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Abstract. Let h be the second fundamental form of a compact minimal totally real

submanifold M of a complex space form CPn(c) of holomorphic curvature c. For any

ueTM, set δ(u) = \\h{u, u)\\2. We prove that if δ(u)<c/\2 for any unit vector we TM, then

either δ{u) = 0 (i.e. M is totally geodesic) or δ(u) = c/\2. All compact minimal totally real

submanifolds of CP"(c) satisfying δ(u) = c/\2 are determined.

1. Introduction. Let M be an m-dimensional compact Riemannian manifold
isometrically immersed in CPn(c), where CP\c) is the complex projective space of
constant holomorphic sectional curvature c(>0) and of complex dimension n (all
manifolds, mappings, functions and so on are assumed to be C00). Let h be the second
fundamental form of the immersion, h is a symmetric bilinear mapping TMxx
TMX-+TMX for xeM, where TMX is the tangent space of M at x, and TMX is the
normal space to M at x. Let 77: UM^M and UMX be the unit tangent bundle of M and
its fiber over xeM, respectively. We set δ(u) = \\h(u, u)\\2 for any u in UM. δ(u) may be
considered as a measure of the degree to which an immersion fails to be totally geodesic.

In a recent paper, Ros [10] proved that if M is a Kaehler submanifold of CPn{c) and
if δ(u)<c/4 for any ueUM, then M is totally geodesic in CP\c). In another paper
[11], Ros gave a complete list of Kaehler submanifolds of CPn(c) satisfying the
condition maxueUMδ(u)=c/4. In this paper, our purpose is to obtain the analogous
results for another important class of submanifolds of CPn(c), namely, for totally
real minimal submanifolds of CPn(c). Our main result is the following theorem.

THEOREM 1.1. Let M be a compact totally real minimal submanifold of CP\c).
If δ(u)<c/\2 for any we UM, then M is totally geodesic in CP\c).

The above pinching for δ(u) is the best possible. Indeed, there exist submanifolds
with maxueUMδ(u) = c/\2, and Theorem 6.1 of Sec. 6 gives a complete list of such
submanifolds. We will also show (Theorems 7.1-7.3 of Sec. 7) that in some cases the
inequality δ(u)<c/\2 may be improved.

Our method is different from that of A. Ros. However we were influenced by his
paper [10], as well as by paper [7] of N. Mok and T.-Q. Zhang. Results similar to that of
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Theorems 1.1 and 6.1 for minimal submanifolds of a sphere were proved recently in our

paper [4]. There are also well known results of the type described in Theorems 1.1 and

6.1 which use S(x) instead of <5(w), where S(x) is the square of the length of the second

fundamental form A a t x e M , [2], [5], [6].

2. Variational inequality. Let M be a compact ra-dimensional Riemannian

manifold isometrically immersed in an (m +/?)-dimensional Riemannian manifold N.

Let h be the second fundamental form of the immersed manifold M, and δ(u) =

\\h(u, u)\\2 for we UM. Let xeM. Suppose that ue UMX satisfies δ(u)=maxveUMχδ(v).

We shall call u a maximal direction at x. Let eί9 , em + p be an adapted frame at x. That

means that eΛ, , eme TMX and therefore em + ι, , em + pe TMX. Assume that eί is a

maximal direction at x. From now on let the indices ij\ k, run from 1, , m. Set

hij = h(eh ej)eTMχ. Since ex is a maximal direction, we have at the point x for any

U x 2 , •-,xm€R

(2.1)
/ m m \ 2 Γ m ~ ] 2

IIΛ II 2
1 1 I

Expanding in terms of t, we obtain

m

4ί Σ ^<An,Λ

where < , > denotes the scalar product in M. It follows that

(2.2) <A 1 1 ,A l i >=0, / = 2, •• , m .

We now choose an adapted frame dXxeM such that in addition to (2.2), we have (cf. [4],

p. 782),

(2.3) <Λπ>Λy> = °>

Once more expanding (2.1) in terms of t, we obtain

m m ~\

Σ(IIΛnll2-<Λii,Λ«>-2||ΛlίH
2Xxi)2-2 Σ QtU9hu>^ \

i = 2 i,j=2 J

Since (2.4) must hold for any real x1, we obtain the following variational inequality:

(2.5) l | A i i l l 2 - < A n , A i i > 2

3. Generalized Bochner's Lemma. Let M be a Riemannian manifold and L be a

covariant tensor field on M of the type (0, k). At any xeM, L can be considered as a

multilinear mapping L: TMxx xTMx-+R. Suppose that ueUMx satisfies

L(u, , u) =maxveUMχ L(v, , υ). We shall call u a maximal direction at x with respect

to L. For any xe M, we set fL(x) = L(u, , w), where w is a maximal direction at x with
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respect to L. The next proposition is an obvious generalization of [7], Proposition 3.1.

