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Introduction. For a natural number n, consider the following two sets:

A(n) = {(x, y, U u) e Z 4 ; g.c.d.(x, y, t, u) = 1, x2 +y2 = tu9 t + u = n},

B(H) = {(x,y,t,u)eZ4; g.c.d.(x, y91, κ) = 1, χ2+y2 = tu = n, t, w^l} .

Denote by a(n), b(n) the cardinality of A(n), B(ri), respectively. In this paper the reader
will find a proof of the following formulas:

(0.1) V ( τ ) = 1 + Σ ΦXθ 3

2(nτ)-1), where 33(τ)= Σ βπiτfc2,
n = l fceZ

(0.2) f 2 ^ - ! ^ , where ζ β ( i ) ( S )={ Σ - ^ , (a, b) Φ (0, 0).

As the reader will also find in this paper, these formulas are special cases of more general
formulas ((5.1), (6.7)) and are proved by looking at a quadratic map/whose fibres are
circles. We shall arrange the matter so that the final results ((3.7), (4.11)) can be stated at
least for any imaginary quadratic field of class number one. This paper has some points
in common with my earlier paper (Hopf maps and quadratic forms over Z,
Contributions to Algebra, A Collection of Papers dedicated to Ellis Kolchin, Academic
Press, (1977), 295-304) but is independent of it logically.

Notation and conventions. The symbols N, Z, Q, J?, C denote the set of natural
numbers (OφN), integers, rational numbers, real numbers and complex numbers. For a
complex number ceC, c is its conjugate, Nc=cc — \c\2 and Tc — c + c. For a com-
mutative associative ring R with unit, we denote by Rx the group of invertible elements
of R, by Rn the product of n copies of R and by Rn the ring of matrices of degree n over
R. For aeRn, trα is the trace of α. When a = (au)eRn, we often write a{ for aH. For a
set *, we denote by [*] the cardinality of *. Given functions a, b: N-*C, we define func-
tions aob and a*b by {aob){ή)—Yjχ + y^na(x)b(y) (Cauchy product), (a*b)(n) =

(Dirichlet product).
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1. The map /. Let X= C , n e TV, be the complex vector space of dimension n and

Y = Cn be the set of complex matrices of degree n. Call/the map X-+ Y defined by

(1.1) y=f(χ) = tχx = (xixj), * = (*!, --9xn)eX.

If we put ek = (0, , 1, , 0) where 1 is the k th component, 1 S k ̂  n, then Ek = ' ( % =

f(ek). The matrix >> is hermitian and yi=yiieR. Furthermore, y = (yij) satisfies the

following conditions:

(1.2) J^O, yikykj=ykyij, iSiJΛ^n.

We shall denote by V the set of all hermitian matrices yeCn satisfying (1.2). Hence,

Im/c: V. We shall use the letter v for matrices in V. For αeiV, 1 ̂ α^w, we put

(1.3) Va = {veV; vk = 0, lgA g α - 1 , va>0} .

For each α, Kα is not empty because Ea is in it. Since It^l2 =vijvij = viυj by (1.2), there is

an α such that ι^α>0 when i /O. Therefore, we get the disjoint union of non-empty sets:

(1.4) v={0}[)V1[)- . [jVn.

From (1.2) one sees that

(1.5) veVa=>vij = 0 unless /,7'^α.

For teR, /^0, we put

(1.6) S(ή = {ceC; \c\2 = t} (circle of radius tί/2).

(1.7) PROPOSITION. Let ve VΛ, 1 ̂ α ^ « . There is a bijection

given by φv(χ) = xΛ, x = (χu- -, xn)ef~\v).

PROOF, (i) φv is well-defined. Since v =f(x) ='xx, we have vΛ =xΛxa = |xα|2, i.e. xα =

φυ(x)eS(va). (ii) φv is injective. Since 0 = uk = |;ck |
2, 1^/rgα— 1, we have xk = 0 for

kSu— 1. Assume next that &^α. Since ι̂ α = |xα|2, we have x α ^0 and so Jck=jc~1ι?αk by

(1.1). Hence x is completely determined by xα, i.e. φv is injective. (iii) φv is surjective.

Take any ceS(va). Put Xj= = x α _ 1 = 0 , xα = c and xfc=Jc~1ι;αk for kxx. We must

show that xef'^v), i.e. vij=xixp l^ij^n. In view of (1.5), we may assume that 1,7'̂ α.

