).

1. The map f. Let $X=C^{n}, n \in N$, be the complex vector space of dimension n and $Y=\boldsymbol{C}_{n}$ be the set of complex matrices of degree n. Call f the map $X \rightarrow Y$ defined by

$$
\begin{equation*}
y=f(x)=^{t} \bar{x} x=\left(\bar{x}_{i} x_{j}\right), \quad x=\left(x_{1}, \cdots, x_{n}\right) \in X . \tag{1.1}
\end{equation*}
$$

If we put $e_{k}=(0, \cdots, 1, \cdots, 0)$ where 1 is the k th component, $1 \leqq k \leqq n$, then $E_{k}={ }^{t} e_{k} e_{k}=$ $f\left(e_{k}\right)$. The matrix y is hermitian and $y_{i}=y_{i i} \in \boldsymbol{R}$. Furthermore, $y=\left(y_{i j}\right)$ satisfies the following conditions:

$$
\begin{equation*}
y_{i} \geqq 0, \quad y_{i k} y_{k j}=y_{k} y_{i j}, \quad 1 \leqq i, j, k \leqq n . \tag{1.2}
\end{equation*}
$$

We shall denote by V the set of all hermitian matrices $y \in \boldsymbol{C}_{n}$ satisfying (1.2). Hence, $\operatorname{Im} f \subset V$. We shall use the letter v for matrices in V. For $\alpha \in N, 1 \leqq \alpha \leqq n$, we put

$$
\begin{equation*}
V_{\alpha}=\left\{v \in V ; v_{k}=0,1 \leqq k \leqq \alpha-1, v_{\alpha}>0\right\} . \tag{1.3}
\end{equation*}
$$

For each α, V_{α} is not empty because E_{α} is in it. Since $\left|v_{i j}\right|^{2}=v_{i j} \bar{v}_{i j}=v_{i} v_{j}$ by (1.2), there is an α such that $v_{\alpha}>0$ when $v \neq 0$. Therefore, we get the disjoint union of non-empty sets:

$$
\begin{equation*}
V=\{0\} \cup V_{1} \cup \cdots \cup V_{n} . \tag{1.4}
\end{equation*}
$$

From (1.2) one sees that

$$
\begin{equation*}
v \in V_{\alpha} \Rightarrow v_{i j}=0 \quad \text { unless } \quad i, j \geqq \alpha . \tag{1.5}
\end{equation*}
$$

For $t \in \boldsymbol{R}, t \geqq 0$, we put

$$
\begin{equation*}
\left.S(t)=\left\{c \in C ;|c|^{2}=t\right\} \quad \text { (circle of radius } t^{1 / 2}\right) \tag{1.6}
\end{equation*}
$$

(1.7) Proposition. Let $v \in V_{\alpha}, 1 \leqq \alpha \leqq n$. There is a bijection

$$
\varphi_{v}: f^{-1}(v) \approx S\left(v_{\alpha}\right)
$$

given by $\varphi_{v}(x)=x_{\alpha}, x=\left(x_{1}, \cdots, x_{n}\right) \in f^{-1}(v)$.
Proof. (i) φ_{v} is well-defined. Since $v=f(x)=^{t} \bar{x} x$, we have $v_{\alpha}=\bar{x}_{\alpha} x_{\alpha}=\left|x_{\alpha}\right|^{2}$, i.e. $x_{\alpha}=$ $\varphi_{v}(x) \in S\left(v_{\alpha}\right)$. (ii) φ_{v} is injective. Since $0=v_{k}=\left|x_{k}\right|^{2}, 1 \leqq k \leqq \alpha-1$, we have $x_{k}=0$ for $k \leqq \alpha-1$. Assume next that $k \geqq \alpha$. Since $v_{\alpha}=\left|x_{\alpha}\right|^{2}$, we have $x_{\alpha} \neq 0$ and so $x_{k}=\bar{x}_{\alpha}^{-1} v_{\alpha k}$ by (1.1). Hence x is completely determined by x_{α}, i.e. φ_{v} is injective. (iii) φ_{v} is surjective. Take any $c \in S\left(v_{\alpha}\right)$. Put $x_{1}=\cdots=x_{\alpha-1}=0, x_{\alpha}=c$ and $x_{k}=\bar{x}_{\alpha}^{-1} v_{\alpha k}$ for $k>\alpha$. We must show that $x \in f^{-1}(v)$, i.e. $v_{i j}=\bar{x}_{i} x_{j}, l \leqq i, j \leqq n$. In view of (1.5), we may assume that $i, j \geqq \alpha$. Then, we have

