WEAK AND CLASSICAL SOLUTIONS OF THE TWODIMENSIONAL MAGNETOHYDRODYNAMIC EQUATIONS

Dedicated to Professor Shōzō Koshi on his sixtieth birthday

Hideo Kozono

(Received April 5, 1988)

Introduction. Let Ω be a bounded domain in \boldsymbol{R}^{2} with smooth boundary $\partial \Omega$. In $Q_{T}:=\Omega \times(0, T)$, we consider the following magnetohydrodynamic equations for an ideal incompressible fluid coupled with magnetic field:

$$
\begin{array}{ll}
\partial_{t} u+(u, \nabla) u-(B, \nabla) B+\nabla\left((1 / 2)|B|^{2}\right)+\nabla \pi=f & \text { in } Q_{T}, \\
\partial_{t} B-\Delta B+(u, \nabla) B-(B, \nabla) u=0 & \text { in } Q_{T},
\end{array}
$$

(*)

$$
\begin{array}{lc}
\operatorname{div} u=0, \quad \operatorname{div} B=0 & \text { in } Q_{T}, \\
u \cdot v=0, \quad B \cdot v=0 \quad \operatorname{rot} B=0 & \text { on } \partial \Omega \times(0, T), \\
\left.u\right|_{t=0}=u_{0},\left.\quad B\right|_{t=0}=B_{0} . &
\end{array}
$$

Here $u=u(x, t)=\left(u^{1}(x, t), u^{2}(x, t)\right), B=B(x, t)=\left(B^{1}(x, t), B^{2}(x, t)\right)$ and $\pi=\pi(x, t)$ denote the unknown velocity field of the fluid, magnetic field and pressure of the fluid, respectively; $f=f(x, t)=\left(f^{1}(x, t), f^{2}(x, t)\right)$ denotes the given external force, $u_{0}=u_{0}(x)=$ $\left(u_{0}^{1}(x), u_{0}^{2}(x)\right)$ and $B_{0}=B_{0}(x)=\left(B_{0}^{1}(x), B_{0}^{2}(x)\right)$ denote the given initial data and v denotes the unit outward normal on $\partial \Omega$.

The first purpose of this paper is to show the existence and uniqueness of a global weak solution of (*) without restriction on the data. In case B is identically equal to zero, i.e., in the case of the Euler equations, such a problem for global weak and classical solutions was solved by Bardos [1] and Kato [8], respectively. (Kikuchi [9] extended the result of Kato [8] in an exterior domain.) Using the energy method developed by Bardos [1], we can obtain a global weak solution in our case.

Our second purpose is to show the existence and uniqueness of a local classical solution of (*). Although the method of characteristic curves for the vorticity equation plays an important role in a global classical solution of the two-dimensional Euler equations, such a method seems to give us only a local classical solution of (*) because of the additional terms $(B, \nabla) B$ and $(u, \nabla) B-(B, \nabla) u$. Our result on classical solutions, however, can be regarded as a generalization of that of Kato [8] in some sense.

We shall devoted Section 1 to preliminaries and definition of a weak solution of
(*). Two main theorems will then be stated. Sections 2 and 3 will be devoted to the proofs of the main theorems.

Acknowledgement. The author would like to express his gratitude to Professor Atsushi Inoue for his constant encouragement. He is also indebted to Professor Keisuke Kikuchi for suggesting potential theoretical methods. Finally, he must express his gratitude to the referee for his valuable comments.

1. Results.

1.1. Notation. Let us introduce some function spaces. $C_{0, \sigma}^{\infty}(\Omega)$ denotes the set of all C^{∞}-real vector-valued functions $\phi=\left(\phi^{1}, \phi^{2}\right)$ with compact support in Ω such that $\operatorname{div} \phi=0 . H$ is the completion of $C_{0, \sigma}^{\infty}(\Omega)$ with respect to the L^{2}-norm $\|\| ;($,$) denotes$ the L^{2}-inner product. V denotes the set of all vector-valued functions u in $\boldsymbol{H}^{1}(\Omega)$ with $\operatorname{div} u=0$ in Ω and $u \cdot v=0$ on $\partial \Omega$. Equipped with the norm | |:

$$
|u|^{2}=\|\operatorname{rot} u\|^{2}+\|u\|^{2},
$$

V is a Hilbert space. Here and hereafter, we shall use the notations rot u for a vector function $u=\left(u^{1}, u^{2}\right)$ and $\operatorname{rot} \psi$ for a scalar function ψ representing $\operatorname{rot} u=$ $\partial u^{2} / \partial x_{1}-\partial u^{1} / \partial x_{2}$ and $\operatorname{rot} \psi=\left(\partial \psi / \partial x_{2},-\partial \psi / \partial x_{1}\right)$, respectively. By Duvaut-Lions [3, Chapter 7, Theorem 6.1], we have

$$
\begin{equation*}
\|u\|_{\boldsymbol{H}^{1}(\Omega)} \leqq C(\Omega)|u| \quad \text { for all } \quad u \in V \tag{1.1}
\end{equation*}
$$

Hence the norm \| \| is equivalent to the one usually induced from $H^{1}(\Omega)$ and V is compactly imbedded into H.

If X is a Hilbert space, then $L^{p}(0, T ; X)(1 \leqq p<\infty)$ denotes the set of all measurable functions $u(t)$ with values in X such that $\int_{0}^{T}\|u(t)\|_{X}^{p} d t<\infty\left(\| \|_{X}\right.$ is the norm in $\left.X\right)$. $L^{\infty}(0, T ; X)$ denotes the set of all essentially bounded (with respect to the norm of X) measurable functions of t with values in X. In the case of $X=L^{2}(\Omega)$, we denote by $\left\|\|_{2, p}\right.$ and $\| \|_{2, \infty}$ the norms in $L^{p}\left(0, T ; L^{2}(\Omega)\right)$ and $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, respectively.

Let $C^{m}([0, T] ; X)$ denote the set of all X-valued m-times continuously differentiable functions of $t(0 \leqq t \leqq T) . C_{0}^{m}([0, T) ; X)$ is the set of all X-valued m-times continuously differentiable functions on $[0, T)$ with compact support in $[0, T)$.
$C^{k+\alpha}(\bar{\Omega})$ for an integer $k \geqq 0$ and $0 \leqq \alpha<1$ denotes the usual Hölder space of continuous functions on $\bar{\Omega}$. $|\quad|_{k+\alpha}$ denotes the norm in $C^{k+\alpha}(\bar{\Omega}) . C^{k, j}\left(\bar{Q}_{T}\right)$ for integers $k, j \geqq 0$ is the set of all functions ϕ for which all the $\partial_{x}^{q} \partial_{t}^{r} \phi$ exist and are continuous on \bar{Q}_{T} for $0 \leqq|q| \leqq k, 0 \leqq r \leqq j . C^{k+\alpha, j+\beta}\left(\bar{Q}_{T}\right)$ for integers $k, j \geqq 0$ and $0 \leqq \alpha, \beta<1$ is the subset of $C^{k, j}\left(\bar{Q}_{T}\right)$ containing all functions ϕ for. which all the $\partial_{x}^{q} \partial_{t}^{r} \phi, 0 \leqq|q| \leqq k$, $0 \leqq r \leqq j$, are Hölder continuous with exponents α in x and β in t. If

$$
\begin{aligned}
K^{\alpha, \beta}(\phi)= & \sup \left\{\left|\phi(x, t)-\phi\left(x^{\prime}, t\right)\right| /\left|x-x^{\prime}\right|^{\alpha} ;(x, t),\left(x^{\prime}, t\right) \in \bar{Q}_{T},\left|x-x^{\prime}\right|<1\right\} \\
& +\sup \left\{\left|\phi(x, t)-\phi\left(x, t^{\prime}\right)\right| /\left|t-t^{\prime}\right|^{\beta} ;(x, t),\left(x, t^{\prime}\right) \in \bar{Q}_{T},\left|t-t^{\prime}\right|<1\right\},
\end{aligned}
$$

we define the norm $\left|\left.\right|_{k+\alpha, j+\beta}\right.$ in $C^{k+\alpha, j+\beta}\left(\bar{Q}_{T}\right)$ by

For the spaces of vector-valued functions, we shall use the bold-faced letters analogously.
Throughout this paper, C, C_{1}, C_{2}, \cdots will denote positive constants which may be different in each occurrence. In particular, we shall denote by $C=C(*, \cdots, *)$ the constant depending only on the quantities appearing in the parentheses.
1.2. Definitions and results. Our definition of a weak solution of (*) is as follows:

Definition 1.1. Let $u_{0} \in H, B_{0} \in H$ and $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. A pair of measurable vector functions u and B on Q_{T} is called a weak solution of (*) if

$$
\begin{equation*}
u \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V), B \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V) \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{T}\left\{-\left(u, \partial_{t} \Phi\right)+((u, \nabla) u-(B, \nabla) B, \Phi)\right\} d t=\left(u_{0}, \Phi(0)\right)+\int_{0}^{T}(f, \Phi) d t, \tag{ii}\\
& \quad \int_{0}^{T}\left\{-\left(B, \partial_{t} \Phi\right)+(\operatorname{rot} B, \operatorname{rot} \Phi)+((u, \nabla) B-(B, \nabla) u, \Phi)\right\} d t=\left(B_{0}, \Phi(0)\right)
\end{align*}
$$

for all $\Phi \in C_{0}^{1}([0, T) ; V)$.
Concerning the uniqueness of weak solutions of (*), we have:
Proposition 1.1. There exists at most one weak solution of (*). If $\{u, B\}$ is a weak solution of (*), after a suitable redefinition of $u(t)$ and $B(t)$ on a set of measure zero of the time interval $[0, T]$, we have $u \in C([0, T] ; H)$ and $B \in C([0, T] ; H)$.

Since the proof of this proposition is parallel to that of Temam [16, Chapter 3, Theorem 3.2], we omit it.

