PINCHING THEOREMS FOR TOTALLY REAL MINIMAL SUBMANIFOLDS OF $C P^{n}(c)$

Hillel Gauchman

(Received December 14, 1987)

Abstract

Let h be the second fundamental form of a compact minimal totally real submanifold M of a complex space form $C P^{n}(c)$ of holomorphic curvature c. For any $u \in T M$, set $\delta(u)=\|h(u, u)\|^{2}$. We prove that if $\delta(u) \leq c / 12$ for any unit vector $u \in T M$, then either $\delta(u) \equiv 0$ (i.e. M is totally geodesic) or $\delta(u) \equiv c / 12$. All compact minimal totally real submanifolds of $C P^{n}(c)$ satisfying $\delta(u) \equiv c / 12$ are determined.

1. Introduction. Let M be an m-dimensional compact Riemannian manifold isometrically immersed in $\boldsymbol{C} P^{n}(c)$, where $\boldsymbol{C} P^{n}(c)$ is the complex projective space of constant holomorphic sectional curvature $c(>0)$ and of complex dimension n (all manifolds, mappings, functions and so on are assumed to be C^{∞}). Let h be the second fundamental form of the immersion. h is a symmetric bilinear mapping $T M_{x} \times$ $T M_{x} \rightarrow T M_{x}^{\perp}$ for $x \in M$, where $T M_{x}$ is the tangent space of M at x, and $T M_{x}^{\perp}$ is the normal space to M at x. Let $\Pi: U M \rightarrow M$ and $U M_{x}$ be the unit tangent bundle of M and its fiber over $x \in M$, respectively. We set $\delta(u)=\|h(u, u)\|^{2}$ for any u in $U M$. $\delta(u)$ may be considered as a measure of the degree to which an immersion fails to be totally geodesic.

In a recent paper, Ros [10] proved that if M is a Kaehler submanifold of $C P^{n}(c)$ and if $\delta(u)<c / 4$ for any $u \in U M$, then M is totally geodesic in $C P^{n}(c)$. In another paper [11], Ros gave a complete list of Kaehler submanifolds of $\boldsymbol{C} P^{n}(c)$ satisfying the condition $\max _{u \in U M} \delta(u)=c / 4$. In this paper, our purpose is to obtain the analogous results for another important class of submanifolds of $\boldsymbol{C} \boldsymbol{P}^{n}(c)$, namely, for totally real minimal submanifolds of $\boldsymbol{C} P^{n}(c)$. Our main result is the following theorem.

Theorem 1.1. Let M be a compact totally real minimal submanifold of $\boldsymbol{C P}^{n}(c)$. If $\delta(u)<c / 12$ for any $u \in U M$, then M is totally geodesic in $\boldsymbol{C P}^{n}(c)$.

The above pinching for $\delta(u)$ is the best possible. Indeed, there exist submanifolds with $\max _{u \in U M} \delta(u)=c / 12$, and Theorem 6.1 of Sec. 6 gives a complete list of such submanifolds. We will also show (Theorems 7.1-7.3 of Sec. 7) that in some cases the inequality $\delta(u)<c / 12$ may be improved.

Our method is different from that of A. Ros. However we were influenced by his paper [10], as well as by paper [7] of N. Mok and T.-Q. Zhang. Results similar to that of

[^0]Theorems 1.1 and 6.1 for minimal submanifolds of a sphere were proved recently in our paper [4]. There are also well known results of the type described in Theorems 1.1 and 6.1 which use $S(x)$ instead of $\delta(u)$, where $S(x)$ is the square of the length of the second fundamental form h at $x \in M$, [2], [5], [6].
2. Variational inequality. Let M be a compact m-dimensional Riemannian manifold isometrically immersed in an ($m+p$)-dimensional Riemannian manifold N. Let h be the second fundamental form of the immersed manifold M, and $\delta(u)=$ $\|h(u, u)\|^{2}$ for $u \in U M$. Let $x \in M$. Suppose that $u \in U M_{x}$ satisfies $\delta(u)=\max _{v \in U M_{x}} \delta(v)$. We shall call u a maximal direction at x. Let e_{1}, \cdots, e_{m+p} be an adapted frame at x. That means that $e_{1}, \cdots, e_{m} \in T M_{x}$ and therefore $e_{m+1}, \cdots, e_{m+p} \in T M_{x}^{\perp}$. Assume that e_{1} is a maximal direction at x. From now on let the indices i, j, k, \cdots run from $1, \cdots, m$. Set $h_{i j}=h\left(e_{i}, e_{j}\right) \in T M_{x}^{\perp}$. Since e_{1} is a maximal direction, we have at the point x for any $t, x^{2}, \cdots, x^{m} \in \boldsymbol{R}$

