# $L_{p, q}$-ESTIMATES FOR CERTAIN SEMI-LINEAR PARABOLIC EQUATIONS 

Takeyuki Nagasawa

(Received June 7, 1988)

1. Introduction and results. In this paper we study the $L_{p, q}$-estimates for the solution of the equations

$$
\left\{\begin{align*}
u_{t}+A u & =F_{1}(u, \partial u)+F_{2}(u), \quad t>0,  \tag{1.1}\\
u(0) & =a, \\
u & =\left(u^{1}, \cdots, u^{N}\right) \quad(N \in N)
\end{align*}\right.
$$

in the $\left(L_{p}(\Omega)\right)^{N}$-space. Here $\Omega$ is a bounded domain in $\boldsymbol{R}^{n}$ with smooth boundary, or $\boldsymbol{R}^{n}$ itself ( $n \geq 2$ ). We assume that $A$ is of the form

$$
\begin{equation*}
A=-P L \tag{1.2}
\end{equation*}
$$

where $L$ is the realization in $\left(L_{p}(\Omega)\right)^{N}$ of an elliptic operator of the second order (with certain boundary condition if $\partial \Omega \neq \varnothing$ ) and $P$ is a bounded operator from $\left(L_{p}(\Omega)\right)^{N}$ into the closed subspace $\left(P L_{p}(\Omega)\right)^{N}$. The non-linear terms $F_{1}$ and $F_{2}$ of the types

$$
\left\{\begin{array}{l}
F_{1}(u, \partial u)=P N_{1}(u, \partial u),  \tag{1.3}\\
N_{1}(u, \partial u)=\sum_{i, j, k} a_{i j k} u^{i} \partial_{j} u^{k}, \\
\quad\left(\partial u=\left(\partial_{j} u^{k}\right), j=1, \cdots, n ; k=1, \cdots, N\right), \\
F_{2}(u)=P N_{2}(u), \\
N_{2}(u)=\sum_{i, j, k} b_{i j k} u^{i} u^{j} u^{k},
\end{array}\right.
$$

where $a_{i j k}$ and $b_{i j k}$ are bounded functions, and $\partial_{j}=\partial / \partial x_{j}(j=1,2, \cdots, n)$.
Our main purpose is to establish the $L_{p, q}$-estimates for solutions to this system. We know some examples of such a system in mathematical physics and differential geometry (see Section 2). For the Navier-Stokes system, which is one of the typical examples, the $L_{p, q}$-estimates play an important role in showing the regularity of weak solutions [2], [3]. Kato [4] and Giga [3] obtained such estimates for the system using certain special feature of non-linear terms. We shall show similar results using only the non-linearity (1.3). We shall also study an application of our results to the system of
semi-linear heat equations having the non-linearity (1.3), because the gradient flow of the Yang-Mills functional is described by such a system.

Before stating our results, we describe our assumption more precisely. We denote $\left(L_{p}(\Omega)\right)^{N}$ simply by $L_{p}(\Omega)$, and utilize other notation basically found in [7]. We assume that the restriction of $P$ to $C_{0}(\Omega)$ is independent of $p, 1<p<\infty$, and that the space $C_{0}(\Omega) \cap P L_{p}(\Omega)$ is dense in $P L_{p}(\Omega)$.
$A$ defined by (1.2) is assumed to have the following property: $-A$ is an infinitesimal generator of a strongly continuous semigroup $\left\{e^{-t A}\right\}$ simultaneously on $P L_{p}(\Omega)$ for all $p \in(1, \infty)$ satisfying

$$
\begin{gather*}
\left\|e^{-t A} u\right\|_{p, \Omega} \leq C(p, q, n, \Omega) t^{-(n / q-n / p) / 2}\|u\|_{q, \Omega},  \tag{1.4}\\
\left\|\partial e^{-t A} u\right\|_{p, \Omega} \leq C(p, q, n, \Omega) t^{-(1+n / q-n / p) / 2}\|u\|_{q, \Omega} \tag{1.5}
\end{gather*}
$$