Then, we have

1 1
y X ViX Vj — -

which proves that φυ is surjective. q.e.d.

2. The map/L. Let Â  be an imaginary quadratic field, oκ be the ring of integers
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of K and

(2.1) L = oκ

n^X=Cn.

We shall denote by fL the restriction on L of the map / in (1.1). Clearly, we have

lmfLaV(oκ) = V0(oκ)n. For α, lgα^π, we put

(2.2) Va(Oκ)=VM°κ)n-

Since EΛe Va(oκ), ^(o^) is still not empty and we get the disjoint union of non-empty

sets:

(2.3) ^(θχ) = {0}UF1(ox)U UK(,(oJf).

For teR, ί^O, and a lattice α in C, put

(2.4) SQ(ή

For veVa(oκ), put

(2.5) α, = {ceoκ; C ^ Ξ

Obviously, αy is an ideal of oκ.

(2.6) PROPOSITION. Lei ϋ &e in Va(oκ), l ^ α ^ r t . ΓA «̂, ^ bijection φ in (1.7)

induces the bijection

PROOF, (i) φv L is well-defined. In view of (1.7), it is enough to check that xΛeav.

In fact, multiplying xα on both sides of xaXj = vap we have xavaj = \xa\
2Xj = vaXj = 0

(modt^) which proves our assertion, (ii) φv L is injective. This is obvious from (ii) of

(1.7). (iii) φvL is surjective. Take any ceSQv(va) and define x = (xu , xn) as in (iii) of

(1.7). It remains to check that xeL, i.e. all Xj£θκ. For7, 1 ̂ 7'^α— 1, this is trivial be-

cause -X/ = 0. Fory=α, we have xa = ceav. Finally, for 7,7>α, we have

1 1 1
cvaj

which proves that φv L is surjective. q.e.d.

For v = (vij)eV(oκ), we put

(2.7) φ) = g.c.d.(υi9Tυij) (iΦj).

Since 1? is hermitian, we have Tvij=vij + vji. For α, 1 ̂ α ^ « , we define

(2.8) V*(oκ) = {vs VΛ(oκ); n(v)=\} ,

(2.9) V*(oκ) = {0} U Kf (0*) U U Vϊ(oκ).
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As Ea is still in K*(oκ), (2.9) is the disjoint union of non-empty sets.

(2.10) PROPOSITION. For veVa(oκ) define a matrix v* by v=n(v)v*. Then

v*eV%(oκ) and av = av*.

PROOF. Assume that v* = (v?j). Since Vi = n(v)vf and n(v) divides vi9 we have

vfeZ. Next, we must verify that vfjEoK for iΦj, or, equivalently, that Nvfj and Tvfj are

in Z. Since vijvji = vivp we have Nvfj = vfjvJi = vfvfeZ. On the other hand, we have

Tvfj=(\/n(v))TvijeZ and so v*e V*(oκ). The last statement is obvious. q.e.d.

From (2.10), it follows that

(2 11) Sav(vJ = 5 β > ( φ ) , υe Va(oκ).

(2.12) PROPOSITION. Ifv = (v^ e V*(oκ\ then Nav=va.*
]

PROOF, (i) Nav divides va. Clearly ^ e o , and so vaeάv. Since viΛυaj = vavij = 0

(mod va), we have viΛeav and hence vΛi = ϋiaeav. Therefore (Nav) = avάv contains v\, v^v^

Wiv vi*vai = ViVa and viavΛJ = vavip l^ij^n. We have (NaΌ)=>va(vi9 V^ + V^BV,, because

n(v) =g.c.d.(ι;ι, Tvij)= 1, which shows that Nav divides va. (ii) va divides Nav. Let c be any

number in av. Since n(v) = 1 by the assumption, there are ak, bu in Z such that

(2.13) 1 = Σ > Λ + Σ bijTυy.

Multiplying Λ^c=|c|2 on both sides of (2.13), we get

(2.14) \c\2 = aaυa\c\2+ Σ "kVk\c\2+ Σ ^ ^ α j | c | 2 + Σ ^jTυ^M2.
k=α+l α<j^π a<i<j^n

We shall show that all four terms in (2.14) are divisible by va. There is no problem on the

first term because va is already there. Next, since c e av, we have

(2.15) cvaj = vadj, djEOK.