Our result on the existence of a weak solution now reads as follows:
Theorem 1. Let $u_{0} \in V, B_{0} \in V$ and $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ with $\operatorname{rot} f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. Then there exists a weak solution $\{u, B\}$ of $(*)$ such that $u \in L^{\infty}(0, T ; V) \cap C([0, T] ; H)$ and $B \in L^{2}\left(0, T ; H^{2}(\Omega)\right) \cap C([0, T] ; V)$.

We next proceed to our result on classical solutions. To this end, we make the following assumptions on the domain Ω and the given data u_{0}, B_{0} and f.

Assumption 1. The boundary $\partial \Omega$ of Ω consists of $m+1$ sufficiently smooth, simple closed curves $S_{0}, S_{1}, \cdots, S_{m}$, where $S_{j}(j=1, \cdots, m)$ are inside S_{0} and outside one another.

Günter [7, 1., p. 122] refers to the above assumption as "Case J ".

Assumption 2. $u_{0} \in C^{1+\theta}(\bar{\Omega}), B_{0} \in C^{2+\theta}(\bar{\Omega})$ and $f \in C^{1+\theta, 0}\left(\bar{Q}_{T}\right)$ hold for some $0<\theta<1$. Moreover, u_{0} and B_{0} satisfy the conditions $\operatorname{div} u_{0}=0, \operatorname{div} B_{0}=0$ in Ω and $u_{0} \cdot v=0, B_{0} \cdot v=0$ on $\partial \Omega$.

Our result on the existence and uniqueness of classical solutions reads as follows:
Theorem 2. Under the assumptions 1 and 2, there is a positive number $C_{*}=C_{*}\left(\Omega, T,\left|u_{0}\right|_{1+\theta},|f|_{1+\theta, 0}\right)$ such that if $\left|B_{0}\right|_{2+\theta} \leqq C_{*}$, there exists a solution $\{u, B, \pi\} \in C^{1,1}\left(\bar{Q}_{T}\right) \times C^{2,1}\left(\bar{Q}_{T}\right) \times C^{1,0}\left(\bar{Q}_{T}\right)$ of $(*)$. Such a solution is unique up to addition to π of an arbitrary function of t.

Remark 1.1. (i) Taking $B_{0}=0$ in Ω, we have the result of Kato [8].
(ii) Our construction of the solution of Theorem 2 ensures us that $u \in C^{1+\theta^{\prime}, 1}\left(\bar{Q}_{T}\right)$ and $B \in C^{2+\theta^{\prime},\left(2+\theta^{\prime}\right) / 2}\left(\bar{Q}_{T}\right)$ for some $\theta^{\prime} \in(0, \theta)$.

2. Existence of a global weak solution; Proof of Theorem 1.

2.1. The operator A. For the proof of Theorem 1, we shall use the Galerkin method. In order to make use of a special basis, we introduce the operator A from $D(A)$ to H as

$$
A u=(-\Delta+1) u=\operatorname{rot}(\operatorname{rot} u)+u
$$

for $u \in D(A)=\left\{u \in \boldsymbol{H}^{2}(\Omega) ; u \cdot v=0\right.$, rot $u=0$ on $\left.\partial \Omega\right\} \cap H$. See Miyakawa [13, Lemma 3.3]. Then we have:

Proposition 2.1. 1. A coincides with the positive self-adjoint operator on H defined by a positive quadratic form $a(\cdot, \cdot)$ on $V \times V$;

$$
a(u, v)=(\operatorname{rot} u, \operatorname{rot} v)+(u, v), \quad u, v \in V .
$$

This implies

$$
\begin{equation*}
V=D\left(A^{1 / 2}\right), \quad\left\|A^{1 / 2} u\right\|^{2}=\|\operatorname{rot} u\|^{2}+\|u\|^{2} \quad \text { for } \quad u \in D\left(A^{1 / 2}\right) . \tag{2.1}
\end{equation*}
$$

2. Zero is not an eigenvalue of A.
3. There is a constant $C=C(\Omega)$ such that

$$
\begin{equation*}
\|u\|_{\boldsymbol{H}^{2}(\Omega)} \leqq C(\|\Delta u\|+\|u\|) \quad \text { for all } \quad u \in D(A) . \tag{2.2}
\end{equation*}
$$

Indeed, 1 is easy. 2 is a consequence of (2.1). 3 follows from Georgescu [5, Theorem 3.2.3]. See also Sermange-Temam [14, p. 642, (2.8)].

By Proposition 2.1, we see that the operator A possesses a complete orthonormal system $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ of H of eigenfunctions:

$$
\begin{align*}
& \phi_{j} \in D(A), \quad A \phi_{j}=\lambda_{j} \phi_{j}, \quad \lambda_{j}>0, \quad \lambda_{j} \rightarrow+\infty, \quad j \rightarrow \infty \\
& \left(\operatorname{rot} \phi_{j}, \operatorname{rot} u\right)+\left(\phi_{j}, u\right)=\lambda_{j}\left(\phi_{j}, u\right) \quad \text { for all } u \in V . \tag{2.3}
\end{align*}
$$

2.2. Proof of Theorem 1. We shall use $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ defined in (2.3) as a basis of Galerkin approximation. For every integer m, we define $\left\{u_{m}, B_{m}\right\}=\left\{u_{m}(x, t), B_{m}(x, t)\right\}$ as

$$
u_{m}(x, t)=\sum_{j=1}^{m} g_{j m}(t) \phi_{j}(x), \quad B_{m}(x, t)=\sum_{j=1}^{m} h_{j m}(t) \phi_{j}(\dot{x})
$$

and we may choose $\left\{g_{j m}\right\}_{j=1}^{m}$ and $\left\{h_{j m}\right\}_{j=1}^{m}$ satisfying the following equations:

$$
\begin{align*}
& \left(u_{m}^{\prime}(t), \phi_{j}\right)+\left(\left(u_{m}(t), \nabla\right) u_{m}(t)-\left(B_{m}(t), \nabla\right) B_{m}(t), \phi_{j}\right)=\left(f(t), \phi_{j}\right), \\
& \left(B_{m}^{\prime}(t), \phi_{j}\right)+\left(\operatorname{rot} B_{m}(t), \operatorname{rot} \phi_{j}\right)+\left(\left(u_{m}(t), \nabla\right) B_{m}(t)-\left(B_{m}(t), \nabla\right) u_{m}(t), \phi_{j}\right)=0, \tag{2.4}\\
& j=1, \cdots, m,
\end{aligned}, \begin{aligned}
& u_{m}(0)=\sum_{j=1}^{m}\left(u_{0}, \phi_{j}\right) \phi_{j}, \quad B_{m}(0)=\sum_{j=1}^{m}\left(B_{0}, \phi_{j}\right) \phi_{j} .
\end{align*}
$$

As is well-known, there is $T_{m}>0$ such that (2.4) with (2.5) has a unique solution on $\left[0, T_{m}\right.$). Moreover, the following a priori estimate guarantees that $T_{m}=T$.

Energy estimates: After multiplying the first and the second equation of (2.4) by $g_{j m}(t)$ and $h_{j m}(t)$, respectively, we add these equations. By integration over ($0, t$), we get

$$
\begin{align*}
& \left\|u_{m}(t)\right\|^{2}+\left\|B_{m}(t)\right\|^{2}+2 \int_{0}^{t}\left\|\operatorname{rot} B_{m}(s)\right\|^{2} d s \tag{2.6}\\
& \leqq\left\|u_{0}\right\|^{2}+\left\|B_{0}\right\|^{2}+\int_{0}^{t}\left\|u_{m}(s)\right\|^{2} d s+\int_{0}^{t}\|f(s)\|^{2} d s
\end{align*}
$$

Here we used the identities $((u, \nabla) v, v)=0$ and $((u, \nabla) v, w)=-((u, \nabla) w, v)$ for $u, v, w \in V$. Hence by the same technique as that used in the proof of Gronwall's inequality, we have

$$
\begin{equation*}
\left\|u_{m}(t)\right\|^{2}+\left\|B_{m}(t)\right\|^{2}+2 \int_{0}^{t}\left\|\operatorname{rot} B_{m}(s)\right\|^{2} d s \leqq e^{T}\left(\left\|u_{0}\right\|^{2}+\left\|B_{0}\right\|^{2}+\|f\|_{2,2}^{2}\right) \tag{2.7}
\end{equation*}
$$

for all $t \in[0, T]$.
Estimates of the derivatives of higher order: By (2.3), we see that the equalities

$$
\left(u, \lambda_{j} \phi_{j}\right)=\left(u, A \phi_{j}\right)=\left(\operatorname{rot} u, \operatorname{rot} \phi_{j}\right)+\left(u, \phi_{j}\right)
$$

hold for all $u \in V$. Hence multiplying the first and the second equation of (2.4) by λ_{j}, we have

$$
\begin{aligned}
& \left(\operatorname{rot} u_{m}^{\prime}, \operatorname{rot} \phi_{j}\right)+\left(u_{m}^{\prime}, \phi_{j}\right)+\left(\left(u_{m}, \nabla\right) u_{m}-\left(B_{m}, \nabla\right) B_{m}, A \phi_{j}\right)=\left(f, A \phi_{j}\right), \\
& \left(\operatorname{rot} B_{m}^{\prime}, \operatorname{rot} \phi_{j}\right)+\left(B_{m}^{\prime}, \phi_{j}\right)+\left(\operatorname{rot}\left(\operatorname{rot} B_{m}\right), A \phi_{j}\right)+\left(\left(u_{m}, \nabla\right) B_{m}-\left(B_{m}, \nabla\right) u_{m}, A \phi_{j}\right)=0 \\
& \quad(j=1, \cdots, m) .
\end{aligned}
$$