$$
\bar{x}_{i} x_{j}=\overline{\bar{x}_{\alpha}^{-1} v_{\alpha i}} \bar{x}_{\alpha}^{-1} v_{\alpha j}=\frac{1}{\left|x_{\alpha}\right|^{2}} v_{i \alpha} v_{\alpha j}=\frac{1}{v_{\alpha}} v_{\alpha} v_{i j}=v_{i j}
$$

which proves that φ_{v} is surjective.
q.e.d.
2. The $\operatorname{map} f_{L}$. Let K be an imaginary quadratic field, \mathfrak{o}_{K} be the ring of integers
of K and

$$
\begin{equation*}
L=\mathfrak{o}_{K}{ }^{n} \subset X=C^{n} . \tag{2.1}
\end{equation*}
$$

We shall denote by f_{L} the restriction on L of the map f in (1.1). Clearly, we have $\operatorname{Im} f_{L} \subset V\left(\mathbf{o}_{K}\right)=V \cap\left(\mathbf{o}_{K}\right)_{n}$. For $\alpha, 1 \leqq \alpha \leqq n$, we put

$$
\begin{equation*}
V_{\alpha}\left(\mathfrak{o}_{K}\right)=V_{\alpha} \cap\left(\mathbf{o}_{K}\right)_{n} . \tag{2.2}
\end{equation*}
$$

Since $E_{\alpha} \in V_{\alpha}\left(\mathfrak{o}_{K}\right), V_{\alpha}\left(\mathfrak{o}_{K}\right)$ is still not empty and we get the disjoint union of non-empty sets:

$$
\begin{equation*}
V\left(\mathfrak{o}_{K}\right)=\{0\} \cup V_{1}\left(\mathfrak{o}_{K}\right) \cup \cdots \cup V_{n}\left(\mathfrak{o}_{K}\right) . \tag{2.3}
\end{equation*}
$$

For $t \in \boldsymbol{R}, t \geqq 0$, and a lattice \mathfrak{a} in \boldsymbol{C}, put

$$
\begin{equation*}
S_{\mathbf{a}}(t)=\mathfrak{a} \cap S(t) \tag{2.4}
\end{equation*}
$$

For $v \in V_{\alpha}\left(\mathbf{o}_{K}\right)$, put

$$
\begin{equation*}
\mathfrak{a}_{v}=\left\{c \in \mathfrak{o}_{K} ; c v_{\alpha j} \equiv 0\left(\bmod v_{\alpha}\right), \alpha \leqq j \leqq n\right\} . \tag{2.5}
\end{equation*}
$$

Obviously, \mathfrak{a}_{v} is an ideal of $\mathbf{o}_{\mathbf{K}}$.
(2.6) Proposition. Let v be in $V_{\alpha}\left(\mathfrak{o}_{K}\right), 1 \leqq \alpha \leqq n$. Then, the bijection φ in (1.7) induces the bijection

$$
\varphi_{v, L}: f_{L}^{-1}(v) \approx S_{a_{v}}\left(v_{\alpha}\right)
$$

Proof. (i) $\varphi_{v, L}$ is well-defined. In view of (1.7), it is enough to check that $x_{\alpha} \in \mathfrak{a}_{v}$. In fact, multiplying x_{α} on both sides of $\bar{x}_{\alpha} x_{j}=v_{\alpha j}$, we have $x_{\alpha} v_{\alpha j}=\left|x_{\alpha}\right|^{2} x_{j}=v_{\alpha} x_{j} \equiv 0$ $\left(\bmod v_{\alpha}\right)$ which proves our assertion. (ii) $\varphi_{v, L}$ is injective. This is obvious from (ii) of (1.7). (iii) $\varphi_{v, L}$ is surjective. Take any $c \in S_{\mathrm{a}_{v}}\left(v_{\alpha}\right)$ and define $x=\left(x_{1}, \cdots, x_{n}\right)$ as in (iii) of (1.7). It remains to check that $x \in L$, i.e. all $x_{j} \in \mathfrak{o}_{K}$. For $j, 1 \leqq j \leqq \alpha-1$, this is trivial because $x_{j}=0$. For $j=\alpha$, we have $x_{\alpha}=c \in \mathfrak{a}_{v}$. Finally, for $j, j>\alpha$, we have