PROPOSITION 3.1 (generalized Bochner's Lemma). Let M be a compact

Riemannian manifold and L be a covariant tensor field on M of the type (0, k). If

(ΔL)(w, , w)>0 for any maximal direction u with respect to L, where A denotes the

Laplace operator, then fL = const on M and (ΔL)(w, , u) = 0 for any maximal direction

u.

PROOF. It is easy to see that/ L is a continuous function on M. We shall show that

fL is subharmonic in the generalized sense. Fix xe M and let u be a maximal direction at

x. In an open neighbourhood Ux of x within the cut-locus of x we shall denote by v(y)

the tangent vector to M obtained by parallel transport of u = v(x) along the unique

geodesic joining x to y within the cut-locus of x. Define gx(y) = L(v(y), , v(y)). Then

(x) = A[L(v(y), , iO))] y = J C = (ΔL)(κ, , ιι)>0 .

For the Laplacian of continuous functions, we have the generalized definition

fL \ l-fL(x)
B(x,r) I jB(x,r)

where c is a positive constant and B(x, r) denotes the geodesic ball of radius r with the

center at x. With this definition/L is subharmonic on M if and only if (Δ/L)(x) > 0 at each

point xeM. Since gx(x)=fL(x) and gx<fL on Ux, (AfL)(x)>(Agx)(x)>0. Thus,/L(x) is
subharmonic and hence constant on M. It now follows that gx(x) — L(u, , u) is the

maximum value of gx on Ux. Hence (Agx)(x)=(AL)(u, ••, w)<0. Comparing with

(ΔL)(w, , M ) > 0 , we obtain that (ΔL)(w, , w) = 0.

4. A formula for a Laplacian. Let M be a compact m-dimensional Riemannian

manifold isometrically immersed in an (ra+/?)-dimensional locally symmetric

Riemannian manifold N, where p>2. For any point xeM, let el9--,em + p be an

adapted frame at x such that eί is a maximal direction at x, and <Λn, /zo> = 0 for iΦj.

Let us define a tensor field L = (Lijkl) of the type (0, 4) on M by the formula

(4.1) Lijkl = (hiphkiy.

It is clear that δ(u) = L(w, w, u, u) for any u e UM. Let the indices a, b, c, d run from

1, , m+p, and the indices α, j?, y, (5 run from m-h 1, , ra+/?. Denote by R = {Rabcd)

the curvature tensor of N. We shall also write (AL)ijkι=(AL)(eh ep ek, e^ and Λo =
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L E M M A 4.1.

(4.2) 1 ( Δ L ) 1 1 1 1 = 4 X h\1h{iRaβil+ Σ ftnM
** oc,β,i a,β,i

,hii>Ruu + "ΣK
<x,β

where / / = ^ α / / α e α denotes the mean curvature vector H=\lmΣina

PROOF. (l/2)(ΔL)1 1 1 1 = <A11,(ΔA)11> + χ.| |V iA1 1 | |
2. The lemma follows readily

from J. Simon's formula for ΔA, [3], [12].

5. Totally real minimal submanifolds of CPn(c). Let now M be a compact m-
dimensional minimal totally real submanifold of CP\c). Since M is minimal, the mean
curvature vector H=0 on M. M is called totally real if for any xeM, J(TMx)aTMχ,
where J is the almost complex structure of CP\c). In what follows we will deal with
adapted frames of the form

{eί, ' ' , e m , ^ j * , , £ m * , e 2 m + i, * *, ^Jm + q'' e(2m + l)*-> ' ' ' •> ̂ (2m + g)*J •>

where eί* = Jeί, , em* = Jem, ei2m + 1)* = Je2m + ί, • J ί ( 2 m + ί ) = Λ 2 m + f l . Here n=rn + q.
Note that e l 5 , ̂ m G TMX and ^i*, , ̂ m*, e 2 m + 1, , ̂ 2 m + g , ^(2m + 1)*, , e ( 2 m + q )*e

^. We will now prove our first main result.

PROOF OF THEOREM 1.1. Let the indices A, B run from 1, , m, 2m + 1 , ,
2m+ q, and let eA*=JeA. By [14], p. 136, all components Rabcd of the curvature tensor
of CP\c) are equal to zero with the exception of the following components and the
components obtained with the help of obvious symmetries:

(5.1) RΛΛ

&AA*AA* = C '

Substituting (5.1) into (4.2) and using the fact that Aĵ Af* (see, for example, [13]), we
obtain

(5.2) -̂ -
2

i i

||2

Since <5(w)<<:/12 for any ueUM, we have that ||An | |2<c/12. This fact, the Cauchy-
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Schwarz inequality, and the variational inequality (2.5) show that each summand in

(5.2) is non-negative. By Proposition 3.1, ( Δ L ) 1 1 Π = O . Hence 3ra||A11||
2(c/12 —

||A11||
2) = 0. Therefore ||An | | = 0 , and M is totally geodesic.