Proceeding as we did in deriving (2.6), we obtain

$$
\begin{aligned}
& (1 / 2)(d / d t)\left(\left\|\operatorname{rot} u_{m}\right\|^{2}+\left\|u_{m}\right\|^{2}+\left\|\operatorname{rot} B_{m}\right\|^{2}+\left\|B_{m}\right\|^{2}\right)+\left\|\Delta B_{m}\right\|^{2}+\left\|\operatorname{rot} B_{m}\right\|^{2} \\
& \quad+\left(\left(u_{m}, \nabla\right) u_{m}-\left(B_{m}, \nabla\right) B_{m}, \operatorname{rot}\left(\operatorname{rot} u_{m}\right)+u_{m}\right)
\end{aligned}
$$

$$
+\left(\left(u_{m}, \nabla\right) B_{m}-\left(B_{m}, \nabla\right) u_{m}, \operatorname{rot}\left(\operatorname{rot} B_{m}\right)+B_{m}\right)=\left(f, \operatorname{rot}\left(\operatorname{rot} u_{m}\right)+u_{m}\right) .
$$

Taking into account $\operatorname{rot} u_{m}=0, \operatorname{rot} B_{m}=0$ on $\partial \Omega$, after integration by parts we get

$$
\begin{align*}
& \left\|\omega_{m}(t)\right\|^{2}+\left\|u_{m}(t)\right\|^{2}+\left\|J_{m}(t)\right\|^{2}+\left\|B_{m}(t)\right\|^{2}+2 \int_{0}^{t}\left(\left\|\Delta B_{m}\right\|^{2}+\left\|J_{m}\right\|^{2}\right) d s \tag{2.8}\\
& \quad+4 \int_{0}^{t}\left(\left(\partial B_{m}^{2} / \partial x_{2}\right) D u_{m}+\left(\partial u_{m}^{1} \partial x_{1}\right) D B_{m}, J_{m}\right) d s \\
& =\left\|\omega_{m}(0)\right\|^{2}+\left\|u_{m}(0)\right\|^{2}+\left\|J_{m}(0)\right\|^{2}+\left\|B_{m}(0)\right\|^{2}+2 \int_{0}^{t}\left\{\left(\operatorname{rot} f, \omega_{m}\right)+\left(f, u_{m}\right)\right\} d s
\end{align*}
$$

where $\omega_{m}=\operatorname{rot} u_{m}, J_{m}=\operatorname{rot} B_{m}, D u_{m}=\partial u_{m}^{1} / \partial x_{2}+\partial u_{m}^{2} / \partial x_{1}$ and $D B_{m}=\partial B_{m}^{1} / \partial x_{2}+\partial B_{m}^{2} / \partial x_{1}$. Here we used the equalities $\left(\left(u_{m}, \nabla\right) \omega_{m}, \omega_{m}\right)=\left(\left(u_{m}, \nabla\right) J_{m}, J_{m}\right)=0$ and $\left(\left(B_{m}, \nabla\right) J_{m}, \omega_{m}\right)=$ $-\left(\left(B_{m}, \nabla\right) \omega_{m}, J_{m}\right)$.

Now, let us investigate the sixth term on the left hand side of (2.8). By the Hölder inequality, the Gagliardo-Nirenberg inequality (Tanabe [15, Chapter 1, Lemma 1.2.1]), (1.1) and (2.2), we have

$$
\begin{aligned}
& \left|\left(\left(\partial B_{m}^{2} / \partial x_{2}\right) D u_{m}, J_{m}\right)\right| \leqq\left\|\partial B_{m}^{2} / \partial x_{2}\right\|_{L^{4}(\Omega)}\left\|D u_{m}\right\|\left\|J_{m}\right\|_{L^{4}(\Omega)} \\
& \quad \leqq C\left\|\nabla B_{m}\right\|^{1 / 2}\left\|B_{m}\right\|_{R^{2}(\Omega)}^{1 / 2}\left\|J_{m}\right\|^{1 / 2}\left\|\nabla J_{m}\right\|^{1 / 2}\left\|D u_{m}\right\| \\
& \quad \leqq C\left\|B_{m}\right\|_{H^{1}(\Omega)}\left\|B_{m}\right\|_{H^{2}(\Omega)}\left\|D u_{m}\right\| \\
& \quad \leqq C\left(\left\|B_{m}\right\|+\left\|J_{m}\right\|\right)\left(\left\|\Delta B_{m}\right\|+\left\|B_{m}\right\|\right)\left(\left\|u_{m}\right\|+\left\|\omega_{m}\right\|\right), \\
& \left|\left(\left(\partial u_{m}^{1} / \partial x_{1}\right) D B_{m}, J_{m}\right)\right| \leqq\left\|\partial u_{m}^{1} / \partial x_{1}\right\|\left\|D B_{m}\right\|_{L^{4}(\Omega)}\left\|J_{m}\right\|_{L^{4}(\Omega)} \\
& \leqq C\left\|\nabla u_{m}\right\|\left\|\nabla B_{m}\right\|^{1 / 2}\left\|B_{m}\right\|_{H^{2}(\Omega)}^{12}\left\|J_{m}\right\|^{1 / 2}\left\|\nabla J_{m}\right\|^{1 / 2} \\
& \quad \leqq C\left\|\nabla u_{m}\right\|\left\|B_{m}\right\|_{H^{1}(\Omega)}\left\|B_{m}\right\|_{H^{2}(\Omega)} \\
& \leqq C\left(\left\|B_{m}\right\|+\left\|J_{m}\right\|\right)\left(\left\|\Delta B_{m}\right\|+\left\|B_{m}\right\|\right)\left(\left\|u_{m}\right\|+\left\|\omega_{m}\right\|\right),
\end{aligned}
$$

where $C=C(\Omega)$ is a constant independent of m. Hence by the Schwarz inequality and (2.7), we get for any $\varepsilon>0$

$$
\begin{align*}
& \left|\int_{0}^{t}\left(\left(\partial B_{m}^{2} / \partial x_{2}\right) D u_{m}+\left(\partial u_{m}^{1} / \partial x_{1}\right) D B_{m}, J_{m}\right) d s\right| \tag{2.9}\\
& \quad \leqq C \varepsilon \int_{0}^{t}\left\|\Delta B_{m}\right\|^{2} d s+C\left(\varepsilon^{-1}+1\right)\left\{\left(1+\left\|B_{m}\right\|_{2, \infty}\right)^{2}\left(1+\left\|u_{m}\right\|_{2, \infty}\right)^{2} T\right. \\
& \quad+\left(1+\left\|B_{m}\right\|_{2, \infty}\right)^{2}\left(1+\left\|u_{m}\right\|_{2, \infty}\right)^{2} \int_{0}^{t}\left\|J_{m}\right\|^{2} d s \\
& \left.\quad+\left(1+\left\|B_{m}\right\|_{2, \infty}\right)^{2} \int_{0}^{t}\left\|\omega_{m}\right\|^{2} d s+\int_{0}^{t}\left\|J_{m}\right\|^{2}\left\|\omega_{m}\right\|^{2} d s\right\}
\end{align*}
$$

$$
\leqq C_{1} \varepsilon \int_{0}^{t}\left\|\Delta B_{m}\right\|^{2} d s+C_{1}\left(\varepsilon^{-1}+1\right) \int_{0}^{t}\left(1+\left\|J_{m}\right\|^{2}\right)\left\|\omega_{m}\right\|^{2} d s+C_{1}\left(\varepsilon^{-1}+1\right)
$$

where $C_{1}=C_{1}\left(\Omega, T,\left\|u_{0}\right\|,\left\|B_{0}\right\|,\|f\|_{2,2}\right)$ is a constant independent of m. Substituting (2.9) into (2.8) and then taking $\varepsilon=1 / 2 C_{1}$, we have

$$
\begin{align*}
& \left\|\omega_{m}(t)\right\|^{2}+\left\|J_{m}(t)\right\|^{2}+\int_{0}^{t}\left\|\Delta B_{m}(s)\right\|^{2} d s \leqq\left\|\operatorname{rot} u_{0}\right\|^{2}+\left\|\operatorname{rot} B_{0}\right\|^{2}+C_{2} \tag{2.10}\\
& \quad+C_{2} \int_{0}^{t}\left(1+\left\|J_{m}(s)\right\|^{2}+\|\operatorname{rot} f(s)\|^{2}\right)\left\|\omega_{m}(s)\right\|^{2} d s
\end{align*}
$$

where $C_{2}=C_{2}\left(\Omega, T,\left\|u_{0}\right\|,\left\|B_{0}\right\|,\|f\|_{2,2}\right)$ is a constant independent of m. By application of Gronwall's technique as in the derivation of (2.7), we see that

$$
\begin{align*}
& \left\|\omega_{m}(t)\right\|^{2}+\left\|J_{m}(t)\right\|^{2}+\int_{0}^{t}\left\|\Delta B_{m}(s)\right\|^{2} d s \tag{2.11}\\
& \quad \leqq\left(\left\|\operatorname{rot} u_{0}\right\|^{2}+\left\|\operatorname{rot} B_{0}\right\|^{2}+C_{2}\right) \exp \left(C_{2} \int_{0}^{t}\left(1+\left\|J_{m}(s)\right\|^{2}+\|\operatorname{rot} f(s)\|_{2,2}^{2}\right) d s\right) \\
& \leqq C_{3}=C_{3}\left(\Omega, T,\left|u_{0}\right|,\left|B_{0}\right|,\|f\|_{2,2},\|\operatorname{rot} f\|_{2,2}\right) \quad \text { (by (2.7)) }
\end{align*}
$$

for all $t \in[0, T]$, where C_{3} is a constant independent of m.
Taking into account (1.1) and (2.2), we can deduce from (2.7) and (2.11) that the sequence $\left\{u_{m}\right\}_{m=1}^{\infty}$ remains in a bounded set of $L^{\infty}(0, T ; V)$ and that the sequence $\left\{B_{m}\right\}_{m=1}^{\infty}$ remains in a bounded set of $L^{\infty}(0, T ; V) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right)$. Hence there exist a subsequence of $\left\{u_{m}, B_{m}\right\}$, which we denote by the same letter, and functions $u \in L^{\infty}(0, T ; V)$ and $B \in L^{\infty}(0, T ; V) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right)$ such that

$$
\begin{array}{ll}
u_{m} \rightarrow u & \text { weakly-star in } L^{\infty}(0, T ; V), \\
B_{m} \rightarrow B & \text { weakly-star in } L^{\infty}(0, T ; V), \tag{2.12}\\
& \text { weakly in } L^{2}\left(0, T ; H^{2}(\Omega)\right) .
\end{array}
$$