$$
x_{j}=\bar{x}_{\alpha}^{-1} v_{\alpha j}=\frac{1}{\left|x_{\alpha}\right|^{2}} x_{\alpha} v_{\alpha j}=\frac{1}{v_{\alpha}} x_{\alpha} v_{\alpha j}=\frac{1}{v_{\alpha}} c v_{\alpha j} \in \mathfrak{o}_{K},
$$

which proves that $\varphi_{v, L}$ is surjective.
For $v=\left(v_{i j}\right) \in V\left(\mathfrak{o}_{K}\right)$, we put

$$
\begin{equation*}
n(v)=\text { g.c.d. }\left(v_{i}, T v_{i j}\right) \quad(i \neq j) \tag{2.7}
\end{equation*}
$$

Since v is hermitian, we have $T v_{i j}=v_{i j}+v_{j i}$. For $\alpha, 1 \leqq \alpha \leqq n$, we define

$$
\begin{align*}
& V_{\alpha}^{*}\left(\mathfrak{o}_{K}\right)=\left\{v \in V_{\alpha}\left(\mathfrak{o}_{K}\right) ; n(v)=1\right\}, \tag{2.8}\\
& V^{*}\left(\mathfrak{o}_{K}\right)=\{0\} \cup V_{1}^{*}\left(\mathfrak{o}_{K}\right) \cup \cdots \cup V_{n}^{*}\left(\mathfrak{o}_{K}\right) . \tag{2.9}
\end{align*}
$$

As E_{α} is still in $V_{\alpha}^{*}\left(\mathfrak{o}_{K}\right),(2.9)$ is the disjoint union of non-empty sets.
(2.10) Proposition. For $v \in V_{\alpha}\left(\mathfrak{o}_{K}\right)$ define a matrix v^{*} by $v=n(v) v^{*}$. Then $v^{*} \in V_{\alpha}^{*}\left(\mathfrak{o}_{K}\right)$ and $\mathfrak{a}_{v}=\mathfrak{a}_{v^{*}}$.

Proof. Assume that $v^{*}=\left(v_{i j}^{*}\right)$. Since $v_{i}=n(v) v_{i}^{*}$ and $n(v)$ divides v_{i}, we have $v_{i}^{*} \in \boldsymbol{Z}$. Next, we must verify that $v_{i j}^{*} \in \mathfrak{o}_{K}$ for $i \neq j$, or, equivalently, that $N v_{i j}^{*}$ and $T v_{i j}^{*}$ are in \boldsymbol{Z}. Since $v_{i j} v_{j i}=v_{i} v_{j}$, we have $N v_{i j}^{*}=v_{i j}^{*} v_{j i}^{*}=v_{i}^{*} v_{j}^{*} \in \boldsymbol{Z}$. On the other hand, we have $T v_{i j}^{*}=(1 / n(v)) T v_{i j} \in \boldsymbol{Z}$ and so $v^{*} \in V_{\alpha}^{*}\left(\mathbf{o}_{K}\right)$. The last statement is obvious. q.e.d.

From (2.10), it follows that

$$
\begin{equation*}
S_{\mathrm{a}_{v}}\left(v_{\alpha}\right)=S_{\mathrm{a}_{v^{*}}}\left(n(v) v_{\alpha}^{*}\right), \quad v \in V_{\alpha}\left(\mathbf{o}_{K}\right) . \tag{2.11}
\end{equation*}
$$

(2.12) PROPOSITION. If $v=\left(v_{i j}\right) \in V_{\alpha}^{*}\left(\mathbf{o}_{K}\right)$, then $N a_{v}=v_{\alpha}{ }^{* *}$