$(1<q \leq p<\infty, 0<t<T, T \in(0, \infty])$ for $u \in P L_{q}(\Omega)$. Since our system is parabolic type, the equation (1.1) can be converted into

$$
\left\{\begin{align*}
u(t) & =e^{-t A} a+S_{1}(u)+S_{2}(u)  \tag{1.6}\\
S_{1}(u) & =\int_{0}^{t} e^{-(t-\tau) A} F_{1}(u(\tau), \partial u(\tau)) d \tau \\
S_{2}(u) & =\int_{0}^{t} e^{-(t-\tau) A} F_{2}(u(\tau)) d \tau
\end{align*}\right.
$$

Our'examples in $\S 2$ below satisfy the above assumptions for $T=\infty$.
We first establish the existence theorem.
Theorem 1.1. Let a be in $P L_{n}(\Omega)$. Then there exists a positive constant $\lambda$ such that if $\|a\|_{n, \Omega}<\lambda$ then there exists a unique solution to (1.1) satisfying

$$
\begin{aligned}
& t^{(1-n / p) / 2} u \in B C\left([0, T) ; P L_{p}(\Omega)\right) \quad \text { for } \quad n \leq p<\infty, \\
& t^{(1-n /(2 q))} \partial u \in B C\left([0, T) ; P L_{q}(\Omega)\right) \quad \text { for } \quad n \leq q<\infty
\end{aligned}
$$

with values zero at $t=0$ except $u(0)=a$ in the case $p=n$.
Proof. The solution is constructed by means of a standard successive approximation

$$
\left\{\begin{align*}
u_{0} & =e^{-t A} a,  \tag{1.7}\\
u_{m+1} & =u_{0}+S_{1}\left(u_{m}\right)+S_{2}\left(u_{m}\right) \quad(m=0,1,2, \cdots) .
\end{align*}\right.
$$

Our result then follows from an argument analogous to that in [6, Theorem 2 (i)].
Let $Q_{T}:=\Omega \times(0, T)$. We would like to establish the $L_{p, q}$-estimates for $u$ and its derivatives $\partial u$. To begin with, we have the following:

Proposition 1.1. Assume that $a \in P L_{n}(\Omega)$ and that its norm is sufficiently small.

Let $p_{1}, p_{2}, q_{1}$ and $q_{2}$ be positive numbers satisfying the relations

$$
\frac{1}{q_{1}}=\left(\frac{1}{n}-\frac{1}{p_{1}}\right) \frac{n}{2}, \quad \frac{1}{q_{2}}=\left(\frac{2}{n}-\frac{1}{p_{2}}\right) \frac{n}{2},
$$

with

$$
\begin{gathered}
\max \{3, n\}<p_{1} \leq 3 p_{2}, \quad \frac{n}{2}<p_{2} \\
\max \{3, n\}<q_{1}, \quad n<q_{2}, \quad \frac{3}{p_{1}}-\frac{1}{p_{2}}<\frac{1}{n},
\end{gathered}
$$

and

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}<1 .
$$

Then the solution $u$ to (1.1) which is constructed in Theorem 1.1 satisfies

$$
\begin{aligned}
& u \in L_{q_{1}}\left(0, T ; P L_{p_{1}}(\Omega)\right) \subset L_{p_{1}, q_{1}}\left(Q_{T}\right), \\
& \partial u \in L_{q_{2}}\left(0, T ; P L_{p_{2}}(\Omega)\right) \subset L_{p_{2}, q_{2}}\left(Q_{T}\right)
\end{aligned}
$$

and $\|u\|_{p_{1}, q_{1}, Q_{T}}+\|\partial u\|_{p_{2}, q_{2}, Q_{T}} \rightarrow 0$ as $\|a\|_{n, \Omega} \rightarrow 0$.
To show this proposition we need the following lemma:
Lemma 1.1. Let $p_{1}, p_{2}, q, r$ and $s$ satisfy

$$
\frac{1}{q}=\left(\frac{1}{s}-\frac{1}{p_{1}}\right) \frac{n}{2}, \quad \frac{1}{r}=\left(\frac{1}{n}+\frac{1}{s}-\frac{1}{p_{2}}\right) \frac{n}{2}
$$

