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1. Introduction. For locally integrable functions / defined on Rn and a positive

integer N we define the Kakeya maximal operator KN as

KNf(x)= sup - i-f \f(y)\dy,
xeReΛN\R\ JR

where ΛN denotes the class of all rectangles in Rn of eccentricity N; that is, congruent

with any dilate of the rectangle [0, I ] " " 1 x[0, N], and where \A\ denotes Lebesgue

measure of the set A.

Given R e ΛN9 we can always find a cube in R", Q, with R c Q and \Q\ = Nn~1\R\.

Hence, we see that KN is an operator of weak type (1,1) with a constant which does

not exceed CyV" 1 . (Here and throughout the paper, Cn denotes always a constant

depending only on dimension, although its value may vary from one place to another.)

Using this estimate together with the trivial inequality

we obtain via the Marcinkiewicz interpolation theorem that KN is bounded on all Lp(Rn),

1 <p< oo, and moreover

Π Λ I / | | P .

p-l

It is conjectured however that for p=n a better estimate holds, namely,

(1) \\KNf\\Ln(Rn)<Cn(\ +\ogN)*M\\f\\Ln(Rn)

for some constant oc(ή) depending only on dimension.

This conjecture is closely related to a longstanding classical conjecture about the

boundedness of Bochner-Riesz means in Rn. Estimate (1) was obtained for the particu-

lar case n = 2 by Cordoba [2] (see also Fefferman [4], Strόmberg [9] and Wainger [10])

who used it to give a new proof of the celebrated Carleson-Sjόlin theorem ([1], [4]).

In a recent paper, Igari [5] has shown that estimate (1) holds in Rn for some constant

α(n) when we restrict ourselves to the class of radial functions. His result is the following:
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Let Λ'N be the class of all rectangles in Rn congruent with [0, I ] " " 1 x [0, N] and let

K'N be the corresponding maximal operator. Then for every radial function f we have

WNf\\Ln{Rn)<Cn(l +log N)1 + ίln\\f\\Ln{Rn).

His proof, although elementary, does not give a clear insight on the role played
by radial functions in this particular problem; moreover, the exponent α(«) = 1 + l/n is
not best possible even for the larger operator KN.

The purpose of this note is to present a simple proof of the following:

THEOREM 1. There exists a constant Cn such that for every radial function f one has

(i) t\{xeRn: KNf(x)>ή |1/W<CM(1 +log Λ O ^ ^ Ί I / I I L ^ )

(ϋ) \\KNf\\Ln(Rn)<Cn(\ + log N)\\f\\Ln(Rn).

Given a finite set of unit vectors Ω = {ωf}f=1, we also define MΩ as the maximal
operator over rectangles in Rn having one side parallel to one of the given directions
ωt. When these TV directions are uniformly distributed on S"1"1,- we will simply write
MN instead of MΩ.

It is easy to see that in Rn, KN is majorized by MNn-i and therefore Theorem 1
follows from the more general:

THEOREM 2. Let Ω denote a collection of N unit vectors in Rn. Then there exists
a constant Cn such that

(ϊ) t\{xeRn: Mβ/(x
(ϋ') \\MΩf\\Ln(Rn)<Cn(\

for every radial function f.

Our proof relies entirely on the study of the behaviour of the "universal" maximal
operator Jί (supremum over all rectangles in Rn) on radial functions and this reduces
matters to computing the constant of boundedness of the one-dimensional Hardy-
Littlewood maximal operator on LP(R) with respect to the weight w(ί) = | t\n~1

9p>n.
In addition to that, we will show with an easy example that the dependence on N

of the constants in Theorem 1 (and hence in Theorem 2 too) cannot be improved. In
particular, with the notation in (1), α(n)= 1 is sharp for the class of radial functions.

The estimates in Theorem 2 for general functions are known to be true in dimension
2 for the operator MN (see [9], [3], [10]). The problem for N arbitrary directions is still
open, even with possibly bigger constants (1 H-log N)β, β>\.