Proof. (i) $N \mathfrak{a}_{v}$ divides v_{α}. Clearly $v_{\alpha} \in \mathfrak{a}_{v}$ and so $v_{\alpha} \in \overline{\mathfrak{a}}_{v}$. Since $v_{i \alpha} v_{\alpha j}=v_{\alpha} v_{i j} \equiv 0$ $\left(\bmod v_{\alpha}\right)$, we have $v_{i \alpha} \in \mathfrak{a}_{v}$ and hence $v_{\alpha i}=\bar{v}_{i \alpha} \in \overline{\mathfrak{a}}_{v}$. Therefore $\left(N \mathfrak{a}_{v}\right)=\mathfrak{a}_{v} \bar{a}_{v}$ contains $v_{\alpha}^{2}, v_{\alpha} v_{\alpha i}$, $v_{\alpha} v_{i \alpha}, v_{i \alpha} v_{\alpha i}=v_{i} v_{\alpha}$ and $v_{i \alpha} v_{\alpha j}=v_{\alpha} v_{i j}, 1 \leqq i, j \leqq n$. We have $\left(N a_{v}\right) \supset v_{\alpha}\left(v_{i}, v_{i j}+v_{j i}\right) \ni v_{\alpha}$ because $n(v)=$ g.c.d. $\left(v_{i}, T v_{i j}\right)=1$, which shows that $N a_{v}$ divides $v_{\alpha{ }^{\prime}}$. (ii) v_{α} divides $N a_{v}$. Let c be any number in \mathfrak{a}_{v}. Since $n(v)=1$ by the assumption, there are $a_{k}, b_{i j}$ in \boldsymbol{Z} such that

$$
\begin{equation*}
1=\sum_{k=\alpha}^{n} a_{k} v_{k}+\sum_{\alpha \leqq i<j \leqq n} b_{i j} T v_{i j} . \tag{2.13}
\end{equation*}
$$

Multiplying $N c=|c|^{2}$ on both sides of (2.13), we get

$$
\begin{equation*}
|c|^{2}=a_{\alpha} v_{\alpha}|c|^{2}+\sum_{k=\alpha+1}^{n} a_{k} v_{k}|c|^{2}+\sum_{\alpha<j \leqq n} b_{\alpha j} T v_{\alpha j}|c|^{2}+\sum_{\alpha<i<j \leqq n} b_{i j} T v_{i j}|c|^{2} . \tag{2.14}
\end{equation*}
$$

We shall show that all four terms in (2.14) are divisible by v_{α}. There is no problem on the first term because v_{α} is already there. Next, since $c \in \mathfrak{a}_{v}$, we have

$$
\begin{equation*}
c v_{\alpha j}=v_{\alpha} d_{j}, \quad d_{j} \in \mathfrak{o}_{K} . \tag{2.15}
\end{equation*}
$$

Taking the norm of both sides of (2.15), we get

$$
\begin{aligned}
& |c|^{2}\left|v_{\alpha j}\right|^{2}=v_{\alpha}^{2}\left|d_{j}\right|^{2} \\
& |c|^{2} v_{\alpha j} \| v_{j x}=|c|^{2} v_{\alpha} v_{j}
\end{aligned}
$$

and so $|c|^{2} v_{j}=v_{\alpha}\left|d_{j}\right|^{2} \equiv 0\left(\bmod v_{\alpha}\right)$, which shows that the second term is divisible by v_{α}. As for the third term, because of (2.15) we have $|c|^{2} v_{\alpha j}=v_{\alpha} \bar{c} d_{j}$. Taking the trace of this, we get $|c|^{2} T v_{\alpha j}=v_{\alpha} T\left(\bar{c} d_{j}\right) \equiv 0\left(\bmod v_{\alpha}\right)$, which shows that the third term is divisible by v_{α}. Finally, again by (2.15), we have

$$
|c|^{2} v_{\alpha i}=v_{\alpha} \bar{c} d_{i} \quad \text { and } \quad|c|^{2} v_{j \alpha}=v_{\alpha} c \bar{c}_{j} .
$$

[^0]Multiplying these equalities, we get $|c|^{2} v_{\alpha i} v_{j \alpha}=v_{\alpha}^{2}|c|^{2} d_{i} \bar{d}_{j}$. Taking the trace of the last equality, we have

$$
\begin{aligned}
& |c|^{2}\left(v_{\alpha i} v_{j \alpha}+v_{i \alpha} v_{\alpha j}\right)=v_{\alpha}^{2} T\left(d_{i} \bar{d}_{j}\right) \\
& |c|^{2}\left(v_{\alpha} v_{j i}+v_{\alpha} v_{i j}\right) .
\end{aligned}
$$

Hence we have $|c|^{2} T v_{i j}=v_{\alpha} T\left(d_{i} \bar{d}_{j}\right) \equiv 0\left(\bmod v_{\alpha}\right)$, which shows that the fourth term is divisible by v_{α}. The above argument implies that v_{α} divides $|c|^{2}=N c$ for all $c \in \mathfrak{a}_{v}$. Now, since \mathfrak{a}_{v} is the g.c.d. of (c) 's, $c \in \mathfrak{a}_{v}, N \mathfrak{a}_{v}$ is the g.c.d. of $(N c)$'s, $c \in \mathfrak{a}_{v}$, and so v_{α} must divide $N a_{v}$.
3. Case $h_{K}=1$. From now on, we assume that the class number h_{K} of the imaginary quadratic field K is one. As is well known, such a field is one of the nine fields $\boldsymbol{Q}(\sqrt{m})$ with $-m=1,2,3,7,11,19,43,67,163$.