and

$$
p_{1}, q, r>s>1, \quad p_{2}>\left(\frac{1}{n}+\frac{1}{s}\right)^{-1}
$$

Then we have

$$
\begin{align*}
& \left\|e^{-t A} u\right\|_{p_{1}, q, Q_{T}} \leq C\left(p_{1}, q, s, n, \Omega\right)\|u\|_{s, \Omega}  \tag{1.8}\\
& \left\|\partial e^{-t A} u\right\|_{p_{2}, r, Q_{T}} \leq C\left(p_{2}, r, s, n, \Omega\right)\|u\|_{s, \Omega}
\end{align*}
$$

for $u \in P L_{s}(\Omega)$.
Proof. We find in [3] the proof of (1.8) by means of the Marcinkiewicz interpolation theorem and (1.4). (1.9) is proved in a similar manner.

Proof of Proposition 1.1. We prove that $\left\{u_{m}\right\}$ defined by (1.7) satisfies

$$
\left\|u_{m}\right\|_{p_{1}, q_{1}, Q_{T}}+\left\|\partial u_{m}\right\|_{p_{2}, q_{2}, Q_{T}} \leq K
$$

where $K$ is a positive constant independent of $m$. Since $u_{m}$ converges to $u$, we get the first part of our assertions from this estimate.

First we have the estimate

$$
\left\|u_{0}\right\|_{p_{1}, q_{1}, Q_{T}}+\left\|\partial u_{0}\right\|_{p_{2}, q_{2}, Q_{T}} \leq C\|a\|_{n, \Omega}
$$

by Lemma 1.1 with $s=n$.
By (1.4) with $p=p_{1}, q=r$, where $1 / r=1 / p_{1}+1 / p_{2}$, we have

$$
\left\|S_{1}\left(u_{m}\right)\right\|_{p_{1}, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-n /\left(2 p_{2}\right)}\left\|u_{m}(\tau)\right\|_{p_{1}, \Omega}\left\|\partial u_{m}(\tau)\right\|_{p_{2}, \Omega} d \tau .
$$

An application of the Hardy-Littlewood-Sobolev inequality [8, Corollary 1 of Lemma 7.1] gives us

$$
\left\|S_{1}\left(u_{m}\right)\right\|_{p_{1}, q_{1}, Q_{T}} \leq C\left\|u_{m}\right\|_{p_{1}, q_{1}, Q_{T}}\left\|\partial u_{m}\right\|_{p_{2}, q_{2}, Q_{T}}
$$

Similarly we obtain

$$
\left\|S_{2}\left(u_{m}\right)\right\|_{p_{1}, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-n / p_{1}}\left\|u_{m}(\tau)\right\|_{p_{1}, \Omega}^{3} d \tau
$$

and

$$
\left\|S_{2}\left(u_{m}\right)\right\|_{p_{1}, q_{1}, Q_{T}} \leq C\left\|u_{m}\right\|_{p_{1}, p_{1}, Q_{T}}^{3} .
$$

By suitable use of (1.5), we can get similar estimates for $\partial S_{i}$ 's, i.e.,

$$
\begin{gathered}
\left\|\partial S_{1}\left(u_{m}\right)\right\|_{p_{2}, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-\left(1+n / p_{1}\right) / 2}\left\|u_{m}(\tau)\right\|_{p_{1}, \Omega}\left\|\partial u_{m}(\tau)\right\|_{p_{2}, \Omega} d \tau, \\
\left\|\partial S_{2}\left(u_{m}\right)\right\|_{p_{2}, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-\left(1+(3 n) / p_{1}-n / p_{2}\right) / 2}\left\|u_{m}(\tau)\right\|_{p_{1}, \Omega}^{3} d \tau .
\end{gathered}
$$

