
Tόhoku Math. J.

41 (1989), 625-631

RESILIENT LEAVES IN TRANSVERSELY AFFINE FOLIATIONS

Dedicated to Professor Akio Hattori on his sixtieth birthday

TAKASHI INABA

(Received July 1, 1988)

1. Introduction. Let 3F be a codimension one foliation on a manifold M. We
say that @* is transversely affine if M is covered by a collection of ^-distinguished
charts for which the coordinate transformations are affine (i.e., of the form
x\-+ax + b, aφϋ) in the direction transverse to #\ See [6,1, Chap. Ill] for fundamental
properties of codimension one transversely affine foliations.

The purpose of this paper is to study the problem of existence of resilient leaves
in codimension one transversely affine foliations. Here, a leaf is said to be resilient if it
is nonproper and with nontrivial holonomy. Resilient leaves are classified into two
types—locally dense type and exceptional type. It is known that locally dense resilient
leaves appear in some codimension one transversely affine foliations on closed manifolds
(See, e.g., [1] or Step 2 of §2 in this paper).

In [5], Furness and Fedida asserted that a codimension one transversely affine
foliation cannot have exceptional leaves. But their proof seems to have a gap. In fact,
it is rather easy to give a counterexample on an open manifold.

Now the first result of this paper is stated as follows:

THEOREM 1.1. There exists a codimension one transversely affine foliation on a

closed 3-manifold which contains an exceptional minimal set.

By a classical theorem of Sacksteder [10], this exceptional minimal set contains a
resilient leaf, necessarily of exceptional type.

REMARK. After circulating the earlier draft of this paper, the author received a
letter from G. Hector to the effect that he constructed a similar example several years
ago and will write his result up in the near future.

Let AS(R) be the group of affine transformations of the real line. A codimension
one transversely affine foliation # Ό n a manifold M induces a holonomy homomorphism
h: π1(M)^Aff(/?). We call the image of h the global holonomy group of $F. The next
result characterizes the existence of locally dense resilient leaves in terms of the global
holonomy group.

THEOREM 1.2. Let $F be a codimension one transversely oriented, transversely affine

foliation on a closed manifold andT its global holonomy group. Then either of the following
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holds:

(1) & is almost without holonomy, and Γ is abelίan.

(2) 2F contains a locally dense resilient leaf, and Γ is nonabelian.

Here & is said to be almost without holonomy if every noncompact leaf of J* has
trivial holonomy. Theorem 1.2 may be interpreted as follows: A codimension one
transversely affine foliation cannot have a medium complexity—it is either so complicated
as to contain resilient leaves or so simple as to be almost without holonomy. As an
immediate corollary of Theorem 1.2, we have the following fact: If & has an exceptional
leaf, then 3F also has a locally dense resilient leaf.

Throughout this paper, by the affine structure of an interval we mean the one
which is induced from the standard affine structure of the real line R by the inclusion
map, unless otherwise specified.

The author is grateful to Shigenori Matsumoto for helpful comments.

2. Proof of Theorem 1.1. Let A be a matrix in SL(2, Z) such that the trace of
A is greater than 2. Then the smaller eigenvalue λ of A is positive and less than 1/2.

Step 1. Let P be a twice punctured disk. Denote the boundary components of
P by Co, CΊ and C2, which are assumed to have the orientations induced from a fixed
orientation of P. Choose orientation reversing diffeomorphisms / x : C0-^C1 and
fi' C0^>C2. Let / be the closed unit interval [0, 1]. Define two affine embeddings gί9

g2 from / into itself by gr1(ί) = Aί and g2(f) = λ{t — 1) + 1 . Now define a manifold S with
corner as the quotient space PxI/~ where ~ is the equivalence relation which identifies
(*>0i(O) with {fi(x),t),xeC0, tel, /=1,2. The product foliation on Px/with leaves
Px{ή, tel, induces, by passing to the quotient, a foliation J ^ on S. Note that (5, ^s)
is the simplest branched staircase ([9], see also [3]). We summarize the properties of
(S, &s) in the following.

PROPOSITION 2.1. (1) J ^ is transversely affine.

(2) The corner of S is concave {see [8, p. 107]) with respect to 3FS.

(3) The boundary of S is divided by the corner into dtΛnS, the part tangent to #$,

and dtrS, the part transverse to !FS.

(4) dianS is a disjoint union of a couple of once punctured tori, each of which has a

linear contraction t\-+λt as a generator of its holonomy group.

(5) dtτS is a cylinder foliated by circles.

(6) ^ s has an exceptional minimal set, which contains dtanS and does not meet dtrS.

Step 2. First we recall a well-known example of a transversely affine foliation
with dense resilient leaves. Let A be the matrix chosen at the beginning of this section.
Denote by ^ the foliation on the torus T2 = R2/Z2 defined by lines which are parallel
to the eigenspace of A corresponding to the eigenvalue λ'1. Let MA be the manifold
obtained from T2xl by identification of T2 x {0} with Γ 2x{l} as follows:



TRANSVERSELY AFFINE FOLIATIONS 627

(Ax, 0)~(x, 1). The foliation on T2 x I whose leaves are of the form G x /, with a leaf

G of ^ , induces a foliation $FA on MA. We see that 3FA is transversely affine and that

all leaves of 3*A are dense.