Moreover by (2.4) and (2.11), we see that for each fixed j, the families $\left\{\left(u_{m}(t), \phi_{j}\right)\right\}_{m=1}^{\infty}$ and $\left\{\left(B_{m}(t), \phi_{j}\right)\right\}_{m=1}^{\infty}$ form uniformly bounded and equicontinuous families of continuous functions on $[0, T]$, respectively (see, e.g., Ladyzhenskaya [10, p. 175]). Hence by the Ascoli-Arzera theorem and the usual diagonal argument, there exist subsequences $\left\{u_{m_{i}}(t)\right\}$ and $\left\{B_{m_{i}}(t)\right\}$ of $\left\{u_{m}(t)\right\}$ and $\left\{B_{m}(t)\right\}$ which converge to some $\bar{u}(t)$ and $\bar{B}(t)$, uniformly in $t \in[0, T]$ in the weak topology of H, respectively. Clearly $u=\bar{u}$ and $B=\bar{B}$. For simplicity, we shall assume that the original sequences u_{m} and B_{m} converge to u and B, respectively.

By means of the techniques of the Friedrichs inequality (Courant-Hilbert [2, p. 519]) and (1.1), we have

$$
\begin{equation*}
u_{m} \rightarrow u \quad \text { strongly in } L^{2}\left(Q_{T}\right)^{2}, \quad B_{m} \rightarrow B \text { strongly in } L^{2}\left(Q_{T}\right)^{2} . \tag{2.13}
\end{equation*}
$$

Now by the routine passage to the limit (see, e.g., Temam [16]), we can deduce from (2.12) and (2.13) that $\{u, B\}$ is a weak solution of (*).

To complete the proof of Theorem 1, it remains to show that $B \in C([0, T] ; V)$. Since $u \in L^{\infty}(0, T ; V), B \in L^{2}\left(0, T ; \boldsymbol{H}^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V)$, we get by the Gagliardo-Nirenberg inequality and the continuous imbedding $H^{2}(\Omega) \subset L^{\infty}(\Omega)$

$$
\begin{aligned}
\|(u, \nabla) B-(B, \nabla) u\| & \leqq\|(u, \nabla) B\|+\|(B, \nabla) u\| \leqq\|u\|_{L^{4}(\Omega)}\|\nabla B\|_{L^{4}(\Omega)}+\|B\|_{L^{\infty}(\Omega)}\|\nabla u\| \\
& \leqq C\|u\|^{1 / 2}\|\nabla u\|^{1 / 2}\|\nabla B\|^{1 / 2}\|B\|_{H^{2}(\Omega)}+C\|B\|_{H^{2}(\Omega)}\|\nabla u\| \\
& \leqq C\|u\|_{L^{\infty}(0, T ; V)}\|B\|_{L^{\infty}(0, T ; V)}^{1 / 2}\|B\|_{H^{2}(\Omega)}^{1 / 2}+C\|u\|_{L^{\infty}(0, T ; V)}\|B\|_{H^{2}(\Omega)} .
\end{aligned}
$$

This implies $(u, \nabla) B-(B, \nabla) u=\operatorname{rot}(B \wedge u) \in L^{2}(0, T ; H)$. Hence by the second identity of Definition 1.1 (ii), we see that $B^{\prime} \in L^{2}(0, T ; H)$. Therefore, it follows from Lions-Magenes [12, p. 19, Theorem 3.1] that $B \in C([0, T] ; V)$.
3. Existence of a local classical solution; Prood of Theorem 2. In this section, we shall show the existence of a local classical solution by using the Schauder fixed point theorem as in Kato [8] and Kikuchi [9].

3.1. Construction of the flow u.

Lemma 3.1. Under the assumption 1 , there exist $u^{(k)} \in C^{1+\mu}(\bar{\Omega})(k=1, \cdots, m)$ for some $\mu>0$ satisfying the following properties:
(i) $\operatorname{div} u^{(k)}=0, \quad \operatorname{rot} u^{(k)}=0 \quad$ in $\quad \Omega, \quad u^{(k)} \cdot v=0 \quad$ on $\quad \partial \Omega ; \quad(k=1, \cdots, m)$
(ii) $\int_{S_{j}} u^{(k)} \cdot \tau d S=0$ if $j \neq k, \quad \int_{S_{k}} u^{(k)} \cdot \tau d S=1, \quad(j=0, \cdots, m, k=1, \cdots, m)$
where τ denotes the unit tangent vector on $\partial \Omega$ and dS denotes the line element of $\partial \Omega$.
Proof. It follows from Günter [7, p. 206, p. 209 (58)] that there exist m linearly independent functions $\psi^{(k)} \in C^{1+\mu}(\partial \Omega)(k=1, \cdots, m)$ satisfying the following properties (1), (2), (3):
(1) $\int_{S_{j}} \psi^{(k)} d S=0 \quad$ if $j \neq k, \quad \int_{S_{k}} \psi^{(k)} d S=1 ; \quad(j=0, \cdots, m, k=1, \cdots, m)$
(2) $\psi^{(k)}(x)=(1 / \pi) \int_{\partial \Omega} \psi^{(k)}(\xi)\left(\partial / \partial v_{x}\right) \log (1 /|x-\xi|) d_{\xi} S \quad$ for $\quad x \in \partial \Omega ; \quad(k=1, \cdots, m)$
(3) For each $k=1, \cdots, m$, the function $\int_{\partial \Omega} \psi^{(k)}(\xi) \log (1 /|x-\xi|) d_{\xi} S$ on \boldsymbol{R}^{2} is constant outside Ω.
Then the desired $u^{(k)}(k=1, \cdots, m)$ are defined by

$$
u^{(k)}(x)=\operatorname{rot}_{x}\left\{(1 / 2 \pi) \int_{\partial \Omega} \psi^{(k)}(\xi) \log (1 /|x-\xi|) d_{\xi} S\right\}
$$

Since the proof that such $u^{(k)}(k=1, \cdots, m)$ have the properties (i) and (ii) is parallel to that of Kikuchi [9, Lemma 1.5], we may omit details.

Now let us define a function space $S_{\alpha}(M, N)$ for $M>0, N>0$ and $0<\alpha<\operatorname{Min} .\{\theta, \mu\}$ by

$$
S_{\alpha}(M, N)=\left\{\phi \in C^{\alpha, \alpha}\left(\bar{Q}_{T}\right) ;|\phi|_{0,0} \leqq M, K^{\alpha, \alpha}(\phi) \leqq N\right\}
$$

For the notation, see Subsection 1.1. For $\phi \in S_{\alpha}(M, N)$, let us define a map $F_{1}: \phi \rightarrow u$ by

$$
u(t)=\operatorname{rot} G \phi(\cdot, t)+\sum_{k=1}^{m} \lambda_{k}(t) u^{(k)}
$$

where

$$
\begin{equation*}
\lambda_{k}(t)=\int_{S_{k}} u_{0} \cdot \tau d S+\int_{0}^{t} \int_{S_{k}} f(\xi, \sigma) \cdot \tau d_{\xi} S d \sigma-\int_{S_{k}} \operatorname{rot} G \phi(\cdot, t) \cdot \tau d S . \tag{3.1}
\end{equation*}
$$

Here, $\left\{u^{(k)}\right\}_{k=1}^{m}$ are as in Lemma 3.1 and G denotes the Green operator of $-\Delta$ with zero Dirichlet boundary condition on $\partial \Omega$.

Lemma 3.2. For $\phi \in S_{\alpha}(M, N)$, we have $u=F_{1} \phi \in C^{1+\alpha, \alpha^{-}}\left(\bar{Q}_{T}\right)$ for any $0<\alpha^{-}<\alpha$, $\operatorname{div} u=0$ in Ω and $u \cdot v=0$ on $\partial \Omega$. Moreover, there is a positive constant $C_{4}=C_{4}\left(\Omega, T,\left|u_{0}\right|_{0},|f|_{0,0}, M, N\right)$ such that $|u|_{1+\alpha, \alpha^{-}} \leqq C_{4}$.