These yield

$$
\begin{gathered}
\left\|\partial S_{1}\left(u_{m}\right)\right\|_{p_{2}, q_{2}, Q_{T}} \leq C\left\|u_{m}\right\|_{p_{1}, q_{1}, Q_{T}}\left\|\partial u_{m}\right\|_{p_{2}, q_{2}, Q_{T}}, \\
\left\|\partial S_{2}\left(u_{m}\right)\right\|_{p_{2}, q_{2}, Q_{T}} \leq C\left\|u_{m}\right\|_{p_{1}, q_{1}, Q_{T}}^{3} .
\end{gathered}
$$

Summing up these estimates, we get

$$
\begin{aligned}
& \left\|u_{m+1}\right\|_{p_{1}, q_{1}, Q_{T}}+\left\|\partial u_{m+1}\right\|_{p_{2}, q_{2}, Q_{T}} \\
& \quad \leq C_{1}\|a\|_{n, \Omega}+C_{2}\left(\left\|u_{m}\right\|_{p_{1}, q_{1}, Q_{T}}\left\|\partial u_{m}\right\|_{p_{2}, q_{2}, Q_{T}}+\left\|u_{m}\right\|_{p_{1}, q_{1}, Q_{T}}^{3}\right) .
\end{aligned}
$$

In the same manner as in [6, Lemma 3.3], we get the desired estimate if $\|a\|_{n, \Omega}$ is sufficiently small. It is easy to see $\|u\|_{p_{1}, q_{1}, Q_{T}}+\|\partial u\|_{p_{2}, q_{2}, Q_{T}} \rightarrow 0$ as $\|a\|_{n, \Omega} \rightarrow 0$ from the above argument.

$$
p_{1}=q_{1}=n+2, \quad p_{2}=\frac{n+1}{2}, \quad q_{2}=n+1
$$

satisfy the conditions in Proposition 1.1, in view of our basic assumption $n \geq 2$. Therefore we have:

Corollary 1.1. The solution $u$ to (1.1) has properties

$$
\begin{gathered}
u \in L^{n+2}\left(Q_{T}\right), \quad \partial u \in L_{n+1}\left(0, T ; P L_{(n+1) / 2}(\Omega)\right), \\
\|u\|_{n+2, Q_{T}}+\|\partial u\|_{(n+1) / 2, n+1, Q_{T} \rightarrow 0} \text { as }\|a\|_{n, \Omega} \rightarrow 0 .
\end{gathered}
$$

We are in a position to state one of our results.
Theorem 1.2. Assume that $a \in P L_{n}(\Omega) \cap P L_{s}(\Omega)(s>1)$ and that $\|a\|_{n, \Omega}$ is sufficiently small. Suppose $p$ and $q$ satisfy the relations

$$
\frac{1}{q}=\left(\frac{1}{s}-\frac{1}{p}\right) \frac{n}{2}, \quad p>\max \left\{\frac{n+1}{n-1}, s\right\}
$$

and

$$
q>\max \left\{\frac{n+1}{n}, s\right\} .
$$

Then the solution $u$ to (1.1) which is constructed in Theorem 1.1 satisfies

$$
u \in L_{q}\left(0, T ; P L_{p}(\Omega)\right) \subset L_{p, q}\left(Q_{T}\right)
$$

Proof. By Lemma 1.1, we get

$$
\left\|u_{0}\right\|_{p, q, Q_{T}} \leq C\|a\|_{s, \Omega} .
$$

Making use of (1.4), we obtain

$$
\left\|S_{1}(u)\right\|_{p, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-n /(n+1)}\|u(\tau)\|_{p, \Omega}\|\partial u(\tau)\|_{(n+1) / 2, \Omega} d \tau
$$

and

$$
\left\|S_{1}(u)\right\|_{p, q, Q_{T}} \leq C\|u\|_{p, q, Q_{T}}\|\partial u\|_{(n+1) / 2, n+1, Q_{T}} .
$$

Similarly we get

$$
\left\|S_{2}(u)\right\|_{p, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-n /(n+2)}\|u(\tau)\|_{p, \Omega}\|u(\tau)\|_{n+2, \Omega}^{2} d \tau
$$

and

$$
\left\|S_{2}(u)\right\|_{p, q, Q_{T}} \leq C\|u\|_{p, q, Q_{T}}\|u\|_{n+2, n+2, Q_{T}}^{2} .
$$

If $\|a\|_{n, \Omega}$ is sufficiently small, we then obtain the boundedness of the $L_{p, q}$ - norm for $u$ by virtue of Corollary 1.1.