$$
\begin{equation*}
\left\|h\left(e_{1}+t \sum_{i=2}^{m} x^{i} e_{i}, e_{1}+t \sum_{i=2}^{m} x^{i} e_{i}\right)\right\|^{2} \leq\left[1+t^{2} \sum_{i=2}^{m}\left(x^{i}\right)^{2}\right]^{2} \cdot\left\|h_{11}\right\|^{2} . \tag{2.1}
\end{equation*}
$$

Expanding in terms of t, we obtain

$$
4 t \sum_{i=2}^{m} x^{i}\left\langle h_{11}, h_{1 i}\right\rangle+O\left(t^{2}\right) \leq 0
$$

where \langle,$\rangle denotes the scalar product in M$. It follows that

$$
\begin{equation*}
\left\langle h_{11}, h_{1 i}\right\rangle=0, \quad i=2, \cdots, m . \tag{2.2}
\end{equation*}
$$

We now choose an adapted frame at $x \in M$ such that in addition to (2.2), we have (cf. [4], p. 782),

$$
\begin{equation*}
\left\langle h_{11}, h_{i j}\right\rangle=0, \quad i \neq j . \tag{2.3}
\end{equation*}
$$

Once more expanding (2.1) in terms of t, we obtain

$$
\begin{equation*}
2 t^{2}\left[\sum_{i=2}^{m}\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle-2\left\|h_{1 i}\right\|^{2}\right)\left(x^{i}\right)^{2}-2 \sum_{\substack{i, j=2 \\ i \neq j}}^{m}\left\langle h_{1 i}, h_{1 j}\right\rangle x^{i} x^{j}\right]+O\left(t^{3}\right) \geq 0 \tag{2.4}
\end{equation*}
$$

Since (2.4) must hold for any real x^{i}, we obtain the following variational inequality:

$$
\begin{equation*}
\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle-2\left\|h_{1 i}\right\|^{2} \geq 0, \quad i=2, \cdots, m \tag{2.5}
\end{equation*}
$$

3. Generalized Bochner's Lemma. Let M be a Riemannian manifold and L be a covariant tensor field on M of the type $(0, k)$. At any $x \in M, L$ can be considered as a multilinear mapping L : $T M_{x} \times \cdots \times T M_{x} \rightarrow \boldsymbol{R}$. Suppose that $u \in U M_{x}$ satisfies $L(u, \cdots, u)=\max _{v \in U M_{x}} L(v, \cdots, v)$. We shall call u a maximal direction at x with respect to L. For any $x \in M$, we set $f_{L}(x)=L(u, \cdots, u)$, where u is a maximal direction at x with
respect to L. The next proposition is an obvious generalization of [7], Proposition 3.1.
Proposition 3.1 (generalized Bochner's Lemma). Let M be a compact Riemannian manifold and L be a covariant tensor field on M of the type $(0, k)$. If $(\Delta L)(u, \cdots, u) \geq 0$ for any maximal direction u with respect to L, where Δ denotes the Laplace operator, then $f_{L}=$ const on M and $(\Delta L)(u, \cdots, u)=0$ for any maximal direction u.

Proof. It is easy to see that f_{L} is a continuous function on M. We shall show that f_{L} is subharmonic in the generalized sense. Fix $x \in M$ and let u be a maximal direction at x. In an open neighbourhood U_{x} of x within the cut-locus of x we shall denote by $v(y)$ the tangent vector to M obtained by parallel transport of $u=v(x)$ along the unique geodesic joining x to y within the cut-locus of x. Define $g_{x}(y)=L(v(y), \cdots, v(y))$. Then

$$
\left(\Delta g_{x}\right)(x)=\Delta[L(v(y), \cdots, v(y))]_{y=x}=(\Delta L)(u, \cdots, u) \geq 0 .
$$