Proof. Set $u=u_{1}+u_{2}$, where $u_{1}=\operatorname{rot} G \phi$ and $u_{2}=\sum_{k=1}^{m} \lambda_{k} u^{(k)}$. By Assumption 2 and Lemma 3.1, it is easy to see that the assertion of this lemma holds for u_{2}. Let us prove the assertion for u_{1}. By the Schauder estimate of $-\Delta$ (see, e.g., Gilbarg-Trudinger [6, Chapter 4]), there is a constant $C=C(\Omega, \alpha)$ such that

$$
\begin{align*}
& \sup _{(x, t) \in \bar{Q}_{T}}\left|u_{1}(x, t)\right|+\sup _{(x, t) \in \bar{Q}_{T}}\left|\nabla u_{1}(x, t)\right| \tag{3.2}\\
& \quad+\sup \left\{\left|\nabla u_{1}(x, t)-\nabla u_{1}\left(x^{\prime}, t\right)\right| /\left|x-x^{\prime}\right|^{\alpha} ;(x, t),\left(x^{\prime}, t\right) \in \bar{Q}_{T},\left|x-x^{\prime}\right|<1\right\} \\
& \quad \leqq \sup _{t \in[0, T]}\left|u_{1}(\cdot, t)\right|_{1+\alpha} \leqq C \sup _{t \in[0, T]}|\phi(\cdot, t)|_{\alpha} \leqq C|\phi|_{\alpha, \alpha} .
\end{align*}
$$

Similarly, for $x \in \bar{\Omega}, t, t^{\prime} \in[0, T]$ with $\left|t-t^{\prime}\right|<1$, the inequalities

$$
\begin{aligned}
& \left|u_{1}(x, t)-u_{1}\left(x, t^{\prime}\right)\right|+\left|\nabla u_{1}(x, t)-\nabla u_{1}\left(x, t^{\prime}\right)\right| \\
& \quad \leqq\left|u_{1}(\cdot, t)-u_{1}\left(\cdot, t^{\prime}\right)\right|_{1} \leqq C\left|\phi(\cdot, t)-\phi\left(\cdot, t^{\prime}\right)\right|_{r}
\end{aligned}
$$

hold for any $0<r<\alpha$. Using the argument of Kato [8, Lemma 1.2], we have

$$
\left|\phi(\cdot, t)-\phi\left(\cdot, t^{\prime}\right)\right|_{r} \leqq 2|\phi|_{\alpha, \alpha}\left|t-t^{\prime}\right|^{\alpha(1-r / \alpha)}
$$

and hence

$$
\begin{align*}
& \sup \left\{\left|u_{1}(x, t)-u_{1}\left(x, t^{\prime}\right)\right| /\left|t-t^{\prime}\right|^{\alpha^{-}} ;(x, t),\left(x, t^{\prime}\right) \in \bar{Q}_{T},\left|t-t^{\prime}\right|<1\right\} \tag{3.3}\\
& \quad+\sup \left\{\left|\nabla u_{1}(x, t)-\nabla u_{1}\left(x, t^{\prime}\right)\right| /\left|t-t^{\prime}\right|^{-} ;(x, t),\left(x, t^{\prime}\right) \in \bar{Q}_{T},\left|t-t^{\prime}\right|<1\right\} \\
& \quad \leqq C|\phi|_{\alpha, \alpha}
\end{align*}
$$

holds with $\alpha^{-}:=\alpha(1-r / \alpha)$. It follows from (3.2) and (3.3) that u_{1} has the desired property.
3.2. Construction of the magnetic field B. In this subsection, we shall solve the following equations for the magnetic field B :
(M.E.)

$$
\begin{array}{ll}
\partial_{t} B-\Delta B+(u, \nabla) B-(B, \nabla) u=0 & \text { in } Q_{T}, \\
\operatorname{div} B=0 & \text { in } Q_{T}, \\
B \cdot v=0, \operatorname{rot} B=0 & \text { on } \partial \Omega \times(0, T), \\
\left.B\right|_{t=0}=B_{0}, &
\end{array}
$$

where u is the flow constructed in the preceding subsection. To this end, we shall transform (M.E.) to the equations for a scalar potential of B. Let us first consider the following system of equations of parabolic type:

$$
\begin{array}{ll}
\partial_{t} \bar{B}-\Delta \bar{B}+(u, \nabla) \bar{B}-(\bar{B}, \nabla) u=0 & \text { in } Q_{T} \\
\bar{B} \cdot v=0, \operatorname{rot} \bar{B}=0 & \text { on } \partial \Omega \times(0, T) \tag{P.S.}\\
\left.\bar{B}\right|_{t=0}=\bar{B}_{0} . &
\end{array}
$$

We define a weak solution of (P.S.) as follows:
Definition 3.1. Let $\bar{B}_{0} \in L^{2}(\Omega)$ and $u, \nabla u \in C^{\alpha, \alpha / 2}\left(\bar{Q}_{T}\right)$. Let $\boldsymbol{H}_{N}^{1}(\Omega)=\left\{\phi \in \boldsymbol{H}^{1}(\Omega)\right.$; $\phi \cdot v=0$ on $\partial \Omega\}$. A measurable vector function \bar{B} on Q_{T} is called a weak solution of (P.S.) if
(i) $\bar{B} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{N}^{1}(\Omega)\right)$;
(ii) $\int_{0}^{T}\left\{-\left(\bar{B}, \partial_{t} \Phi\right)+(\operatorname{rot} \bar{B}, \operatorname{rot} \Phi)+(\operatorname{div} \bar{B}, \operatorname{div} \Phi)+((u, \nabla) \bar{B}-(\bar{B}, \nabla) u, \Phi)\right\} d t=\left(\bar{B}_{0}, \Phi(0)\right)$ for all $\Phi \in C_{0}^{1}\left([0, T) ; H_{N}^{1}(\Omega)\right)$.

In the above definition, for a smooth solution \bar{B}, we have by integration by parts

$$
\begin{aligned}
(-\Delta \bar{B}, \Phi) & =(\operatorname{rot}(\operatorname{rot} \bar{B})-\nabla(\operatorname{div} \bar{B}), \Phi) \\
& =\int_{\Omega} \operatorname{rot} \bar{B} \operatorname{rot} \Phi d x-\int_{\partial \Omega}(\operatorname{rot} \bar{B}) v \wedge \Phi d S+\int_{\Omega} \operatorname{div} \bar{B} \operatorname{div} \Phi d x-\int_{\partial \Omega}(\operatorname{div} \bar{B}) \Phi \cdot v d S \\
& =(\operatorname{rot} \bar{B}, \operatorname{rot} \Phi)+(\operatorname{div} \bar{B}, \operatorname{div} \Phi),
\end{aligned}
$$

since $\operatorname{rot} \bar{B}=0, \Phi \cdot v=0$ on $\partial \Omega$.
Since (P.S.) is a system of linear equations for \bar{B}, it is not difficult to see the following:

Proposition 3.1. Suppose that $\bar{B}_{0} \in \boldsymbol{L}^{2}(\Omega)$ and $u, \nabla u \in C^{\alpha, \alpha / 2}\left(\bar{Q}_{T}\right)$. Then there exists a unique weak solution \bar{B} of (P.S.).

In order to solve the equations for a scalar potential of B, we need the following:
Lemma 3.3. Let B_{0} be as in the assumption 2. Then the boundary value problem

$$
-\Delta \psi_{0}=\operatorname{rot} B_{0} \quad \text { in } \quad \Omega, \quad \psi_{0}=0 \quad \text { on } \quad \partial \Omega
$$

has a unique solution ψ_{0} in $C^{3+\theta}(\bar{\Omega})$. Moreover, there is a constant $C_{5}=C_{5}(\Omega, \theta)$ with $\left|\psi_{0}\right|_{3+\theta} \leqq C_{5}\left|B_{0}\right|_{2+\theta}$.

For the proof, see, for example, Gilbarg-Trudinger [6].
Lemma 3.4. Let u and ψ_{0} be as in the preceding subsection and Lemma 3.3, respectively. Then there exists a unique scalar function ψ in $C^{2+\alpha,(2+\alpha) / 2}\left(\bar{Q}_{T}\right)$ such that

$$
\begin{array}{ll}
\partial_{t} \psi-\Delta \psi+(u, \nabla) \psi=0 & \text { in } \quad Q_{T}, \\
\psi=0 & \text { on } \partial \Omega \times(0, T), \tag{P.E.}\\
\left.\psi\right|_{t=0}=\psi_{0} . &
\end{array}
$$

Since $u \in C^{1+\alpha, \alpha / 2}\left(\bar{Q}_{T}\right)$ by Lemma 3.2, the assertion of this lemma follows from a general theory of parabolic equations. See, for example, Ladyzhenskaya-SolonnikovUral'ceva [11, p. 320, Theorem 5.2].

We can now show the existence of a regular solution of (M.E.).
Lemma 3.5. Let ψ be as in Lemma 3.4. Then $B=\operatorname{rot} \psi$ is in $C^{2+\alpha,(2+\alpha) / 2}\left(\bar{Q}_{T}\right)$ and satisfies the equations (M.E.). Moreover, there is a positive constant $C_{6}=C_{6}\left(\Omega, T, \alpha,\left|u_{0}\right|_{0}\right.$, $\left.|f|_{0,0}, M, N\right)$ such that $|B|_{2+\alpha,(2+\alpha) / 2} \leqq C_{6}\left|B_{0}\right|_{2+\theta}$.

Proof. To begin with, suppose that $B=\operatorname{rot} \psi$ is a weak solution of (P.S.) with the initial data B_{0}. Since $B_{0} \in C^{2+\theta}(\bar{\Omega})$ by Assumption 2 and since $u, \nabla u \in C^{\alpha, \alpha / 2}\left(\bar{Q}_{T}\right)$ with $|u|_{1+\alpha, \alpha^{-}} \leqq C_{4}$ by Lemma 3.2, we can deduce from Ladyzhenskaya-SolonnikovUral'ceva [11, p. 616, Theorem 10.1] by taking $b=1, r=2, s_{1}=s_{2}=0, t_{1}=t_{2}=2, \sigma_{1}=-2$, $\sigma_{2}=-1, \rho_{1}=\rho_{2}=-2$ and $l=\alpha$ that there exists a unique solution \bar{B} of (P.S.) in $C^{2+\alpha,(2+\alpha) / 2}\left(\bar{Q}_{T}\right)$ with the initial data \bar{B}_{0} replaced by B_{0}. Moreover, we see such \bar{B} is subject to the inequality

$$
|\bar{B}|_{2+\alpha,(2+\alpha) / 2} \leqq C_{6}\left|B_{0}\right|_{2+\theta} .
$$

Since such \bar{B} is clearly a weak solution of (P.S.) with the initial data B_{0}, Proposition 3.1 enables us to assert $B=\bar{B}$. Taking into account the fact that $\operatorname{div}($ rot $)$ is identically equal to zero, we have the desired result.