Next we will modify this example. We fix a transverse orientation of &A. Let

p: T2 xI-^MA be the quotient map. Let L be the cylindrical leaf of 3FA containing

p({0} x /). Denote by y0 the loop in L defined by γo(t) = p(0, t). Then the holonomy along

y0 is a contraction t\-+λt. Let y+ (resp. y I 1 ) be a closed transversal to ^ which is

obtained from γ0 by slight translation in the positive (resp. negative) transverse direction.

We see that the orientations of γ+ and y_ are compatible with the transverse orientation

of ^A. Affine structures are induced on y+ and y_ from the transverse affine structure

LEMMA 2.2. y+ (resp. γ_) is orientation preservingly and affinely isomorphic to the

affine circle which is the quotient of the positive half line (0, oo) (resp. the negative half

line ( — oo, 0)) by the action generated by the affine automorphism t\-+λt.

PROOF. We consider only the case of y+ (the case of y_ being treated similarly).

Let p be a point o n y + and q a point on y0. Then we can observe that there exist a

transverse arc τ:[0, \]-+MA with τ(0) = q and τ(l)=p and a continuous map

P: [0, 1] x (0, \]-+MΛ satisfying the following properties: (1) P([0, 1] x {t}) is contained

in a leaf of 3FA for each t. (2) P({s} x (0, 1]) is transverse to 3FA for each s. (3)

P\ {0} x (0, l] = τ |(0, 1]. (4) P(\, t) lies on y+ for all t. The existence of P implies that

the negative half of the universal cover γ+ is affinely isomorphic to τ((0, 1]) in an

orientation preserving manner. Since τ((0, 1]) extends to a larger affine curve τ([0, 1]),

it follows that the negative end of y + must be an incomplete end (or, equivalently, must

be bounded when embedded affinely into the standard affine line R). From this, the

conclusion of Lemma 2.2 follows easily.

Now turbulize $FA along y+ and y_. The turbulization is possible by Lemma 2.2

above and [1, Theorem 2]. Note that the direction of the turbulization is uniquely

determined since we require that the resulting foliation remains transversely affine.

Indeed, we must choose a direction so that whenever a transverse curve approaches the

new toral leaf, so does it with an incomplete end. Denote the resulting Reeb components

by N+ and 7V_, which are tubular neighborhoods of y+ and y_ respectively. Put

V=MA — int7V+ — irit7V_ and denote by ^ v the resulting foliation on V (Figure 1).

Then the transverse orientation of &v is directed inward at dN+ and outward at dN_.

Furthermore, all leaves of &v contained in int V are dense in V, because so were all

leaves of !FA. Thus we can choose two points p+ and /?_ in V satisfying the following

properties: (l)p+ and/?_ lie in the same leaf, say F9 oi!Fv. (2)p+ (resp./?_) is sufficiently

near dN+ (resp. 3iV_). Now first connect p+ with/?_ by a curve α contained in F. Next

connect /?_ with a point of dN- by a transverse curve /?_, and a point of dN+ with p +

by a transverse curve β+. By usual argument, the composite curve β_*oc*β+ can be
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We introduce a pseudo-ordering < among the leaves of 3F as follows: For leaves
L, L' of &, we set L<L' if the closure of L is contained in the closure of ZΛ Let Ω
be the union of all the leaves of & that are maximal with respect to this pseudo-order.
Since 3F is transversely real analytic, by [2], Ω is an open dense subset of M and each
connected component V of Ω is of one of the following types:

(1) V fibers over the circle and the fibers are the leaves.
(2) All leaves of V are dense and without holonomy.
(3) All leaves of V are dense and some leaves are resilient.

We call these components the maximal components.
This section is devoted to the proof of the following two assertions, which, in

combination, are equivalent to Theorem 1.2.

ASSERTION 3.1. IfSF does not contain locally dense resilient leaves\ then & is almost
without holonomy.

ASSERTION 3.2. !F is almost without holonomy if and only if the global holonomy
group Γ of ^ is abelian.

Now we fix a nonsingular vector field X on M which is transverse to tF and
compatible with the transverse orientation of # \ Let Φ.Rx M-^Mbe the flow generated
by X. We need the following result due to Imanishi [7].

LEMMA 3.3. Let p be a point of M and y: [0, \]—>M a curve in the leaf through p
such that y(0)=p. Define a curve τ: [0, 1)-»M by τ(t) = Φ(t,p). Suppose that every
leaf which meets τ has trivial holonomy. Then there exists a continuous map
P: [0, 1] x [0, \)^Mwίth the following properties: (1) P(s, 0) = y(s) for alls. (2)P(0, t) = τ(t)
for all t. (3) P(s, t) and P(0, t) are on the same leaf for all s, t. (4) P(s91) and P{s, 0) are
on the same Φ-trajectory for all s, t.

PROOF OF 3.1. Suppose that 3F does not contain locally dense resilient leaves.
Then maximal components of type (3) do not exist and hence every maximal component
of ^ is without holonomy.