For the Laplacian of continuous functions, we have the generalized definition

$$
\left(\Delta f_{L}\right)(x)=c \lim _{r \rightarrow 0} r^{-2}\left(\int_{B(x, r)} f_{L} / \int_{B(x, r)} 1-f_{L}(x)\right)
$$

where c is a positive constant and $B(x, r)$ denotes the geodesic ball of radius r with the center at x. With this definition f_{L} is subharmonic on M if and only if $\left(\Delta f_{L}\right)(x) \geq 0$ at each point $x \in M$. Since $g_{x}(x)=f_{L}(x)$ and $g_{x} \leq f_{L}$ on $U_{x},\left(\Delta f_{L}\right)(x) \geq\left(\Delta g_{x}\right)(x) \geq 0$. Thus, $f_{L}(x)$ is subharmonic and hence constant on M. It now follows that $g_{x}(x)=L(u, \cdots, u)$ is the maximum value of g_{x} on U_{x}. Hence $\left(\Delta g_{x}\right)(x)=(\Delta L)(u, \cdots, u) \leq 0$. Comparing with $(\Delta L)(u, \cdots, u) \geq 0$, we obtain that $(\Delta L)(u, \cdots, u)=0$.
4. A formula for a Laplacian. Let M be a compact m-dimensional Riemannian manifold isometrically immersed in an $(m+p)$-dimensional locally symmetric Riemannian manifold N, where $p \geq 2$. For any point $x \in M$, let e_{1}, \cdots, e_{m+p} be an adapted frame at x such that e_{1} is a maximal direction at x, and $\left\langle h_{11}, h_{i j}\right\rangle=0$ for $i \neq j$. Let us define a tensor field $L=\left(L_{i j k l}\right)$ of the type $(0,4)$ on M by the formula

$$
\begin{equation*}
L_{i j k l}=\left\langle h_{i j}, h_{k l}\right\rangle \tag{4.1}
\end{equation*}
$$

It is clear that $\delta(u)=L(u, u, u, u)$ for any $u \in U M$. Let the indices a, b, c, d run from $1, \cdots, m+p$, and the indices $\alpha, \beta, \gamma, \delta$ run from $m+1, \cdots, m+p$. Denote by $R=\left(R_{a b c d}\right)$ the curvature tensor of N. We shall also write $(\Delta L)_{i j k l}=(\Delta L)\left(e_{i}, e_{j}, e_{k}, e_{l}\right)$ and $h_{i j}=$ $\sum_{\alpha} h_{i j}^{\alpha} e_{\alpha}$.

LEMMA 4.1.

$$
\begin{align*}
& \frac{1}{2}(\Delta L)_{1111}=4 \sum_{\alpha, \beta, i} h_{11}^{\alpha} h_{1 i}^{\beta} R_{\alpha \beta i 1}+\sum_{\alpha, \beta, i} h_{11}^{\alpha} h_{11}^{\beta} R_{\alpha i i \beta}+2\left\|h_{11}\right\|^{2} \sum_{i} R_{1 i 1 i} \tag{4.2}\\
& \quad-2 \sum_{i}\left\langle h_{11}, h_{i i}\right\rangle R_{1 i 1 i}+n \sum_{\alpha, \beta} h_{11}^{\alpha} H^{\beta} R_{\alpha 1 \beta 1}+n\left\|h_{11}\right\|^{2}\left\langle h_{11}, H\right\rangle \\
& \quad-2\left\|h_{11}\right\|^{2} \sum_{i}\left\|h_{1 i}\right\|^{2}+2 \sum_{i}\left\langle h_{11}, h_{i i}\right\rangle\left\|h_{1 i}\right\|^{2}-\sum_{i}\left\langle h_{11}, h_{i i}\right\rangle^{2}+\sum_{i}\left\|\nabla_{i} h_{11}\right\|^{2} .
\end{align*}
$$