Taking the norm of both sides of (2.15), we get

\c\2\v .\2 = v2\d \2

and so | c | 2 ^ = uα|rf/|2 = 0 (mod va), which shows that the second term is divisible by va. As

for the third term, because of (2.15) we have \c\2υaj = v(χcdj. Taking the trace of this, we

get \c\2Tvaj = vaT(cdj) = 0 (modi J , which shows that the third term is divisible by vΛ.

Finally, again by (2.15), we have

\c\2vai = vacdi and \c\2vj(X = vΛcdj.

I thank Ming-Guang Leu for his valuable advice on the proof of (2.10).
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Multiplying these equalities, we get \c\2vaivjoι = vl\c\2didj. Taking the trace of the last

equality, we have

Hence we have \c\2Tvij=vaT(didj) = 0 (modi J , which shows that the fourth term is

divisible by va. The above argument implies that va divides \c\2=Nc for all ceav. Now,

since av is the g.c.d. of (c)'s, ceav, Nav is the g.c.d. of (TVc)'s, ceav, and so υΛ must divide

Nav. q.e.d.

3. C a s e Λ x = l . From now on, we assume that the class number hκ of the

imaginary quadratic field K is one. As is well known, such a field is one of the nine fields

QQΊn ) with -m = h 2, 3, 7, 11, 19, 43, 67, 163.

As in §2, take a matrix v = (vij)e Va(oκ). By (2.10), one can write

(3.1) v = n(v)v*, V*EV*(OK).

Since hκ=l, we have

(3.2) av = av* = (a), aeoκ.

From (2.12), it follows that

(3.3) \a\2 = Na = N a v , = v*.

Since we have

c G av* o c = ab , b e oκ ,

we obtain the following chain of equivalences:

(3.4) ceSavXn(v)v*)oceav, and \c\2 = n(v)v%

ob = a~ιceoκ and \a\2\b\2 = n(v)v*

obeoκ and \b\2 = n(v) (by (3.3))

obeS0κ(n(v)).

By (2.6), (2.11), (3.4), we get the equalities of cardinalities:

(3.5) [fl\v)\ = [SJvJ] = [S β >(φ*)] = [SOK(n(v))]

For an integer t^ 1, we denote by rκ(t) the number of aeoκ such that Na = t. Hence we

have

(3.6) rκ(t) = [S0κ(t)] = [o*κ](l

where χκ is the Kronecker character belonging to K.
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To sum up, we proved the following:

(3.7) THEOREM. Let Kbe an imaginary quadratic field of class number one. LetfL

be the map from L = oκ

n to (oκ)n defined byfL{x) = ιxx. Let V(oκ) be the set of all hermitian

matrices v=(vij)e(oκ)n such that ι;f = ι;fί^0, vikvkj = vkvip 1 ̂ ij, kf^n, and let Va{o^) be

the subset of V(oκ) consisting ofv's such that vk = 0, l^k^oc— 1 and r α > 0 . Then fL maps

L into K(θκ) = {0}U ^ ( o ^ U U Vn(oκ), where the latter is the disjoint union of non-

empty sets. Furthermore, for each ve Va(oκ), the cardinality of the fibre f^ι (v) is equal to

rκ(n(v)) where n(v)=g.c.d.(vi, Tvu) andrκ(t) is the number of aeoκ such that Na = \a\2 = t.

4. Use of the series ψκ. Let K be, as in § 3, an imaginary quadratic field of class

number one. Consider the formal power series in variable q:

(4.1) Φκ(q)= Σ <?|c|2

c e o κ

Since |jc£|
2 = î i when f(x) = v, we have, by (3.7), (2.10),

(4.2) W = Σ ί N 2 + " " 1 + W 2 = Σ [ / L ^ ^ ^ I + Σ Σ rκ(n(vWrv

xeL veV(oκ) α = 1 ye K α (o κ )

" °° π oo

= 1 + Σ Σrκ(m) Σ 4irV = l+Σ Σ rκ(m) Σ 9 m ( t r O

α = l m = l veVioκ) α = l m = l v*eVl(oκ)
nyv) — m

Now, for t e N, consider the set

(4.3) V*t(oκ) = {ve Fα*(oκ); tvv = t} .