LEMMA 3.4. Let V be a maximal component of !F. Then the transverse orientation
of & is directed either simultaneously outward on all the border leaves of V or
simultaneously inward on them.

PROOF. Suppose that there exist border leaves L+ and L_ of V such that the
transverse orientation of # is outward on L+ and inward on L_. Let L be a leaf in V
and p, p+, p- be distinct points of L. Let τ, τ + , τ_ :[0, 1]->K be positively oriented
curves transverse to β having mutually disjoint images such that τ(0) = τ(l)=/?,
τ + (Q)=p+, τ + ( l )eL + , τ_(0)eL_ and τ(l)=/?_. (The existence of τ is obvious. The
existence of τ + and τ_ follows from the fact that L has L+ and L_ in its closure.) We
may assume that the images of τ, τ + and τ_ are on trajectories of the transverse flow
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Φ, changing Φ if necessary. Let σ+, σ_ : [0, 1]->L be curves such that

σ+(0)=p, σ+(l)=/?+,σ_(0)=/? and σ_(l)=/?_. As is noted at the beginning of the
proof of 3.1, β\ Fis without holonomy. Therefore we can apply Lemma 3.3 to σ+ and
τ+ I [0, 1) and then by the same argument as that in the proof of Lemma 2.2, we see
that the positive end of the universal cover τ of τ is incomplete. If we apply Lemma
3.3 to σ_ and τ_ | (0, 1], we see that the negative end of τ is also incomplete. Consequently
τ is affinely equivalent to a bounded open interval. But this contradicts the fact that τ
covers an affine circle. Lemma 3.4 is proved.

Now we will finish the proof of 3.1. Suppose ίF is not almost without holonomy.
Then !F has a noncompact, nonmaximal leaf, say L. Since L is noncompact, there
exists a closed transversal σ which intersects L. Since the union of the maximal leaves
is dense in M, there is a maximal component V which intersects σ. Since V is open,
each connected component δ of the intersection of σ and V is an open proper subarc
of σ. (The properness follows from the fact that L is not contained in V.) Thus δ is a
transverse arc which enters and exists V. This contradicts Lemma 3.4. The proof of
Assertion 3.1 is complete.

Let M be the covering of M corresponding to the kernel of the holonomy
homomorphism h and/?: M-*M the covering map. Then there is a developing submersion
D: M-+R such that the lifted foliation p*& is the pullback of the point foliation of R
by D.

PROOF OF 3.2. The "if" part is proved by Bobo [1, Theorem 7 and Proposition
8]. We will prove the "only if" part. Suppose !F is almost without holonomy. If !F is
without holonomy, then by [1, Theorem 8] Γ is abelian. Thus we may assume that 3F
has finitely many compact leaves. Let A'be the union of compact leaves of &. We claim
that p~1(K) is mapped by D to a single point, say 0, of R. If this claim is true, then
since p'1^) is invariant under the action of πx{M), we see that 0 is a fixed point of
Γ. In other words, Γ is contained in the group of affine transformations fixing 0 and
is thus abelian.

Now suppose that there are points x and y of p~ι(K) such that D(x)ΦD{y). Join
x with y by an arc τ in M which is transverse to p~ι(K). Then there must be points z
and w on τ such that D(z)φD(vή and that the subarc τx of τ with endpoints z and w
does not intersect p~ι(K) except at the endpoints. Let V be the connected component
of M—K such that the completion V of V contains piτj. By a small homotopy
in V, p(Ti) is perturbed relative to the endpoints to the following form:
τ2 = (x1 * βι * * ak * βk * (xk+ ί9 where each αf is a curve transverse to «# and each βt is
contained in a leaf. Since ^\vh without holonomy, by using Lemma 3.3 repeatedly,
we see that τ2 is homotopic relative to the endopoints to τ3 = γ*β*oc, where α and
γ: [0, 1]->F are curves transverse to # such that oc(O) = p(z) and y(l) = p(w), and
β: [0, 1]-»F has its image in a single leaf. Since by Lemma 3.4 τ3 is never homotopic
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relative to the endpoints to a transverse curve, reversing the transverse orientation if
necessary, we may assume that α is negatively oriented and y is positively oriented with
respect to the transverse orientation of &. By using Lemma 3.3 again, we obtain a
continuous map P: [0, l]x[0, 1)->K such that the leaves of P*^ are of the form
[0, l]x{s}9 and that P(t90) = β(t), P(O,s) = oc(\-s) and P(\,s) = y(s) for all 0 < ί < l ,
0<s<\, reparametrizing α and γ if necessary. Now we can lift α, y and P to maps
α, y: [0, 1]-M and P: [0, 1] x [0, 1)-M so that α(0) = z, y(l) = w, P(0, s) = d(\ -s) and
P(\, s) = y(s). Since PflΌ, 1] x {s}) is mapped by Z> to a point for each 0 <s < 1, considering
the limit as s tends to 1, we have D{z) — D{w). This contradicts the choice of z and w.
Assertion 3.2 is proved, thereby completing the proof of Theorem 1.2.
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