In the last section we will give a more precise form of Theorem 2 when n = 2 and,
as a consequence, we will prove the boundedness on radial functions of the maximal
operator defined along a Cantor set of directions.

Finally, we would like to point out that we began thinking on these problems in
conversations with J. L. Rubio de Francia whose ideas continue to influence our
mathematics.
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2. The universal maximal operator on radial functions. As we mentioned above,

the main ingredient in this paper is to show that for radial functions in Rn the operator

Jί, defined as the supremum of averages over all rectangles, behaves well on Lp(Rn)

for p>n.

PROPOSITION 3. There exists Cn such that for every p>n and every radial function

we have

G O \ί/p'
3 - ) H/HLP(*.)

(2) /

where \/p+\/p'=\.

REMARK. Observe that for n>2, Jί is not of weak type (n, ή). In fact, if / is the

characteristic function of the unit ball in Rn

9 JίfφLn*™(Rn).

Also since KN and MN are majorized obviously by M, estimate (2) holds for these

two operators on radial functions. For general functions, the constant of boundedness

cannot be independent of N as the construction of the Kakeya set shows.

PROOF OF PROPOSITION 3. A simple geometric argument shows that

Jίf{x)<CnJίof{x)

where

1 Cr

•^o/(*)= S U P S U P — \f{x + tω)\dt.
|ω| = l r>0 r J o

Now, given / radial we denote by f0 its radial projection on [0, oo). Thus, we have

Next we show

(3) Jίof

where/J is the Hardy-Littlewood maximal function of/0. In order to prove (3) we

will need the following:

LEMMA 4. Let φ: [a, b]-+R+ be monotonic and convex. Then, for every function

h,

b-a)a

\Kφ(s))\ds<h\φ(a)).

PROOF. For simplicity we will assume φ is C 1 on (a, b). Then a change of variables

gives

1 ΓΦ(b)

= ~ — \h(u)\w(u)du,
t>-ajφia)
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with w(u)=l/φ'(φ~ί(u)), and the result follows from the fact that w is monotone
decreasing with constant sign and

I ΓΦ(b)
w(u)du = 1 .

>-aJφ(a)

Since / is radial, so is Jtof. Hence, in order to reduce matters to a one-dimensional
problem, it suffices to show

(4) JfJ(Ό909 ••-,())<2/J(ι ), υ>0.

Fix |w | = l, w = (wί9 - - , wn), r > 0 and v>0. Set φ(t) = \(v, 0,
2vtw1 + t2)112. Observe that

_ 1 f' _ 1 Γ-

'"Jo ' Jo
Clearly 0 is convex on (0, oo) and monotone decreasing for /< — tw^ and increasing
for t> — vwt. Thus for wx>0 or for w1<0, but r< — t Wi, (4) follows directly from
Lemma 4. Now, if wί <0 and — t w! < r < — 2ιnvx then

/ < - ^ - ί 2θWl\fo(<Kt))\dt = 2—— f Wl|/0(Φ(ί))|Λ^2/t(t;),
— IHVi In — ΓWi In

l /O ^ r r l /O

with the equality above due to the symmetry properties of φ, whereas if w ^ O and
— 2vw1 <r, then

/< m a x ί - i — ί 2UW11 fo(φ(ή) \dt, l ί" | /0(</.(t)) |dA < 2/J(»).

To conclude the proof of Proposition 3, we just need to use polar coordinates,
estimate (4) and the fact that w(t) = \t\n~1 is in the Muckenhoupt class Ap for every
p>n with Λ

— ίwYΎ— ί w-1^-^1^:/interval}
/|J/ ) \\I\h ) )

Cw = p f ^ } f
'P lV|/|J ) \\I\h ) ) \P-n

(see [6]).

REMARK. A straightforward computation, with the help perhaps of Hardy's
inequality (see Stein-Weiss [8]) gives the strong type inequality

α o
I/P n / C°° \ί/p

?{\ , P>n

for h supported in (0, oo).