As in $\S 2$, take a matrix $v=\left(v_{i j}\right) \in V_{\alpha}\left(\mathfrak{o}_{K}\right)$. By (2.10), one can write

$$
\begin{equation*}
v=n(v) v^{*}, \quad v^{*} \in V_{\alpha}^{*}\left(\mathbf{o}_{K}\right) . \tag{3.1}
\end{equation*}
$$

Since $h_{K}=1$, we have

$$
\begin{equation*}
\mathfrak{a}_{v}=\mathfrak{a}_{V^{*}}=(a), \quad a \in \mathfrak{o}_{K} . \tag{3.2}
\end{equation*}
$$

From (2.12), it follows that

$$
\begin{equation*}
|a|^{2}=N a=N a_{v^{*}}=v_{\alpha}^{*} . \tag{3.3}
\end{equation*}
$$

Since we have

$$
c \in \mathfrak{a}_{v^{*}} \Leftrightarrow c=a b, \quad b \in \mathfrak{o}_{K},
$$

we obtain the following chain of equivalences:

$$
\begin{align*}
c \in S_{\mathbf{a}_{v^{*}}}\left(n(v) v_{\alpha}^{*}\right) & \Leftrightarrow c \in \mathfrak{a}_{v^{*}} \text { and }|c|^{2}=n(v) v_{\alpha}^{*} \tag{3.4}\\
& \Leftrightarrow b=a^{-1} c \in \mathbf{o}_{K} \text { and }|a|^{2}|b|^{2}=n(v) v_{\alpha}^{*} \\
& \Leftrightarrow b \in \mathfrak{o}_{K} \text { and }|b|^{2}=n(v)(\text { by }(3.3)) \\
& \Leftrightarrow b \in S_{\mathbf{o}_{K}}(n(v)) .
\end{align*}
$$

By (2.6), (2.11), (3.4), we get the equalities of cardinalities:

$$
\begin{equation*}
\left[f_{L}^{-1}(v)\right]=\left[S_{\mathbf{a}_{v}}\left(v_{\alpha}\right)\right]=\left[S_{\mathbf{a}_{v^{*}}}\left(n(v) v_{\alpha}^{*}\right)\right]=\left[S_{\mathbf{o}_{K}}(n(v))\right] . \tag{3.5}
\end{equation*}
$$

For an integer $t \geqq 1$, we denote by $r_{K}(t)$ the number of $a \in \mathbf{o}_{K}$ such that $N a=t$. Hence we have

$$
\begin{equation*}
r_{K}(t)=\left[S_{\mathbf{o}_{\mathbf{K}}}(t)\right]=\left[\mathbf{o}_{K}^{\times}\right]\left(1 * \chi_{K}\right)(t) \tag{3.6}
\end{equation*}
$$

where χ_{K} is the Kronecker character belonging to K.

To sum up, we proved the following:
(3.7) THEOREM. Let K be an imaginary quadratic field of class number one. Let f_{L} be the map from $L=\mathbf{o}_{K}{ }^{n}$ to $\left(\mathfrak{o}_{K}\right)_{n}$ defined by $f_{L}(x)={ }^{t} \bar{x} x$. Let $V\left(\mathfrak{o}_{K}\right)$ be the set of all hermitian matrices $v=\left(v_{i j}\right) \in\left(\mathbf{o}_{K}\right)_{n}$ such that $v_{i}=v_{i i} \geqq 0, v_{i k} v_{k j}=v_{k} v_{i j}, 1 \leqq i, j, k \leqq n$, and let $V_{\alpha}\left(\mathbf{o}_{K}\right)$ be the subset of $V\left(\mathrm{o}_{K}\right)$ consisting of v 's such that $v_{k}=0,1 \leqq k \leqq \alpha-1$ and $v_{\alpha}>0$. Then f_{L} maps L into $V\left(\mathfrak{o}_{K}\right)=\{0\} \cup V_{1}\left(\mathfrak{o}_{K}\right) \cup \cdots \cup V_{n}\left(\mathfrak{o}_{K}\right)$, where the latter is the disjoint union of nonempty sets. Furthermore, for each $v \in V_{\alpha}\left(\mathbf{0}_{K}\right)$, the cardinality of the fibre $f_{L}^{-1}(v)$ is equal to $r_{K}(n(v))$ where $n(v)=$ g.c.d. $\left(v_{i}, T v_{i j}\right)$ and $r_{K}(t)$ is the number of $a \in \mathfrak{o}_{K}$ such that $N a=|a|^{2}=t$.
4. Use of the series ψ_{K}. Let K be, as in $\S 3$, an imaginary quadratic field of class number one. Consider the formal power series in variable q :