Now it suffices to prove that $B=\operatorname{rot} \psi$ is a weak solution of (P.S.) with the initial data B_{0}. Since $\left.\psi\right|_{\partial \Omega \times(0, T)}=0$, we have $B \cdot v=\operatorname{rot} \psi \cdot v=\partial \psi / \partial \tau=0(\partial / \partial \tau$; tangential derivation) on $\partial \Omega \times(0, T)$ and clearly $B \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \boldsymbol{H}_{N}^{1}(\Omega)\right)$.

Concerning that initial condition, we have $\operatorname{rot} \psi(0)=\operatorname{rot} \psi_{0}=B_{0}$. Indeed, the vector function $V:=\operatorname{rot} \psi_{0}-B_{0}$ is in $C^{2+\theta}(\bar{\Omega})$ and satisfies $\operatorname{div} V=0$ in Ω and $V \cdot v=$
$\partial \psi_{0} / \partial \tau-B_{0} \cdot v=0$ on $\partial \Omega$. Hence by the well-known decomposition theorem of solenoidal vector fields on Ω (see Kato [8, p. 193, (1.13)]), V can be written as $V=\operatorname{rot} G(\operatorname{rot} V)+\nabla p$ for some $p \in C^{\infty}(\bar{\Omega})$. Moreover, since rot $V=-\Delta \psi_{0}-\operatorname{rot} B_{0}=0$ in Ω by Lemma 3.3, such p must satisfy $\Delta p=0$ in Ω and $\partial p / \partial v=0$ on $\partial \Omega$. Therefore $p=$ const. and $V=0$, as we wished to show.

Finally, we may show the identity (ii) in Definition 3.1 for B with \bar{B}_{0} replaced by B_{0}. It follows from (P.E.) that

$$
\begin{equation*}
\int_{0}^{T}\left(\partial_{t} \psi+\operatorname{rot} B+(u, \nabla) \psi, \operatorname{rot} \Phi\right) d t=0 \tag{3.4}
\end{equation*}
$$

for all $\Phi \in C_{0}^{1}\left([0, T) ; \boldsymbol{H}_{N}^{1}(\Omega)\right)$. By integration by parts we get

$$
\begin{align*}
& \int_{0}^{T}\left(\partial_{t} \psi, \operatorname{rot} \Phi\right) d t=-\int_{0}^{T}\left(\psi, \operatorname{rot} \partial_{t} \Phi\right) d t-(\psi(0), \operatorname{rot} \Phi(0)) \tag{3.5}\\
& \quad=-\int_{0}^{T}\left(\operatorname{rot} \psi, \partial_{t} \Phi\right) d t-\int_{0}^{T} \int_{\partial \Omega} \psi\left(\partial_{t} \Phi \wedge v\right) d S d t-\left(\operatorname{rot} \psi_{0}, \Phi(0)\right) \\
& \quad-\int_{\partial \Omega} \psi_{0}(\Phi(0) \wedge v) d S=-\int_{0}^{T}\left(B, \partial_{t} \Phi\right) d t-\left(B_{0}, \Phi(0)\right), \\
& \int_{0}^{T}((u, \nabla) \psi, \operatorname{rot} \Phi) d t=\int_{0}^{T}(\operatorname{rot}((u, \nabla) \psi), \Phi) d t+\int_{0}^{T} \int_{\partial \Omega}(u, \nabla) \psi(\Phi \wedge v) d S d t
\end{align*}
$$

Since $\psi=0$ on $\partial \Omega, \nabla \psi$ is perpendicular to $\partial \Omega$ and hence $(u, \nabla) \psi=0$ on $\partial \Omega$. Thus the second integrand above is equal to zero. Moreover since $\operatorname{div} u=0$, we have $\operatorname{rot}((u, \nabla) \psi)=(u, \nabla) \operatorname{rot} \psi-(\operatorname{rot} \psi, \nabla) u$. Therefore

$$
\begin{equation*}
\int_{0}^{T}((u, \nabla) \psi, \operatorname{rot} \Phi) d t=\int_{0}^{T}((u, \nabla) B-(B, \nabla) u, \Phi) d t . \tag{3.6}
\end{equation*}
$$

Since $\operatorname{div} B=0$, it follows from (3.4), (3.5) and (3.6) that $B=\operatorname{rot} \psi$ satisfies the equation which we wished to prove. This completes the proof.

Lemma 3.5 enables us to define a map

$$
F_{2}: C^{1+\alpha, \alpha / 2}\left(\bar{Q}_{T}\right) \rightarrow C^{2+\alpha,(2+\alpha) / 2}\left(\bar{Q}_{T}\right)
$$

by $B=F_{2} u$.
3.3. Vorticity equation. Applying rot to both sides of the first equation of (*), we get
(V.E.)

$$
\begin{aligned}
& \partial_{t} \omega+(u, \nabla) \omega=(B, \nabla) J+\operatorname{rot} f \quad \text { in } \quad Q_{T} \\
& \omega(0)=\omega_{0}
\end{aligned}
$$

where $\omega=\operatorname{rot} u, J=\operatorname{rot} B$ and $\omega_{0}=\operatorname{rot} u_{0}$. We shall consider (V.E.) as the initial value problem for ω.

Let u and B be as in the preceding subsections. For a weak solution ω of (V.E.) we give the following definition:

$$
\begin{equation*}
\omega(x, t)=\omega_{0}\left(U_{0, t}(x)\right)+\int_{0}^{t}(B, \nabla) J\left(U_{s, t}(x), s\right) d s+\int_{0}^{t} \operatorname{rot} f\left(U_{s, t}(x), s\right) d s \tag{3.7}
\end{equation*}
$$

where $U_{s, t}(x)$ is the solution of the initial value problem of the ordinary differential equation

$$
\begin{aligned}
& d U_{s, t}(x) / d s=u\left(U_{s, t}(x), s\right), \\
& U_{t, t}(x)=x \in \Omega
\end{aligned}
$$

As is well known, if $\omega_{0},(B, \nabla) J$ and rot f are in C^{1}, then ω defined by (3.7) is a classical solution of (V.E.).

Remark 3.1. (i) Since $u^{(k)} \in C^{1+\mu}(\bar{\Omega})(k=1, \cdots, m)$ and since $\left|\lambda_{k}(t)\right| \leqq C_{7}(\Omega$, $\left.T,|u|_{0},|f|_{0,0}, M\right)$ for all $t \in[0, T](k=1, \cdots, m)$ (see Kato [8, Lemma 1.4]), it follows from Kato [8, Lemma 2.6] that there are positive constants $C_{8}=C_{8}(\Omega, M)$ and $\delta=\delta(\Omega, T, M)$ independent of N such that

$$
\left|U_{s, t}(x)-U_{s^{\prime}, t^{\prime}}\left(x^{\prime}\right)\right| \leqq C_{8}\left(\left|x-x^{\prime}\right|^{\delta}+\left|s-s^{\prime}\right|^{\delta}+\left|t-t^{\prime}\right|^{\delta}\right)
$$

for $\left|x-x^{\prime}\right| \leqq 1,\left|s-s^{\prime}\right| \leqq 1,\left|t-t^{\prime}\right| \leqq 1$.
(ii) There is a positive constaṇt $C_{9}=C_{9}\left(\Omega, T,\left|u_{0}\right|_{0},|f|_{0,0}, M, N\right)$ such that

$$
\left|U_{s, t}(x)-U_{s^{\prime}, t}\left(x^{\prime}\right)\right| \leqq C_{9}\left(\left|x-x^{\prime}\right|+\left|s-s^{\prime}\right|+\left|t-t^{\prime}\right|\right)
$$

for $\left|x-x^{\prime}\right| \leqq 1,\left|s-s^{\prime}\right| \leqq 1,\left|t-t^{\prime}\right| \leqq 1$. In comparison with the inequality in (i), we can choose $\delta=1$, but the constant C_{9} may depend on N.

Let us show, for example, $\left|U_{s, t}(x)-U_{s, t}\left(x^{\prime}\right)\right| \leqq C_{9}\left|x-x^{\prime}\right|$ for $x, x^{\prime} \in \bar{\Omega}$ and $0 \leqq t \leqq s$. Taking $x(s)=U_{s, t}(x)$ and $x^{\prime}(s)=U_{s, t}\left(x^{\prime}\right)$, we have $\left|d\left(x(s)-x^{\prime}(s)\right) / d s\right|=\mid u(x(s), s)-u\left(x^{\prime}(s)\right.$, $s)\left|\leqq|u|_{1,0}\right| x(s)-x^{\prime}(s) \mid$. Hence $\left|x(s)-x^{\prime}(s)\right| \leqq\left|x-x^{\prime}\right|+|u|_{1,0} \int_{t}^{s}\left|x(\tau)-x^{\prime}(\tau)\right| d \tau$. By the Gronwall inequality and Lemma 3.2, we get $\left|x(s)-x^{\prime}(s)\right| \leqq e^{|u|_{1,0} T}\left|x-x^{\prime}\right| \leqq C_{9}\left|x-x^{\prime}\right|$, which implies the desired result when $t=t^{\prime}$ and $s=s^{\prime}$. Since the proof in another case is parallel to that of Kato [8, Lemma 2.6, (ii), (iii)], we may omit it.
(iii) For any $\Phi \in C^{1}(\bar{\Omega}), \omega$ satisfies the identity

$$
d / d t(\omega(t), \Phi)=(\omega(t),(u(t), \nabla) \Phi)+((B(t), \nabla) J(t)+\operatorname{rot} f(t), \Phi) .
$$

Lemma 3.6. There are positive constants $\alpha^{*}=\alpha^{*}(\Omega, T, \theta, M), C_{10}=C_{10}(\Omega, T$, $\theta, M)$ independent of N and $C_{11}=C_{11}\left(\Omega, T, \theta,\left|u_{0}\right|_{0},|f|_{0,0}, M, N\right)$ such that $\omega \in$ $C^{\alpha^{*}, \alpha^{*}}\left(\bar{Q}_{T}\right)$ and

$$
\begin{gather*}
|\omega|_{0,0} \leqq\left|u_{0}\right|_{1}+T|f|_{1,0}+C_{11}\left|B_{0}\right|_{2+\theta}^{2}, \tag{3.8}\\
K^{\alpha^{*}, \alpha^{*}}(\omega) \leqq C_{10}\left(\left|u_{0}\right|_{1+\theta}+|f|_{1+\theta, 0}\right)+C_{11}\left|B_{0}\right|_{2+\theta}^{2} . \tag{3.9}
\end{gather*}
$$