6. The case: maxMel/M^(M) = c/12. In this case | |A n | | 2 sc/12 on M. As in the

proof of Theorem 1.1, we obtain ( Δ L ) U 1 1 = O . Since each summand in (5.2) is non-

negative, we obtain for / = 1, , m,

(6.1) (IIAiill2-<Aπ,

(6.2) l |A1 1 | |
4-<A1 1,A,>2 = 0,

(6.3) A f ^ O ,

(6.4) V A ^ O .

By (6.2), ||A11||
4 = <A11, ^ > 2 < IIAull2 ||At,||

2< ||AU | |4. Therefore hii=±hn for each

/ = 1 , ,ra. Since ]Γ™=1 hu = Q, we obtain that m is even, ra = 2r, and (after suitable

renumbering of el9 , em) we can write An =h22= ' * =hrr=—hr + ίr+ί= = —hlrlr.

Let the indices λ, μ, v, ξ run from 1, , r, and let X=λ + r. Then

(6.5) Aλλ = A n , hu=-hn.

It follows from (2.5) and (6.5) that A1A = 0, λΦ\. Since, by (6.5), each direction et is

maximal, it follows that

(6.6) Aλμ = A I ί = Ό , λΦμ.

By (6.1), ||A1Ϊ||
2 = ||A111|2. Therefore

(6.7) IIM2HIM2

Expansion (2.4) now takes the form

-At1 Σ <fcii,Ή, >*'

Hence <Alf, A1<7 > = 0, iΦj\ ijφl. Since each direction et is maximal, we have

(6.8)

Once more, expanding (2.1) in terms of ί, we find that

t3 Σ <A l i,fc jk>xVxk

Hence <Ali, AJk> + <Au, Akj> + <A1Jk, Ao > = 0, ij\kφl. By (6.5)-(6.8) and since each
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vector e{ is a maximal direction, we obtain

(6.9) <hχϊ,hμξy + <hλξ9hμτ> = 0, λφμ or

Using (2.3) and (6.5)-(6.9), we obtain by direct computation that δ(u)=c/\2 for any

UE UM. B. O'Neill [9] calls an immersion Λ-isotropic if \\h(u, u)\\=λ for any ue UM.

Therefore, the immersion under consideration is yj c/12-isotropic. By (6.4), Vl/zJJ = 0. By

polarization, V ^ = 0 for all i,j,k. Therefore, the second fundamental form of the

immersion is parallel. From (6.3), it follows that hι*j = O. By polarization,

(6.10) h% = 0, i,j,k=l9 - , m .

For xeM, put NιMx = {h{X, Y)\X, YeTMx}R, where {*}Λ denotes the real vector

space spanned by *. NιMx is called the first normal space at x. Let {NXMX)
L be the

orthogonal complement of (NιMx) in TM^. By (6.10),

(6.11) JiTMJaiN'MJ1.

H. Naitoh, [8], calls a submanifold satisfying condition (6.11) a submanifold of the type

P(R). Thus, the immersion under consideration is yjc/12-isotropic with parallel second

fundamental form and of the type P(R).

All minimal totally real A-isotropic immersions into CP\c) of the type P(R) with

parallel second fundamental form were completely classified by H. Naitoh in [8].

According to this classification, if we take λ—yjcj\2, we obtain one of the following

immersions:

where p — 0, 1, 2, • , 52(c/12) is a sphere of curvature c/12, Rf^ic/ll) is a real projective

plane of curvature c/12, QP^icβ) is a quaternion projective plane of β-sectional

curvature cβ, Cay P2(cβ) is a Cayley projective plane of c-sectional curvature cβ, and

where <p; p, (i = l, , 5; p=0, 1,2, • •), are defined as follows:

Let π m : Sm(cl4)^RPm(φ) be the covering map, μn<p: RPa(cl4)-*CPn+p(c) be the

natural totally geodesic imbedding, and let

: QP\cβ)-*Sιι(φ),
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φ5: CayP2(c/3)->S2 5(c/4)

be the first standard imbeddings of projective spaces, [1], p. 141. Set ψ2

 = Φι°π2>

nx =/72 = 4, «3 = 7, « 4 = 13, «5 = 25. Now we are able to give a formula for φ{ p\

(6.12) φ.p = μnipoπnioφ^ / = i , . . . > 5 ; p = 0, l ,2, .