where $H=\sum_{\alpha} H^{\alpha} e_{\alpha}$ denotes the mean curvature vector $H=1 / m \sum_{i} h_{i i}$.
PROOF. $(1 / 2)(\Delta L)_{1111}=\left\langle h_{11},(\Delta h)_{11}\right\rangle+\sum_{i}\left\|\nabla_{i} h_{11}\right\|^{2}$. The lemma follows readily from J. Simon's formula for Δh, [3], [12].
5. Totally real minimal submanifolds of $C P^{n}(c)$. Let now M be a compact m dimensional minimal totally real submanifold of $C P^{n}(c)$. Since M is minimal, the mean curvature vector $H \equiv 0$ on $M . M$ is called totally real if for any $x \in M, J\left(T M_{x}\right) \subset T M_{x}^{\perp}$, where J is the almost complex structure of $C P^{n}(c)$. In what follows we will deal with adapted frames of the form

$$
\left\{e_{1}, \cdots, e_{m}, e_{1^{*}}, \cdots, e_{m^{*}}, e_{2 m+1}, \cdots, e_{2 m+q}, e_{(2 m+1)^{*}}, \cdots, e_{(2 m+q)^{*}}\right\}
$$

where $e_{1^{*}}=J e_{1}, \cdots, e_{m^{*}}=J e_{m}, e_{(2 m+1)^{*}}=J e_{2 m+1}, \cdots, e_{(2 m+q)^{*}}=J e_{2 m+q}$. Here $n=m+q$. Note that $e_{1}, \cdots, e_{m} \in T M_{x}$ and $e_{1^{*}}, \cdots, e_{m^{*}}, e_{2 m+1}, \cdots, e_{2 m+q}, e_{(2 m+1)^{*}}, \cdots, e_{(2 m+q)^{*}} \in$ $T M_{x}^{\perp}$. We will now prove our first main result.

Proof of Theorem 1.1. Let the indices A, B run from $1, \cdots, m, 2 m+1, \cdots$, $2 m+q$, and let $e_{A^{*}}=J e_{A}$. By [14], p. 136, all components $R_{a b c d}$ of the curvature tensor of $C P^{n}(c)$ are equal to zero with the exception of the following components and the components obtained with the help of obvious symmetries:

$$
\begin{align*}
& R_{A B A B}=R_{A B^{*} A B^{*}}=R_{A B A^{*} B^{*}}=R_{A^{*} B B^{*} A}=c / 4, \quad(A \neq B) \\
& R_{A A^{*} B B^{*}}=c / 2, \quad(A \neq B) \tag{5.1}\\
& R_{A A^{*} A A^{*}}=c
\end{align*}
$$

Substituting (5.1) into (4.2) and using the fact that $h_{i k}^{i^{*}}=h_{i i}^{k^{*}}$ (see, for example, [13]), we obtain

$$
\begin{align*}
\frac{1}{2}(\Delta L)_{1111}= & \sum_{i=1}\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle\right)\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle-2\left\|h_{1 i}\right\|^{2}\right) \tag{5.2}\\
& +2 \sum_{i}\left(\left\|h_{11}\right\|^{4}-\left\langle h_{11}, h_{i i}\right\rangle^{2}\right)+3 m\left\|h_{11}\right\|^{2}\left(c / 12-\left\|h_{11}\right\|^{2}\right) \\
& +c / 4 \sum_{i}\left(h_{11}^{i *}\right)^{2}+\sum_{i}\left\|\nabla_{i} h_{11}\right\|^{2}
\end{align*}
$$

Since $\delta(u)<c / 12$ for any $u \in U M$, we have that $\left\|h_{11}\right\|^{2}<c / 12$. This fact, the Cauchy-

Schwarz inequality, and the variational inequality (2.5) show that each summand in (5.2) is non-negative. By Proposition 3.1, $(\Delta L)_{1111}=0$. Hence $3 m\left\|h_{11}\right\|^{2}(c / 12-$ $\left.\left\|h_{11}\right\|^{2}\right)=0$. Therefore $\left\|h_{11}\right\|=0$, and M is totally geodesic.
6. The case: $\max _{u \in U M} \delta(u)=c / 12$. In this case $\left\|h_{11}\right\|^{2} \equiv c / 12$ on M. As in the proof of Theorem 1.1, we obtain $(\Delta L)_{1111}=0$. Since each summand in (5.2) is nonnegative, we obtain for $i=1, \cdots, m$,

$$
\begin{gather*}
\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle\right)\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle-2\left\|h_{1 i}\right\|^{2}\right)=0 \tag{6.1}\\
\left\|h_{11}\right\|^{4}-\left\langle h_{11}, h_{i i}\right\rangle^{2}=0 \tag{6.2}\\
h_{11}^{i *}=0 \tag{6.3}\\
\nabla_{i} h_{11}=0 \tag{6.4}
\end{gather*}
$$