Proof. Since $U_{s, t}(\cdot)$ is a one-to-one measure preserving map of $\bar{\Omega}$ onto itself (see Kato [8, Lemma 2.3]), (3.8) is an immediate consequence of Lemma 3.5. Let ω_{1}, ω_{2} and ω_{3} be

$$
\omega_{1}(x, t)=\omega_{0}\left(U_{0, t}(x)\right), \quad \omega_{2}(x, t)=\int_{0}^{t} \operatorname{rot} f\left(U_{s, t}(x), s\right) d s
$$

and

$$
\omega_{3}(x, t)=\int_{0}^{t}(B, \nabla) J\left(U_{s, t}(x), s\right) d s
$$

By Remark 3.1 (i), we get

$$
\begin{aligned}
\left|\omega_{1}(x, t)-\omega_{1}\left(x^{\prime}, t^{\prime}\right)\right| & \leqq\left|\omega_{0}\left(U_{0, t}(x)\right)-\omega_{0}\left(U_{0, t}\left(x^{\prime}\right)\right)\right|+\left|\omega_{0}\left(U_{0, t}\left(x^{\prime}\right)\right)-\omega_{0}\left(U_{0, t^{\prime}}\left(x^{\prime}\right)\right)\right| \\
& \leqq\left|u_{0}\right|_{1+\theta}\left(\left|U_{0, t}(x)-U_{0, t}\left(x^{\prime}\right)\right|^{\theta}+\left|U_{0, t}\left(x^{\prime}\right)-U_{0, t^{\prime}}\left(x^{\prime}\right)\right|^{\mid}\right) \\
& \leqq 2 C_{8}^{\theta}\left|u_{0}\right|_{1+\theta}\left(\left|x-x^{\prime}\right|^{\beta \delta}+\left|t-t^{\prime}\right|^{\theta \delta}\right) .
\end{aligned}
$$

Taking $\alpha^{*}=\theta \delta\left(\alpha^{*}=\alpha^{*}(\Omega, T, \theta, M)\right)$, we obtain

$$
\begin{equation*}
K^{\alpha^{*}, \alpha^{*}}\left(\omega_{1}\right) \leqq C_{10}\left|u_{0}\right|_{1+\theta} . \tag{3.10}
\end{equation*}
$$

Similarly it follows that

$$
\begin{equation*}
K^{\alpha^{*}, \alpha^{*}}\left(\omega_{2}\right) \leqq C_{10}|f|_{1+\theta, 0} . \tag{3.11}
\end{equation*}
$$

By Lemma 3.5 with α replaced by α^{*} and Remark 3.1 (ii), we have for $t>t^{\prime}$

$$
\begin{aligned}
\left|\omega_{3}(x, t)-\omega_{3}\left(x^{\prime}, t^{\prime}\right)\right| \leqq & \int_{0}^{t}\left|(B, \nabla) J\left(U_{s, t}(x), s\right)-(B, \nabla) J\left(U_{s, t}\left(x^{\prime}\right), s\right)\right| d s \\
& +\int_{0}^{t}\left|(B, \nabla) J\left(U_{s, t}\left(x^{\prime}\right), s\right)-(B, \nabla) J\left(U_{s, t^{\prime}}\left(x^{\prime}\right), s\right)\right| d s \\
& +\left|\int_{t^{\prime}}^{t}(B, \nabla) J\left(U_{s, t^{\prime}}\left(x^{\prime}\right), s\right) d s\right| \\
& \leqq C_{9}^{\alpha^{*}} \int_{0}^{t}|(B, \nabla) J|_{\alpha^{*}, 0}\left(\left.\left|x-x^{\prime}\right|\right|^{*}+\left|t-t^{\prime}\right|^{\alpha^{*}}\right) d s+|(B, \nabla) J|_{0,0}\left|t-t^{\prime}\right| \\
& \leqq C_{9}^{\alpha^{*}} C_{6}^{2}(T+1)\left|B_{0}\right|_{2+\theta}^{2}\left(\left.\left|x-x^{\prime}\right|\right|^{*}+\left|t-t^{\prime}\right| \alpha^{*}+\left|t-t^{\prime}\right|\right)
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
K^{\alpha^{*}, \alpha^{*}}\left(\omega_{3}\right) \leqq C_{11}\left|B_{0}\right|_{2+\theta}^{2} . \tag{3.12}
\end{equation*}
$$

Then (3.9) follows from (3.10), (3.11) and (3.12). This completes the proof.
Lemma 3.6 enables us to define a map

$$
F_{3}: \boldsymbol{C}^{1+\alpha^{*}, \alpha^{*} / 2}\left(\bar{Q}_{T}\right) \times C^{2+\alpha^{*},\left(2+\alpha^{*} / 2\right.}\left(\bar{Q}_{T}\right) \rightarrow C^{\alpha^{*}, \alpha^{*}}\left(\bar{Q}_{T}\right)
$$

by $\omega=F_{3}(u, B)$, where ω is as in (3.7).
3.4. Application of the fixed point theorem. We take two positive numbers M and N and exponent α^{*} as follows:

$$
\begin{gathered}
M>\left|u_{0}\right|_{1}+T|f|_{1,0}, \quad N>C_{10}(\Omega, T, \theta, M)\left(\left|u_{0}\right|_{1+\theta}+|f|_{1+\theta, 0}\right), \\
\alpha^{*}=\alpha^{*}(\Omega, T, \theta, M),
\end{gathered}
$$

where C_{10} and α^{*} are as in Lemma 3.6. For such M, N and α^{*}, we define a subset $S_{\alpha^{*}}(M, N)$ of continuous functions on \bar{Q}_{T} as in Subsection 3.1. Clearly $S_{\alpha^{*}}(M, N)$ is a compact convex subset in the Banach space $C\left(\bar{Q}_{T}\right)$. Moreover, we define a map F on $S_{\alpha^{*}}(M, N)$ by

$$
F \phi=F_{3}\left(F_{1} \phi, F_{2}\left(F_{1} \phi\right)\right) \quad \text { for } \quad \phi \in S_{\alpha^{*}}(M, N)
$$

with α replaced by α^{*} in the context of the preceding subsections. Then it follows from Lemmas 3.2, 3.5 and 3.6 that F maps $S_{\alpha^{*}}(M, N)$ into $C^{\alpha^{*}, \alpha^{*}}\left(\bar{Q}_{T}\right)$. More precisely, by (3.8) and (3.9) we have the following:

Lemma 3.7. There are two numbers $M=M\left(\Omega, T,\left|u_{0}\right|_{1},|f|_{1,0}\right)$ and $N=$ $N\left(\Omega, T,\left|u_{0}\right|_{1+\theta},|f|_{1+\theta, 0}\right)$, positive exponent $\alpha^{*}=\alpha^{*}\left(\Omega, T,\left|u_{0}\right|_{1},|f|_{1,0}\right)$ and constant $C_{*}=C_{*}\left(\Omega, T,\left|u_{0}\right|_{1+\theta},|f|_{1+\theta, 0}\right)$ such that if $\left|B_{0}\right|_{2+\theta} \leqq C_{*}$, then F maps $S_{\alpha^{*}}(M, N)$ into itself.

In order to apply the Schauder fixed point theorem, we need:
Lemma 3.8. Under the condition of Lemma 3.7, F is continuous on $S_{\alpha^{*}}(M, N)$ with respect to the topology of $C\left(\bar{Q}_{T}\right)$.

Proof. Let $\phi_{n}, \phi \in S_{\alpha^{*}}(M, N), n=1,2, \cdots$ and $\left|\phi_{n}-\phi\right|_{0,0} \rightarrow 0$ as $n \rightarrow \infty$. Let $u_{n}=$ $F_{1} \phi_{n}, u=F_{1} \phi, B_{n}=F_{2} u_{n}, B=F_{2} u, \omega_{n}=F_{3}\left(u_{n}, B_{n}\right), \omega=F_{3}(u, B)$ and let $U_{s, t}^{n}(x)$ and $U_{s, t}(x)$ be the solutions of $d U_{s, t}^{n}(x) / d s=u_{n}\left(U_{s, t}^{n}(x), s\right), U_{t, t}^{n}(x)=x$ and $d U_{s, t}(x) / d s=u\left(U_{s, t}(x), s\right)$, $U_{t, t}(x)=x$, respectively. Since $u_{n}-u=\operatorname{rot} G\left(\phi_{n}-\phi\right)-\sum_{k=1}^{m}\left(\int_{S_{k}} \operatorname{rot} G\left(\phi_{n}-\phi\right) \cdot \tau d S\right) u^{(k)}$ (for $u^{(k)}, k=1, \cdots, m$, see Lemma 3.1), we see by Kato [8, Lemma 1.4] that $\left|u_{n}-u\right|_{0,0} \rightarrow 0$. Then it follows from a general theory for ordinary differential equations that $U_{s, t}^{n}(x) \rightarrow U_{s, t}(x)$ uniformly in $x \in \bar{\Omega}, s, t \in[0, T]$. Hence by (3.7), it suffices to prove that

$$
\begin{equation*}
\left|\partial_{x}^{\gamma} B_{n}-\partial_{x}^{\gamma} B\right|_{0,0} \rightarrow 0 \quad \text { for } \quad|\gamma| \leqq 2 \tag{3.13}
\end{equation*}
$$