$$
\begin{equation*}
\psi_{\mathbf{K}}(q)=\sum_{c \in \boldsymbol{o}_{\mathbf{K}}} q^{|c|^{2}} \tag{4.1}
\end{equation*}
$$

Since $\left|x_{i}\right|^{2}=v_{i}$ when $f(x)=v$, we have, by (3.7), (2.10),

$$
\begin{align*}
\psi_{K}(q)^{n} & =\sum_{x \in L} q^{\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}}=\sum_{v \in V\left(\mathbf{o}_{K}\right)}\left[f_{L}^{-1}(v)\right] q^{\operatorname{trv}}=1+\sum_{\alpha=1}^{n} \sum_{v \in V_{\alpha}\left(0_{K}\right)} r_{K}(n(v)) q^{\operatorname{tr} v} \tag{4.2}\\
& =1+\sum_{\alpha=1}^{n} \sum_{m=1}^{\infty} r_{K}(m) \sum_{\substack{v \in V_{\alpha}\left(\mathcal{O}_{k}\right) \\
n(v)=m}} q^{\operatorname{tr} v}=1+\sum_{\alpha=1}^{n} \sum_{m=1}^{\infty} r_{K}(m) \sum_{v^{*} \in V_{\alpha}^{*}\left(\mathbf{o}_{K}\right)} q^{m\left(\operatorname{tr} v^{*}\right)}
\end{align*}
$$

Now, for $t \in N$, consider the set

$$
\begin{equation*}
V_{\alpha, t}^{*}\left(\mathfrak{o}_{K}\right)=\left\{v \in V_{\alpha}^{*}\left(\mathfrak{o}_{K}\right) ; \operatorname{tr} v=t\right\} . \tag{4.3}
\end{equation*}
$$

If we put

$$
\begin{equation*}
a_{\alpha}(t)=\left[V_{\alpha, t}^{*}\left(\mathrm{o}_{K}\right)\right], \tag{4.4}
\end{equation*}
$$

we get from (4.2) that

$$
\begin{equation*}
\psi_{K}(q)^{n}=1+\sum_{\alpha=1}^{n} \sum_{m=1}^{\infty} r_{K}(m) \sum_{t=1}^{\infty} a_{\alpha}(t) q^{m t}=1+\sum_{\alpha=1}^{n} \sum_{t=1}^{\infty} a_{\alpha}(t) \sum_{m=1}^{\infty} r_{K}(m) q^{m t} . \tag{4.5}
\end{equation*}
$$

Since $\psi_{K}(q)=\sum_{c \in \mathcal{O}_{K}} q^{|c|^{2}}=\sum_{v=0}^{\infty} r_{K}(v) q^{v}$, we have, by (4.5),

$$
\begin{equation*}
\psi_{K}(q)^{n}=\sum_{v=0}^{\infty} \overbrace{\left(r_{K} \circ \cdots \circ r_{K}\right)}^{n \text {-times }}(v) q^{v}=1+\sum_{\alpha=1}^{n} \sum_{t=1}^{\infty} a_{\alpha}(t)\left(\psi_{K}\left(q^{t}\right)-1\right) . \tag{4.6}
\end{equation*}
$$