By (6.2), $\left\|h_{11}\right\|^{4}=\left\langle h_{11}, h_{i i}\right\rangle^{2} \leq\left\|h_{11}\right\|^{2}\left\|h_{i i}\right\|^{2} \leq\left\|h_{11}\right\|^{4}$. Therefore $h_{i i}= \pm h_{11}$ for each $i=1, \cdots, m$. Since $\sum_{i=1}^{m} h_{i i}=0$, we obtain that m is even, $m=2 r$, and (after suitable renumbering of e_{1}, \cdots, e_{m}) we can write $h_{11}=h_{22}=\cdots=h_{r r}=-h_{r+1 r+1}=\cdots=-h_{2 r 2 r}$. Let the indices λ, μ, ν, ξ run from $1, \cdots, r$, and let $\bar{\lambda}=\lambda+r$. Then

$$
\begin{equation*}
h_{\lambda \lambda}=h_{11}, \quad h_{\bar{\lambda} \bar{\lambda}}=-h_{11} . \tag{6.5}
\end{equation*}
$$

It follows from (2.5) and (6.5) that $h_{1 \lambda}=0, \lambda \neq 1$. Since, by (6.5), each direction e_{i} is maximal, it follows that

$$
\begin{equation*}
h_{\lambda \mu}=h_{\bar{\lambda} \bar{\mu}}=0, \quad \lambda \neq \mu . \tag{6.6}
\end{equation*}
$$

By (6.1), $\left\|h_{1 \bar{\lambda}}\right\|^{2}=\left\|h_{11}\right\|^{2}$. Therefore

$$
\begin{equation*}
\left\|h_{\lambda \bar{\mu}}\right\|^{2}=\left\|h_{11}\right\|^{2} \tag{6.7}
\end{equation*}
$$

Expansion (2.4) now takes the form

$$
-4 t^{2} \sum_{\substack{i, j=2 \\ i \neq j}}^{m}\left\langle h_{1 i}, h_{1 j}\right\rangle x^{i} x^{j}+O\left(t^{3}\right) \geq 0
$$

Hence $\left\langle h_{1 i}, h_{1 j}\right\rangle=0, i \neq j ; i, j \neq 1$. Since each direction e_{i} is maximal, we have

$$
\begin{array}{ll}
\left\langle h_{\lambda \bar{\mu}}, h_{\lambda \bar{v}}\right\rangle=0, & \bar{\mu} \neq \bar{v}, \tag{6.8}\\
\left\langle h_{\lambda \bar{v}}, h_{\mu \bar{v}}\right\rangle=0, & \lambda \neq \mu .
\end{array}
$$

Once more, expanding (2.1) in terms of t, we find that

$$
t^{3} \sum_{i, j, k}\left\langle h_{1 i}, h_{j k}\right\rangle x^{i} x^{j} x^{k}+O\left(t^{4}\right) \leq 0
$$

Hence $\left\langle h_{1 i}, h_{j k}\right\rangle+\left\langle h_{1 j}, h_{k i}\right\rangle+\left\langle h_{1 k}, h_{i j}\right\rangle=0, i, j, k \neq 1$. By (6.5)-(6.8) and since each
vector e_{i} is a maximal direction, we obtain

$$
\begin{equation*}
\left\langle h_{\lambda \bar{v}}, h_{\mu \bar{\xi}}\right\rangle+\left\langle h_{\lambda \bar{\xi}}, h_{\mu \bar{v}}\right\rangle=0, \quad \lambda \neq \mu \quad \text { or } \quad \bar{v} \neq \bar{\xi} . \tag{6.9}
\end{equation*}
$$