For $s>\left(n^{2}+n\right) /\left(n^{2}+n-2\right)$,

$$
p=q=\frac{s(n+2)}{2}
$$

fulfill the conditions in Theorem 1.2. Thus we have:
Corollary 1.2. If the hypotheses of Theorem 1.2 for $s>\left(n^{2}+n\right) /\left(n^{2}+n-2\right)$ are satisfied, then

$$
\begin{gathered}
u \in L_{(s(n+2)) / n}\left(0, T ; P L_{(s(n+2)) / n}(\Omega)\right) \subset L_{(s(n+2)) / n}\left(Q_{T}\right), \\
\|u\|_{(s(n+2)) / n, Q_{T}} \rightarrow 0 \quad \text { as }\|a\|_{n, \Omega}+\|a\|_{s, \Omega} \rightarrow 0
\end{gathered}
$$

hold for the solution $u$ to (1.1).
Making use of Corollaries 1.1 and 1.2, we get an esyimate for $\partial u$.
Theorem 1.3. Assume that $a \in P L_{n}(\Omega) \cap P L_{s}(\Omega)\left(s>\left(n^{2}+n\right) /\left(n^{2}+n-2\right)\right)$ and that $\|a\|_{n, \Omega}$ is sufficiently small. Let $p$ and $r$ be positive numbers satisfying

$$
\frac{1}{r}=\left(\frac{1}{n}+\frac{1}{s}-\frac{1}{p}\right) \frac{n}{2}, \quad p>\max \left\{\frac{n+2}{n},\left(\frac{1}{n}+\frac{1}{s}\right)^{-1}\right\}, \quad r>\max \left\{\frac{n+2}{n+1}, s\right\},
$$

and

$$
\frac{1}{p}-\frac{1}{n}<\frac{1}{n+2}\left(2+\frac{n}{s}\right)<\frac{1}{p}+\frac{1}{n} .
$$

Then the solution $u$ to (1.1) which is constructed in Theorem 1.1 satisfies

$$
\partial u \in L_{r}\left(0, T ; P L_{p}(\Omega)\right) \subset L_{p, r}\left(Q_{T}\right) .
$$

Proof. By (1.5), we have

$$
\left\|\partial u_{0}\right\|_{p, r, Q_{T}} \leq C\|a\|_{s, \Omega},
$$

and

$$
\left\|\partial S_{1}(u)\right\|_{p, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-(n+1) /(n+2)}\|u(\tau)\|_{n+2, \Omega}\|\partial u(\tau)\|_{p, \Omega} d \tau .
$$

By virtue of Corollary 1.1,

$$
\left\|\partial S_{1}(u)\right\|_{p, r, Q_{T}} \leq C\|u\|_{n+2, Q_{T}}\|\partial u\|_{p, r, Q_{T}}
$$

holds.
Let $s^{\prime}$ be a positive number satisfying

$$
\frac{3}{s^{\prime}}=\frac{2}{n}+\frac{1}{s}
$$

Since $s^{\prime}$ is between $n$ and $s, a \in P L_{s^{\prime}}(\Omega)$ and $s^{\prime} \geq \min \{n, s\}>\left(n^{2}+n\right) /\left(n^{2}+n-2\right)$. It follows from Corollary 1.2 that $u \in L_{\left(s^{\prime}(n+2)\right) / n}\left(0, T ; P L_{\left(s^{\prime}(n+2)\right) / n}(\Omega)\right)$. By (1.5), we have

$$
\left\|\partial S_{2}(u)\right\|_{p, \Omega} \leq C \int_{0}^{t}(t-\tau)^{-\left(1+\left(3 n^{2}\right) /\left(s^{\prime}(n+2)\right)-n / p\right) / 2}\|u(\tau)\|_{\left(s^{\prime}(n+2)\right) / n, \Omega}^{3} d \tau
$$