If we put

$$
\begin{equation*}
a(t)=\sum_{\alpha=1}^{n} a_{\alpha}(t) \tag{4.7}
\end{equation*}
$$

then, (4.6) implies that

$$
\begin{equation*}
\psi_{K}(q)^{n}=1+\sum_{t=1}^{\infty} a(t)\left(\psi_{K}\left(q^{t}\right)-1\right)^{\ddagger)} \tag{4.8}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{t=1}^{\infty} a_{\alpha}(t) \sum_{m=1}^{\infty} r_{K}(m) q^{m t}=\sum_{v=1}^{\infty}\left(a_{\alpha} * r_{K}\right)(v) q^{v} \tag{4.9}
\end{equation*}
$$

and so, by (4.7), (4.8), (4.9), we have

$$
\begin{equation*}
\sum_{v=1}^{\infty} \overbrace{\left(r_{K} \circ \cdots \circ r_{K}\right)}^{n \text {-times }}(v) q^{v}=\sum_{v=1}^{\infty}\left(a * r_{K}\right)(v) q^{v}, \tag{4.10}
\end{equation*}
$$

where $a(t)$ is the cardinality of the set

$$
V_{t}^{*}\left(\mathfrak{o}_{K}\right)=\left\{v \in V\left(\mathfrak{o}_{K}\right) ; n(v)=1, \operatorname{tr} v=t\right\} .
$$

To sum up, we have proved the following:
(4.11) THEOREM. Let K be an imaginary quadratic field of class number one and $V\left(\mathbf{o}_{K}\right)$ be the set of all hermitian matrices $v=\left(v_{i j}\right)$ such that $v_{i} \geqq 0$ and $v_{i k} v_{k j}=v_{k} v_{i j}, 1 \leqq$ $i, j, k \leqq n$. Then the cardinality $a(t)$ of the set $V_{t}^{*}\left(\mathfrak{o}_{K}\right)=\left\{v \in V\left(\mathfrak{o}_{K}\right) ; n(v)=1, \operatorname{tr} v=t\right\}, t \in \boldsymbol{N}$, satisfies the relation

$$
\begin{equation*}
\overbrace{r_{K} \circ \cdots \circ r_{K}}^{n \text {-times }}=a * r_{K} . \tag{4.12}
\end{equation*}
$$

5. The cse $K=\boldsymbol{Q}(i)$. In this case, $\mathbf{o}_{K}=\boldsymbol{Z}[i]$ and, for $t \in \boldsymbol{N}, a(t)$ is the cardinality of hermitian matrices $v=\left(v_{i j}\right) \in \boldsymbol{Z}[i]_{n}$ such that $v_{i} \geqq 0, v_{i k} v_{k j}=v_{k} v_{i j}, n(v)=1$ and $\operatorname{tr} v=t$. Let $q=e^{\pi i \tau}, \tau \in \boldsymbol{C}, \operatorname{Im} \tau>0$. Then, we have

$$
\psi_{\mathbf{K}}(q)=\sum_{c \in \mathbf{o}_{\mathbf{K}}} q^{|c|^{2}}=\sum_{(a, b) \in \mathbf{Z}^{2}} q^{a^{2}+b^{2}}=\left(\sum_{a \in \mathbf{Z}} q^{a^{2}}\right)^{2}=\vartheta_{3}^{2}(\tau) \quad \text { where } \quad \vartheta_{3}(\tau)=\sum_{a \in \mathbf{Z}} q^{a^{2}} .
$$

Therefore (4.8) can be written

$$
\begin{equation*}
\vartheta_{3}^{2 n}(\tau)=1+\sum_{t=1}^{\infty} a(t)\left(\vartheta_{3}^{2}(t \tau)-1\right) \tag{5.1}
\end{equation*}
$$

or, by the footnote \#),

$$
\begin{equation*}
\vartheta_{3}^{2 n}(\tau)-n \vartheta_{3}^{2}(\tau)+(n-1)=\sum_{t=2}^{\infty} a(t)\left(\vartheta_{3}^{2}(t \tau)-1\right) . \tag{5.2}
\end{equation*}
$$

If, in particular, $n=2$, then, since g.c.d. $(t, u, 2 x)=1$ if and only if g.c.d. $(x, y, t, u)=1$ for $(x, y, t, u) \in \boldsymbol{Z}^{4}$, (5.1) boils down to the formula (0.1) in the introduction.