Using (2.3) and (6.5)-(6.9), we obtain by direct computation that $\delta(u)=c / 12$ for any $u \in U M$. B. O'Neill [9] calls an immersion λ-isotropic if $\|h(u, u)\|=\lambda$ for any $u \in U M$. Therefore, the immersion under consideration is $\sqrt{c / 12}$-isotropic. By (6.4), $\nabla_{i} h_{j j}=0$. By polarization, $\nabla_{i} h_{j k}=0$ for all i, j, k. Therefore, the second fundamental form of the immersion is parallel. From (6.3), it follows that $h_{j j}^{i *}=0$. By polarization,

$$
\begin{equation*}
h_{j k}^{i *}=0, \quad i, j, k=1, \cdots, m \tag{6.10}
\end{equation*}
$$

For $x \in M$, put $N^{1} M_{x}=\left\{h(X, Y) \mid X, Y \in T M_{x}\right\}_{\boldsymbol{R}}$, where $\{*\}_{\boldsymbol{R}}$ denotes the real vector space spanned by $* . N^{1} M_{x}$ is called the first normal space at x. Let $\left(N^{1} M_{x}\right)^{\perp}$ be the orthogonal complement of $\left(N^{1} M_{x}\right)$ in $T M_{x}^{\perp}$. By (6.10),

$$
\begin{equation*}
J\left(T M_{x}\right) \subset\left(N^{1} M_{x}\right)^{\perp} . \tag{6.11}
\end{equation*}
$$

H. Naitoh, [8], calls a submanifold satisfying condition (6.11) a submanifold of the type $P(\boldsymbol{R})$. Thus, the immersion under consideration is $\sqrt{c / 12-i s o t r o p i c ~ w i t h ~ p a r a l l e l ~ s e c o n d ~}$ fundamental form and of the type $P(\boldsymbol{R})$.

All minimal totally real λ-isotropic immersions into $\boldsymbol{C} P^{n}(c)$ of the type $P(\boldsymbol{R})$ with parallel second fundamental form were completely classified by H. Naitoh in [8]. According to this classification, if we take $\lambda=\sqrt{c / 12}$, we obtain one of the following immersions:

$$
\begin{aligned}
\varphi_{1, p}: & \boldsymbol{R} P^{2}(c / 12) \rightarrow \boldsymbol{C} P^{4+p}(c), \\
\varphi_{2, p}: & S^{2}(c / 12) \rightarrow \boldsymbol{C} P^{4+p}(c), \\
\varphi_{3, p}: & \boldsymbol{C} P^{2}(c / 3) \rightarrow \boldsymbol{C} P^{7+p}(c), \\
\varphi_{4, p}: & Q P^{2}(c / 3) \rightarrow \boldsymbol{C} P^{13+p}(c), \\
\varphi_{5, p}: & \operatorname{Cay} P^{2}(c / 3) \rightarrow \boldsymbol{C} P^{25+p}(c),
\end{aligned}
$$

where $p=0,1,2, \cdots, S^{2}(c / 12)$ is a sphere of curvature $c / 12, \boldsymbol{R} P^{2}(c / 12)$ is a real projective plane of curvature $c / 12, Q P^{2}(c / 3)$ is a quaternion projective plane of Q-sectional curvature $c / 3$, Cay $P^{2}(c / 3)$ is a Cayley projective plane of c-sectional curvature $c / 3$, and where $\varphi_{i, p},(i=1, \cdots, 5 ; p=0,1,2, \cdots)$, are defined as follows:

Let $\pi_{m}: S^{m}(c / 4) \rightarrow \boldsymbol{R} \boldsymbol{P}^{m}(c / 4)$ be the covering map, $\mu_{n, p}: \boldsymbol{R} \boldsymbol{P}^{n}(c / 4) \rightarrow \boldsymbol{C} P^{n+p}(c)$ be the natural totally geodesic imbedding, and let

$$
\begin{aligned}
& \psi_{1}: \quad \boldsymbol{R} P^{2}(c / 12) \rightarrow S^{4}(c / 4), \\
& \psi_{3}: C P^{2}(c / 3) \rightarrow S^{7}(c / 4), \\
& \psi_{4}: \quad Q P^{2}(c / 3) \rightarrow S^{13}(c / 4),
\end{aligned}
$$

$$
\psi_{5}: \quad \text { Cay } P^{2}(c / 3) \rightarrow S^{25}(c / 4)
$$

be the first standard imbeddings of projective spaces, [1], p. 141. Set $\psi_{2}=\psi_{1} \circ \pi_{2}$, $n_{1}=n_{2}=4, n_{3}=7, n_{4}=13, n_{5}=25$. Now we are able to give a formula for $\varphi_{i, p}$:

$$
\begin{equation*}
\varphi_{i, p}=\mu_{n_{i, p}} \circ \pi_{n_{i}} \circ \psi_{i}, \quad i=1, \cdots, 5 ; \quad p=0,1,2, \cdots \tag{6.12}
\end{equation*}
$$