If we put

(4.4) aa(t) = [VUθκ)],

we get from (4.2) that

n oo oo n oo oo

(4.5) φκ(q)n=l+ Σ Σ rκ{m) Σ aMqM = 1 + Σ Σ ««W Σ rκ(m)q"" .
α = i m = i ί = i α = l t= 1 m = l

Since Φκ(q) = Σceoκ

ίlM2 = Σ7=orκ(v)q\ we have, by (4.5),
n-times n ^

(4.6) Ψκ(q)"= Σ (rκo - o r κ W = 1 + Σ Σ OMΦEUQ')- D
v = 0 « = 1 ί = 1

If we put

(4.7) a(ί)=Σ
α = l

then, (4.6) implies that
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(4.8)

On the other hand, we have

00

(4.9) Σ aJίt) Σ rκ{m)q""= Σ (««* rjytf,
ί = l m = l v = 1

and so, by (4.7), (4.8), (4.9), we have
n-times

00 00

(4.10) Σ(rκ° °'κKW=Σ (<**'*>
v = 1 v = 1

where a(t) is the cardinality of the set

To sum up, we have proved the following:

(4.11) THEOREM. Let K be an imaginary quadratic field of class number one and

V(oκ) be the set of all hermitian matrices v = (vij) such that v^O and vikvkj = vkVip 1 ̂

i,j, k^n. Then the cardinality a(t) of the set V?(oκ) = {ve V(oκ); n(v)=\, trι;=/}, teN,

satisfies the relation
H-times

(4.12) >*° :T"

5. The cse K=Q(i). In this case, oκ = Z[i] and, for teN, a(t) is the cardinality

of hermitian matrices v = (v^) e Z[i]n such that vt ̂  0, vikvkj = vkvij9 n(v) = 1 and iτv = t. Let

q = eπι\ τeC, I m τ > 0 . Then, we have

<M*)= Σ « | c | 2 = Σ 9β 2 + f c 2 = f Σ 9 β 2 T = θ3

2(τ) where 93(τ)= £ q"2.
ceOκ (a,b)eZ2 \aeZ / fleZ

Therefore (4.8) can be written

(5.1) 93

2n(τ)=l+Σa{tW3

2(tτ)-l)

or, by the footnote #),

(5.2) V(τ)-nS 3

2 (τ) + ( n - l ) = Σ a(tX93

2(tτ)-l).
ί = 2

If, in particular, n = 2, then, since g.c.d.(ί, w, 2x)= 1 if and only if g.c.d.(x, y, t,u)=\

for (x, y, u w)eZ 4 , (5.1) boils down to the formula (0.1) in the introduction.

Λ) One verifies easily that a(\) = n. Hence (4.8) can also be written as
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6. ζκ(s). The field K being as in §3, we shall consider the subsets U(oκ), U*(oκ)

of V(oκ) defined by

(6.1)

(6.2) U*(oκ) = {ueU(oκ);n(u)=\}.

Call b(t), teN, the cardinality of the set

(6.3) U*(oκ) = {ueU(oκ); φ ) = l , vx • • vn = t} .

Consider the Dedekind zeta function ζκ(s). Since hκ=\, we have

(6-4) [
c^0eO

By (3.7), (6.1), (6.2), (6.3), (6.4), we have

(6.5) M ] W = Σ N ( χ ! . . χ y = Σ C / ^ M ] — ^ γ
xeL iyi\Xί Xn) u6[/( 0 κ) \U1 Un)

l l ^ O

= Σ r^% = Σ
U ' ' ' U ) 1

Un) m= 1 ueU(oκ)\Ul
n(u) = m

Li ns Σ ΣJ ts — z_j ns Σ ~r — [°κ]ζκ(ns) Σ ~ Γ
m = l m t=\ u*eU*(oκ)

 l

 m= \ ™ t = 1 t t = 1 t

To sum up, we proved the following:

(6.6) THEOREM. Let K be an imaginary quadratic field of class number one and

U(oκ) be the set of all hermitian matrices u=(uij)e(oκ)n such that w,^l, uikukj = ukuφ

\t^Lj\ k = n> and b(t) be the cardinality of the set

U*(oκ) = {ue U(oκ); n{u)=\, «, • un = t), teN.

Then, we have

If, in particular, K= Q(i) and n = 2, then (6.7) boils down to the formula (0.2) in the

introduction.
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