We shall first prove that $B_{n} \rightarrow B$ uniformly in \bar{Q}_{T}. Let ψ_{n} and ψ be the scalar potentials of B_{n} and B defined as in Lemmas 3.4 and 3.5, respectively. Then we have

$$
\begin{aligned}
& \partial_{t} \Psi_{n}-\Delta \Psi_{n}+\left(u_{n}, \nabla\right) \Psi_{n}+\left(\left(u_{n}-u\right), \nabla\right) \psi=0 \text { in } Q_{T} \\
& \Psi_{n}=0 \quad \text { on } \quad \partial \Omega \times(0, T)
\end{aligned}
$$

$$
\left.\Psi_{n}\right|_{t=0}=0
$$

where $\Psi_{n}=\psi_{n}-\psi$. Hence Ψ_{n} can be written as

$$
\Psi_{n}(x, t)=-\int_{0}^{t} d \sigma \int_{\Omega} E(x, y, t-\sigma)\left\{\left(u_{n}, \nabla\right) \Psi_{n}(y, \sigma)+\left(\left(u_{n}-u\right), \nabla\right) \psi(y, \sigma)\right\} d y
$$

where $E(x, y, t)$ is the fundamental solution of $\partial_{t}-\Delta$ with zero Dirichlet condition on $\partial \Omega$. Hence it follows from a well-known property of the fundamental solution (see, e.g., Friedman [4]) that

$$
\begin{aligned}
\left|\nabla \Psi_{n}(x, t)\right| \leqq & \int_{0}^{t} d \sigma \int_{\Omega}\left|\nabla_{x} E(x, y, t-\sigma)\right|\left\{\left|u_{n}(y, \sigma)\right|\left|\nabla_{y} \Psi_{n}(y, \sigma)\right|\right. \\
& \left.+\left|u_{n}(y, \sigma)-u(y, \sigma)\right|\left|\nabla_{y} \psi(y, \sigma)\right|\right\} d y \\
\leqq & C(T)\left\{\left|u_{n}\right|_{0,0} \int_{0}^{t}(t-\sigma)^{-1 / 2}\left|\nabla \Psi_{n}(\cdot, \sigma)\right|_{0} d \sigma+|\nabla \psi|_{0,0}\left|u_{n}-u\right|_{0,0}\right\} .
\end{aligned}
$$

Using Gronwall's technique, we get

$$
\begin{aligned}
\left|\nabla \Psi_{n}(\cdot, t)\right|_{0} & \leqq C(T)|\nabla \psi|_{0,0}\left|u_{n}-u\right|_{0,0} \exp \left(C(T)\left|u_{n}\right|_{0,0} \int_{0}^{t}(t-\sigma)^{-1 / 2} d \sigma\right) \\
& \leqq C(T) \exp \left(2 T^{1 / 2} C(T)\left|u_{n}\right|_{0,0}\right)|\nabla \psi|_{0,0}\left|u_{n}-u\right|_{0,0}
\end{aligned}
$$

for all $t \in[0, T]$ and hence

$$
\begin{equation*}
\left|\nabla \Psi_{n}\right|_{0,0} \leqq C \exp \left(C\left|u_{n}\right|_{0,0}\right)|\nabla \psi|_{0,0}\left|u_{n}-u\right|_{0,0} \tag{3.14}
\end{equation*}
$$

where C is a positive constant independent of n. Since $u_{n} \rightarrow u$ uniformly in \bar{Q}_{T}, we obtain from (3.14) that $\left|B_{n}-B\right|_{0,0} \rightarrow 0$. Moreover by the a priori estimate in Lemma 3.5, the sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ is precompact in $C^{2,1}\left(\bar{Q}_{T}\right)$. Hence every sequence in turn has a convergent subsequence with the limit B. Therefore the sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ itself converges to B in $C^{2,1}\left(\bar{Q}_{T}\right)$ and (3.13) follows. This completes the proof.

It follows from Lemmas 3.7, 3.8 and the Schauder fixed point theorem that under the condition of Lemma 3.7, there exists $\omega \in S_{a^{*}}(M, N)$ such that $F \omega=\omega$.
3.5. Proof of Theorem 2. Let ω be the fixed point of the map F constructed in the preceding subsection. Here we shall show that the pair $u=F_{1} \omega, B=F_{2}\left(F_{1} \omega\right)$ and some scalar function π is the classical solution of (*) stated in Theorem 2.

Concerning the regularity of u, we see by Kato [8, Lemmas 3.1 and 3.2] and Remark 3.1 (iii) that $u, \partial_{x} u$ and $\partial_{t} u$ are in $C\left(\bar{Q}_{T}\right)$. To show the existence of pressure π, we need:

Lemma 3.9. Let v be a vector-valued function of class $C^{k, q}\left(\bar{Q}_{T}\right)(k \geqq 0, q \geqq 0)$ satisfying

$$
\int_{S_{j}} v \cdot \tau d S=0(j=1, \cdots, m), \quad \int_{\Omega} v \cdot \operatorname{rot} \phi d x=0 \quad \text { for any } \quad \phi \in C_{0}^{\infty}(\Omega) .
$$

Then there exists a scalar function $\pi \in C^{k+1, q}\left(\bar{Q}_{T}\right)$ such that $v=-\nabla \pi$.
This may be regarded as a generalization of the Poincaré lemma. For the proof, see Kikuchi [9, Lemma 2.13].

Lemma 3.10 (Proof of Theorem 2). Under the condition of Lemma 3.7, there exists a scalar function $\pi \in C^{1,0}\left(\bar{Q}_{T}\right)$ such that the triple $\{u, B, \pi\}$ is the unique solution of (*) stated in Theorem 2.

Proof. Let $v=\partial_{t} u+(u, \nabla) u-(B, \nabla) B+\nabla\left((1 / 2)|B|^{2}\right)-f$. Since

$$
\int_{S_{j}}(w, \nabla) w \cdot \tau d S=\int_{S_{j}} \nabla\left((1 / 2)|w|^{2}\right) \cdot \tau d S=0 \quad(j=1, \cdots, m)
$$

for all $w \in C^{1}(\bar{\Omega})$ with $\operatorname{div} w=0$ and $w \cdot \tau=0$ on $\partial \Omega$, we have by Lemma 3.1 and (3.1) that

$$
\int_{S_{j}} v \cdot \tau d S=\int_{S_{j}}\left(\partial_{t} u-f\right) \cdot \tau d S=0 \quad(j=1, \cdots, m)
$$

Moreover since $\operatorname{rot} u=-\Delta G \omega=\omega$ by Lemma 3.1 (i) and since $(\operatorname{rot} u,(u, \nabla) \phi)=$ $-((u, \nabla) u$, rot $\phi)$ for all $\phi \in C_{0}^{\infty}(\Omega)$, we obtain from Remark 3.1 (iii)

$$
\int_{\Omega} v \cdot \operatorname{rot} \phi d x=0 \quad \text { for any } \quad \phi \in C_{0}^{\infty}(\Omega)
$$

Hence by Lemma 3.9, there exists a scalar function $\pi \in C^{1,0}\left(\bar{Q}_{T}\right)$ such that $v=-\nabla \pi$.
To prove that $\{u, B, \pi\}$ is the desired solution, it remains to show that $\left.u\right|_{t=0}=u_{0}$. Set $w=\left.u\right|_{t=0}-u_{0}$. Then it follows from (3.1) and (3.7) that

$$
\begin{gathered}
\operatorname{rot} w=\left.\operatorname{rot} u\right|_{t=0}-\operatorname{rot} u_{0}=\omega(\cdot, 0)-\omega_{0}=0, \\
\int_{S_{j}} w \cdot \tau d S=\int_{S_{j}} \operatorname{rot} G w(\cdot, 0) \cdot \tau d S+\lambda_{j}(0)-\int_{S_{j}} u_{0} \cdot \tau d S=0 \quad(j=1, \cdots, m) .
\end{gathered}
$$

Therefore by Lemma 3.9, we have $w=\nabla \eta$ for some $\eta \in C^{2}(\bar{\Omega})$. Since $\operatorname{div} w=0$ in Ω and $w \cdot v=0$ on $\partial \Omega$, such η must satisfy $\Delta \eta=0$ in Ω and $\partial \eta / \partial v=0$ on $\partial \Omega$. Hence $\eta=$ const. and $w=0$. This completes the proof.

References

[1] C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl. 40 (1972), 769-790.
[2] R. Courant and D. Hilbert, Methoden der Mathematischen Physik II, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
[3] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin-HeidelbergNew York, 1976.
[4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, London, 1963.
[5] V. GEORGESCU, Some boundary value problems for differential forms on compact Riemannian manifolds, Annali di Matematica Pura ed. Applica, Serie 4, 122 (1979), 159-198.
[6] D. Glbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[7] N. M. Günter, Potential Theory and Its Application to Basic Problems of Mathematical Physics, Frederick Ungar Publish Co., New York, 1967.
[8] T. Kato, On Classical Solutions of the Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal. 25 (1967), 188-200.
[9] K. KıKUCHI, Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo, Sec. IA 30 (1983), 63-92.
[10] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon \& Breach, New York, 1969.
[11] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translation of Mathematical Monographs Vol. 23, Amer. Math. Soc., Providence, Rhode Island 1968.
[12] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[13] T. Mryakawa, The L^{p} approach to the Navier-Stokes equations with the Neumann boundary condition, Hiroshima Math. J. 10 (1980), 517-537.
[14] M. Sermange and R. Temam, Some Mathematical Questions Related to the MHD Equations, Comm. Pure Appl. Math. 36 (1983), 635-664.
[15] H. Tanabe, Equations of Evolution, Pitman, London, 1979.
[16] R. Temam, Navier-Stokes Equations, 2nd Ed., North-Holland, Amsterdam, 1979.

Department of Applied Physics
Faculty of Engineering
Nagoya University
NaGOYA 464
JAPAN
Present Address:
Fachbereich Mathematik der
Universität-Gesamthochschule Paderborn
D-4790 Paderborn
Federál Republic of Germany