Thus, we obtain the following theorem:
THEOREM 6.1. Let M be a compact m-dimensional manifold minimally immersed in $C P^{n}(c)$. Assume that M is totally real in $C P^{n}(c)$ and that $\max _{u \in U M} \delta(u)=c / 12$. Then $\delta(u) \equiv c / 12$ on $U M$ and the immersion of M into $C P^{n}(c)$ is one of the immersions $\varphi_{i, p}$ defined by (6.12).
7. Several additional results. Assume that $\operatorname{dim}_{\boldsymbol{R}} M=\operatorname{dim}_{\boldsymbol{C}} \boldsymbol{C P}(c)$, that is, we have an immersion of M^{m} into $\boldsymbol{C} P^{m}(c)$. Then $\sum_{i}\left(h_{11}^{i *}\right)^{2}=\|\left. h_{11}\right|^{2}$. In this case formula (5.2) takes the form

$$
\begin{aligned}
& \frac{1}{2}(\Delta L)_{1111}=\sum_{i \neq 1}\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle\right)\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle-2\left\|h_{1 i}\right\|^{2}\right) \\
& \quad+2 \sum_{i}\left(\left\|h_{11}\right\|^{4}-\left\langle h_{11}, h_{i i}\right\rangle^{2}\right)+3 m\left\|h_{11}\right\|^{2}\left(c(m+1) / 12 m-\left\|h_{11}\right\|^{2}\right)+\sum_{i}\left\|\nabla_{i} h_{11}\right\|^{2}
\end{aligned}
$$

If $\left\|h_{11}\right\|^{2}<c(m+1) / 12$, then $(\Delta L)_{1111} \geq 0$ and we obtain the following theorem:
THEOREM 7.1. Let M be a compact m-dimensional totally real minimal submanifold of $C P^{m}(c)$. If $\delta(u)<c(m+1) / 12 m$ for any $u \in U M$, then M is totally geodesic in $C P^{m}(c)$.

The result in Theorem 7.1 is the best possible, since for $m=2$ there is an example of a minimal totally real immersion $M^{2} \rightarrow \boldsymbol{C} \boldsymbol{P}^{2}(c)$ with $\delta(c) \equiv c / 8,[8]$, p. 438.

Let us now assume that $\operatorname{dim}_{\boldsymbol{R}} M$ is an odd number, that is, $m=2 r+1$. By (5.2),

$$
\begin{gather*}
\frac{1}{2}(\Delta L)_{1111} \geq 2 \sum_{i}\left(\left\|h_{11}\right\|^{4}-\left\langle h_{11}, h_{i i}\right\rangle^{2}\right)+3 m\left\|h_{11}\right\|^{2}\left(c / 12-\left\|h_{11}\right\|^{2}\right) \tag{7.1}\\
=c m / 4\left\|h_{11}\right\|^{2}-(m+2)\left\|h_{11}\right\|^{4}-2 \sum_{i=2}^{m}\left(b_{i}\right)^{2}
\end{gather*}
$$

where $b_{i}=\left\langle h_{11} h_{i i}\right\rangle$. Since e_{1} is a maximal direction, we have

$$
\begin{equation*}
-\left\|h_{11}\right\|^{2} \leq b_{i} \leq\left\|h_{11}\right\|^{2}, \quad i=2, \cdots, m \tag{7.2}
\end{equation*}
$$

Because of minimality of the immersion,

$$
\begin{equation*}
\sum_{i=2}^{m} b_{i}=-\left\|h_{11}\right\|^{2} \tag{7.3}
\end{equation*}
$$

It is easily seen that the convex function $f\left(b_{2}, \cdots, b_{m}\right)=\sum_{i=2}^{m}\left(b_{i}\right)^{2}$ of $(m-1)$ variables b_{2}, \cdots, b_{m} subject to linear constraints (7.2), (7.3) attains its maximal value when (after suitable renumbering of e_{1}, \cdots, e_{m})

$$
b_{2}=\cdots=b_{r}=-b_{r+1}=\cdots=-b_{2 r}=\left\|h_{11}\right\|^{2} ; \quad b_{2 r+1}=0 .
$$