[^1]6. $\zeta_{K}(s)$. The field K being as in $\S 3$, we shall consider the subsets $U\left(\mathfrak{o}_{K}\right), U^{*}\left(\mathfrak{o}_{K}\right)$ of $V\left(\mathrm{o}_{K}\right)$ defined by
\[

$$
\begin{align*}
& U\left(\mathfrak{o}_{K}\right)=\left\{u \in V\left(\mathfrak{o}_{K}\right) ; u_{i} \geqq 1,1 \leqq i \leqq n\right\}, \tag{6.1}\\
& U^{*}\left(\mathfrak{o}_{K}\right)=\left\{u \in U\left(\mathfrak{o}_{K}\right) ; n(u)=1\right\} . \tag{6.2}
\end{align*}
$$
\]

Call $b(t), t \in N$, the cardinality of the set

$$
\begin{equation*}
U_{t}^{*}\left(\mathfrak{o}_{K}\right)=\left\{u \in U\left(\mathbf{o}_{K}\right) ; n(v)=1, v_{1} \cdots v_{n}=t\right\} \tag{6.3}
\end{equation*}
$$

Consider the Dedekind zeta function $\zeta_{K}(s)$. Since $h_{K}=1$, we have

$$
\begin{equation*}
\left[\mathbf{0}_{K}^{\times}\right] \zeta_{K}(s)=\sum_{c \neq 0 \in \in_{K}} \frac{1}{(N c)^{s}}=\sum_{v=1}^{\infty} \frac{r_{K}(v)}{v^{s}} . \tag{6.4}
\end{equation*}
$$

By (3.7), (6.1), (6.2), (6.3), (6.4), we have

$$
\begin{align*}
{\left[\mathbf{0}_{K}^{\times}\right]^{n} \zeta_{K}(s)^{n} } & =\sum_{\substack{x \in L \\
\text { a11 } 1 x_{i} \neq 0}} \frac{1}{N\left(x_{1} \cdots x_{n}\right)^{s}}=\sum_{u \in U\left(\mathbf{o}_{K}\right)}\left[f_{L}^{-1}(u)\right] \frac{1}{\left(u_{1} \cdots u_{n}\right)^{s}} \tag{6.5}\\
& =\sum_{u \in U\left(\mathbf{o}_{K}\right)} \frac{r_{K}(n(v))}{\left(u_{1} \cdots u_{n}\right)^{s}}=\sum_{m=1}^{\infty} r_{K}(m) \sum_{\substack{u \in U\left(\mathbf{o}_{K} \\
n(u)=m\right.}} \frac{1}{\left(u_{1} \cdots u_{n}\right)^{s}} \\
& =\sum_{m=1}^{\infty} \frac{r_{K}(m)}{m^{n s}} \sum_{t=1}^{\infty} \sum_{u^{*} \in U_{U}^{*}\left(\mathbf{o}_{K}\right)} \frac{1}{t^{s}}=\sum_{m=1}^{\infty} \frac{r_{K}(m)}{m^{n s}} \sum_{t=1}^{\infty} \frac{b(t)}{t^{s}}=\left[\mathbf{0}_{K}^{\times}\right] \zeta_{K}(n s) \sum_{t=1}^{\infty} \frac{b(t)}{t^{s}} .
\end{align*}
$$

To sum up, we proved the following:
(6.6) THEOREM. Let K be an imaginary quadratic field of class number one and $U\left(\mathfrak{o}_{K}\right)$ be the set of all hermitian matrices $u=\left(u_{i j}\right) \in\left(\mathfrak{o}_{K}\right)_{n}$ such that $u_{i} \geqq 1, u_{i k} u_{k j}=u_{k} u_{i j}$, $1 \leqq i, j, k \leqq n$, and $b(t)$ be the cardinality of the set

$$
U_{t}^{*}\left(\mathbf{o}_{K}\right)=\left\{u \in U\left(\mathbf{o}_{K}\right) ; n(u)=1, u_{1} \cdots u_{n}=t\right\}, \quad t \in N
$$

Then, we have

$$
\begin{equation*}
\left[\mathrm{o}_{K}^{\times}\right]^{n-1} \frac{\zeta_{K}(s)^{n}}{\zeta_{K}(n s)}=\sum_{t=1}^{\infty} \frac{b(t)}{t^{s}} \tag{6.7}
\end{equation*}
$$

If, in particular, $K=\boldsymbol{Q}(i)$ and $n=2$, then (6.7) boils down to the formula (0.2) in the introduction.

Department of Mathematics
The Johns Hopkins University
Baltimore, MD 21218
U.S.A.

[^0]: ${ }^{*)}$ I thank Ming-Guang Leu for his valuable advice on the proof of (2.10).

[^1]: \#) One verifies easily that $a(1)=n$. Hence (4.8) can also be written as $\psi_{K}(q)^{n}-n \psi_{K}(q)$ $+(n-1)=\sum_{t=2}^{\infty} a(t)\left(\psi_{K}\left(q^{t}\right)-1\right)$.