A consequence of this is the strong type estimate for the universal maximal func-
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tion Jί

(5) \\^f\\LP(Rn)<Cn-^\\f\\LP(Rn)

p-n
for every / radial.

Both estimates (5) and (2) are sharp as the example f(x) = \x\~n/pχ{i<\x\<L} f°Γ

large L shows.

3. Proof of Theorem 2. Theorem 2 follows by interpolating estimate (2) and
trivial estimates for MΩ on, say, L3/2(Rn). The only thing we have to be sure of is that
the interpolation theorem we use is also valid for operators defined on radial functions.
This is clearly the. case for the Riesz convexity theorem as a quick look at its proof
shows (see e.g. Stein-Weiss [8]).

For the weak type we will use:

PROPOSITION 5. Let T be a linear and positive {i.e., \ Tf(x)\<(T\f\)(x)) operator
such that T is bounded LPi(Rn)-^LPuCO(Rn) with constant Mh ι'=0, 1, 0<p1<p2<oo.
Then, forO<θ<\ and 1/p = (1 -θ)/p0 + θ/pl9 we have

(6) t

If T is defined only on radial functions, (6) still holds for such functions.

To obtain (i') in Theorem 2 we apply the usual "linearisation" techniques to MΩ,
together with Proposition 5 with po = 3/2, M0 = CnN (any CnN

β,β>0, will work),
px =/i+ I/log TV and p = n. In order to compute Mγ we use estimate (2). To obtain (ii')
we use the ordinary Riesz convexity theorem with the same parameters as before and
with Mγ computed now from estimate (5).

The proof of Proposition 5, with perhaps a larger constant, is essentially given in
Sagher [7]. Here we simply keep track of the constants appearing and check our claim
on radial functions.

We start with some notation: Given a function g and r>0, we define

λg(t) = \{xeRn:\g(x)\>t}\

g*(t) = mf{s:λg(s)<ή

(\ Γ γ/r (x rt \i/r
g**(t) = sup - \g(x) \'dx = - (g*(s))rds .

\E\=t\t JE ) \t Jo /

As is well known,

ί>0 ί>0

Also, g*(t)<g?*{t) and, if r<p,
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ί>o \P~rJ

Define α(z)=/?((l-z)//?0 + Φ i ) , 0 < R e z < l . Thus α(0)=l. Given a function / , which

without loss of generality we assume non-negative and simple, we define Fx(z) =

Tfaiz\x).

Observe that if / is radial, so is/α ( z ). Also, Fx is analytic and satisfies the estimates

for yεR,

I FJiy) I < T\ Γ™ \(x)=Tf*'°(x) = t

and

|^(1 + / » | < Γ | / ^

From the three line theorem we have

Now, Holder's inequality gives

Hence,

/ \(l-0)/r / n \θ/r

l I I I i / llpo.oo l ^ I I I 1 J
\Po-rJ \Pί-rJ

(ί-θ)/r/ \θ/r

I *»

I

V ι l i — υ — i \\J l i p

o~rJ \Pi-rJ
and the proposition follows by letting r-*0. •

To show that the constants (1 +log N)(n~1)/n and (1 +log N) in (i) and (ii), respec-

tively, of Theorem 1 are sharp we simply consider the function/(x) = (l + \x\)~1χ{\x\<N}.

By taking rectangles of dimensions (JIN) x (JIN) x x (JIN) xj\ it is easy to

see that for j•— 1 < | Λ: | <j we have

j=l,29'-,N.
J

Hence,

and

|{x e R". KNf(x) > cn

 X^p> Γ" > c'nN
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whereas

4. The maximal function along a Cantor set of directions. Given a real number
0, we define the maximal function in R2 along the direction 0 as

1 Γb

)= sup —
a<o<bb — a Ja

+ ί(cos0, sin0)|Λ.