Thus, we obtain the following theorem:

THEOREM 6.1. Let M be a compact m-dimensional manifold minimally immersed

in CP\c). Assume that M is totally real in CPn(c) and that maxueUM(5(w) = c/12. Then

δ(u) = c/12 on UM and the immersion of M into CPn(c) is one of the immersions φ{ p

defined by (6.12).

7. Several additional results. Assume that dimΛ M = d i m c CP{c), that is, we have

an immersion of Mm into CPm(c). Then Yji(hi^ί)
2=\\hn\

2. In this case formula (5.2)

takes the form

If ||Λn | |2<c(m-t-1)/12, then ( Δ L ) l l n > 0 and we obtain the following theorem:

THEOREM 7.1. Let M be a compact m-dimensional totally real minimal sub-

manifold ofCPm(c). If b(u)<c(m+X)\\2m for any ue UM, then M is totally geodesic in

The result in Theorem 7.1 is the best possible, since for m = 2 there is an example of

a minimal totally real immersion M2^CP2(c) with δ(c) = c/S, [8], p. 438.

Let us now assume that d i m R M is an odd number, that is, m=2r+ 1. By (5.2),

(7.1) /

i = 2

where bi = (hίlhii). Since eλ is a maximal direction, we have

(7.2) - | I M 2 < ^ < I I M 2 , i = 2, -,

Because of minimality of the immersion,

m

(7.3) Σ ftί=-IIΛnII2-
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It is easily seen that the convex function/(62, , bm)=Yj^2(bi)
2 of (m— 1) variables

b2, '' , bm subject to linear constraints (7.2), (7.3) attains its maximal value when (after

suitable renumbering of e1, , em)

b2=. . =br= -br + ι = = -blr= \\hu\\2 b2r + 1 = 0 .

By (7.1), we obtain that

= (3m-2)\\hn\\2(cm/4(3m-2)-\\hn\\2).

If \\hn\\2<cm/4(3rn-2), then ( Δ L ) i m > 0 , and we obtain:

THEOREM 7.2. Let M be a compact m-dimensional totally real minimal sub-

manifold of CP\c). Assume that m is odd. Ifδ(u)<mc/4(3m — 2)for any ue UM, then M

is totally geodesic in CPn(c).

Combining the method of proofs of Theorems 7.1 and 7.2, we obtain:

THEOREM 7.3. Let M be a compact m-dimensional totally real minimal sub-

manifold ofCF^ic). Assume that m is odd. If δ(u)<c(m+\)/4(3m — 2) for any ue UM,

then M is totally geodesic in CPm(c).

8. Remark. Assume that M is a compact Kaehler submanifold of CPn(c). Then

If \\hn\\2<c/4, then ( Δ L ) m i > 0 . Therefore, if δ(u)<c/4, then M is totally geodesic.

Thus, we obtain a different proof of a result of A. Ros, [10], mentioned in Section 1.

REFERENCES

[ 1 ] B.-Y. CHEN, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore,

1984.

[ 2 ] B.-Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.

[ 3 ] S.-S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere with second

fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag,

Berlin and New York, (1970), 59-75.

[4] H. GAUCHMAN, Minimal submanifolds of a sphere with bounded second fundamental form, Trans.

Amer. Math. Soc. 298 (1986), 779-791.

[ 5 ] G. D. LUDDEN, M. OKUMURA AND K. YANO, Totally real submanifolds of complex manifolds, Lincei-

Rend. Sc. Fir. Mat e nat. LVIII (1975), 346-353.

[ 6 ] G. D. LUDDEN, M. OKUMURA AND K. YANO, A totally real surface in CP2 that is not totally geodesic,

Proc. Amer. Math. Soc. 53 (1975), 186-190.



TOTALLY REAL MINIMAL SUBMANIFOLDS 257

[ 7 ] N. Moκ AND J. Q. ZHANG, Curvature characterization of compact Hermitian symmetric spaces, J. Diff.

Geom. 23 (1986), 15-67.

[ 8 ] H. NAITOH, Isotropic submanifolds with parallel second fundamental form in /*"(c), Osaka J. Math. 18

(1981), 427-464.

[9] B. O'NEILL, Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 907-915.

[10] A. Ros, Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc. 93 (1985), 329-331.

[11] A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of

Math. 121 (1985), 377-382.

[12] J. SIMONS, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105.

[13] K. YANO AND M. KON, Totally real submanifolds of complex space form II, Kodai Math. Sem. Rep. 27

(1976), 385-399.

[14] K. YANO AND M. KON, Structures on Manifolds, World Scientific, Singapore, 1984.

DEPARTMENT OF MATHEMATICS

EASTERN ILLINOIS UNIVERSITY

CHARLESTON, IL 61920

U.S.A.