By (7.1), we obtain that

$$
\begin{aligned}
\frac{1}{2}(\Delta L)_{1111} & \geq c m / 4\left\|h_{11}\right\|^{2}-(m+2)\left\|h_{11}\right\|^{4}-2(m-2)\left\|h_{11}\right\|^{4} \\
& =(3 m-2)\left\|h_{11}\right\|^{2}\left(c m / 4(3 m-2)-\left\|h_{11}\right\|^{2}\right)
\end{aligned}
$$

If $\left\|h_{11}\right\|^{2}<c m / 4(3 m-2)$, then $(\Delta L)_{1111} \geq 0$, and we obtain:
THEOREM 7.2. Let M be a compact m-dimensional totally real minimal submanifold of $\boldsymbol{C} P^{n}(c)$. Assume that m is odd. If $\delta(u)<m c / 4(3 m-2)$ for any $u \in U M$, then M is totally geodesic in $C P^{n}(c)$.

Combining the method of proofs of Theorems 7.1 and 7.2 , we obtain:
THEOREM 7.3. Let M be a compact m-dimensional totally real minimal submanifold of $\boldsymbol{C} P^{m}(c)$. Assume that m is odd. If $\delta(u)<c(m+1) / 4(3 m-2)$ for any $u \in U M$, then M is totally geodesic in $C P^{m}(c)$.
8. Remark. Assume that M is a compact Kaehler submanifold of $\boldsymbol{C} P^{n}(c)$. Then

$$
\begin{aligned}
\frac{1}{2}(\Delta L)_{1111} & =\sum_{i \neq 1,1^{*}}\left(\left\|h_{11}\right\|^{2}+\left\langle h_{11}, h_{i i}\right\rangle\right)\left(\left\|h_{11}\right\|^{2}-\left\langle h_{11}, h_{i i}\right\rangle-2\left\|h_{1 i}\right\|^{2}\right) \\
& +(n+4)\left\|h_{11}\right\|^{2}\left(c / 4-\left\|h_{11}\right\|^{2}\right)+\sum_{i}\left\|\nabla_{i} h_{11}\right\|^{2} .
\end{aligned}
$$

If $\left\|h_{11}\right\|^{2}<c / 4$, then $(\Delta L)_{1111} \geq 0$. Therefore, if $\delta(u)<c / 4$, then M is totally geodesic. Thus, we obtain a different proof of a result of A. Ros, [10], mentioned in Section 1.

References

[1] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
[2] B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), $257-266$.
[3] S.-S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, Berlin and New York, (1970), 59-75.
[4] H. Gauchman, Minimal submanifolds of a sphere with bounded second fundamental form, Trans. Amer. Math. Soc. 298 (1986), 779-791.
[5] G. D. Ludden, M. Okumura and K. Yano, Totally real submanifolds of complex manifolds, LinceiRend. Sc. Fir. Mat e nat. LVIII (1975), 346-353.
[6] G. D. Ludden, M. Okumura and K. Yano, A totally real surface in $C P^{2}$ that is not totally geodesic, Proc. Amer. Math. Soc. 53 (1975), 186-190.
[7] N. Mok and J. Q. Zhang, Curvature characterization of compact Hermitian symmetric spaces, J. Diff. Geom. 23 (1986), 15-67.
[8] H. Naitoн, Isotropic submanifolds with parallel second fundamental form in $P^{m}(c)$, Osaka J. Math. 18 (1981), 427-464.
[9] B. O'Neill, Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 907-915.
[10] A. Ros, Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc. 93 (1985), 329-331.
[11] A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math. 121 (1985), 377-382.
[12] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105.
[13] K. Yano and M. Kon, Totally real submanifolds of complex space form II, Kodai Math. Sem. Rep. 27 (1976), 385-399.
[14] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.
Department of Mathematics
Eastern Illinois University
Charleston, IL 61920
U.S.A.

[^0]: 1980 Mathematics Subject Classification: 53C42. Key words and phrases: Complex projective space, totally real submanifolds.