Thus, Mθf = Mθ+πf. If A is a subset of [0, π) we also define

MAf[x) = sup{Maf{x)'θe

For a finite set A we can apply Theorem 2 to obtain

where #̂ 4 denotes the cardinality of A and / is a radial function.
In this section we will prove the following sharper result:

THEOREM 6. Let 0 = θι<θ2< - <θN<π be given and let A = {θk}k=1. Define
ak = θk+ί — θk, k= 1, 2, — -,N with θN+1=π. Then, for 1 <p<2, there exists a constant
Cp such that for every radial function f

(7)- WMJW^CpE^WfWv

where

2(p-l)\l/p

REMARKS, (a) Observe that θk = (k—l)π/N, /r=l,2, '-,N, the uniformly dis-
tributed case, is a particular, already known, case of Theorem 6. It turns out that
this is also the key case for the proof of (7).

(b) It is worth noting that

2\l/2

J
and hence (7) is a better estimate than (ii') in Theorem 2.

COROLLARY 7. Let A denote the ordinary l/3-Cantor set. Then for p>\ +
log 2/log 3, there exists a constant Cp such that for every radial function f

(8) \\MJ\\p<Cp\\f\\p.

PROOF. Given JeN, we let AJ = {x=Yj

J

j=:Oaβ-j\ aje{0,2}}. Since Aj] A, it
suffices to prove (8) for MAj with a constant Cp independent of /.
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But
1/P / oo 9J/2(p-l)\l/p

-To 3jip~1)

and Cp < oo provided 2 < 3P ~ *. •

In order to prove Theorem 6 we will need the following lemmas:

LEMMA 8. Let xeR2, x = (xί,x2) and set 0x = arc tan^/;^) . Then for every f
radial, we have:

(a) sup Mθf(x)<2MθJ(x) if θx-π/2<θ0<θx.
θx-π/2<θ< 0o

(b) sup MJ(x)<2Mθιf(x) if θx<θί<θx + π/2.

The proof of Lemma 8 is very similar to the way we proved estimate (3) and in
fact requires the same convexity result, Lemma 4.

Let us assume with no loss of generality θx = 0. Fix θx — π/2= —π/2<θo<θx = 0
and —π/2<θ<θ0. Consider for instance the case

0 < r < | x | cos0.

For 0 < t < r, let φ(t) be defined by the condition

Then φ(t) is an increasing convex function and if / is radial

x(Φ(t))\dt= - ίΊ/(x + ̂ β + π ) ) |Λ = - ('\fθ0,r Jo >• J o

where f9ojμ) = f(x + uem+π)).
From Lemma 4, I<flOtX(0) = MeJ(x). The remaining cases, as well as part (b) of

the lemma, can be proven in the same way. •

LEMMA 9. With the same notation as above, if xeR2, 0<θ1-θ0<π/2 and

θo<θx<θί, then for every radial function f

sup MJ(x) < 2 max(Mθ/(x), MeJ(x)).
θι<θ<θo + π

PROOF. Apply Lemma 8 to the cases Θ1<θ<θx + π/2 and θx + π/2<θ<θ0 + π.

LEMMA 10. For all θ e [0, π), for allθ«x<π, and for all f radial,

(9) ^ (Mθfy(x)dx<Cpa'-1(\+log+ ±YP *'Ί\f\'dx
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where Dθia = {xeR2\\θx-θ\<<x or \θx + π-θ\<oc}.

PROOF. With no loss of generality we may assume 0 = 0. Take NeN such that
π/2N<(x<π/N. It suffices to prove (9) for oc = π/N. Consider the operator MN

corresponding to directions θk = (k—l)π/N, k=l,2, , N. Now for every / radial,
MNf is a periodic function in the angular variable of period π/N. Moreover

IT (MNf(x))pdx<CpN
2~p(l + log N)2^-v fI f\*dx.

Hence

Π ΓΓ c , , , f

(Mof)
pdx< (MNf)pdx<—?-N2-p(\+log N)2(p-l) \f\pdx .

D0,iι/N J J D0,π/N N J

•
PROOF OF THEOREM 6. Cleary we haveί ί (Mjγ(x)dx^Σ ί ί (Mj

J J R 2 k = l J j DV»«<« f c + i . fc>

and the theorem follows from Lemmas 9 and 10. •
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