In view of our assumption

$$
0<\frac{1}{2}\left(1+\frac{3 n^{2}}{s^{\prime}(n+2)}-\frac{n}{p}\right)<1
$$

we get

$$
\left\|\partial S_{2}(u)\right\|_{p, r, Q_{T}} \leq C\|u\|_{\left(s^{\prime}(n+2)\right) / n, Q_{T}}^{3}
$$

by [8, Corollary 1 to Lemma 7.1]. Hence our assertion follows if $\|a\|_{n, \Omega}$ is sufficiently small.
2. Applications. In this section we study some applications of our theorems.
2.1 The Navier-Stokes system. The motion of incompressible viscous fluid in $\Omega$ (with fixed boundary condition) is described by the following system of equations, called the Navier-Stokes system:

$$
\left\{\begin{align*}
u_{t} & =\Delta u-(u \cdot \operatorname{grad}) u-\operatorname{grad} p  \tag{2.1.1}\\
\operatorname{div} u & =0 \\
u(0) & =a \\
\left.u\right|_{\partial \Omega} & =0 \quad \text { if } \quad \partial \Omega \neq \varnothing
\end{align*}\right.
$$

Here, $u=\left(u^{1}, \cdots, u^{n}\right)$ and $p$ represent the velocity and the pressure of the fluid, respectively. Let $X_{p}$ by the closure in $L_{p}(\Omega)$ of all $C^{\infty}$-solenoidal functions with compact support in $\Omega$. We define $G_{p}$ by

$$
G_{p}=\left\{f=\operatorname{grad} \phi \mid \phi \in W_{p}^{1}(\Omega)\right\}
$$

It is well-known that the Helmholtz decomposition

$$
L_{p}(\Omega)=X_{p} \oplus G_{p}
$$

holds and that the projection $P$ from $L_{p}(\Omega)$ to $X_{p}$ is a bounded operator (cf. e.g., [1]).
Applying $P$ to both sides of the first equation of (2.1.1), we have

$$
\begin{equation*}
u_{t}+A u=-\dot{P}(u \cdot \mathrm{grad}) u \tag{2.1.2}
\end{equation*}
$$

where $A=-P \Delta$ is the Stokes operator with domain

$$
\mathscr{D}(A)=P L_{p}(\Omega) \cap\left\{u \in W_{p}^{2}(\Omega)|u|_{\partial \Omega}=0 \text { if } \partial \Omega \neq \varnothing\right\}
$$

We can check our assumptions with $T=\infty$ on $A$ and on the non-linear terms described in the previous section (see [4], [3]). Therefore we get the existence of a unique solution $u$ to (2.1.2) with initial value $a$ by Theorem 1.1 and the $L_{p, q}$ estimates for $u$ and $\partial u$ by Theorems 1.2 and 1.3. Looking at the proof of Theorem 1.3 more carefully, we find that the assumptions in the theorem

$$
s>\frac{n^{2}+n}{n^{2}+n-2}, \quad \frac{1}{p}-\frac{1}{n}<\frac{1}{n+2}\left(2+\frac{n}{s}\right)<\frac{1}{p}+\frac{1}{n}
$$

are needed only for the estimate for $\left\|\partial S_{2}(u)\right\|_{p, r, Q_{T}}$. Since the term $F_{2}(u)$ does not appear in the Navier-Stokes system, we can replace the above conditions by $s>1$. Thus we have:

Theorem 2.1. (i) Assume that $a$ is in $P L_{n}(\Omega)$ and that its norm is sufficiently small. Then there exists a unique solution $u$ to (2.1.2) with initial value a satisfying

$$
\begin{array}{ll}
t^{(1-n / p) / 2} u \in B C\left([0, \infty) ; P L_{p}(\Omega)\right) & \text { for } \quad n \leq p<\infty \\
t^{(1-n /(2 q))} \partial u \in B C\left([0, \infty) ; P L_{q}(\Omega)\right) & \text { for } \quad n \leq q<\infty
\end{array}
$$

with values zero at $t=0$ except $u(0)=a$ in the case $p=n$.
(ii) Assume that $a \in P L_{n}(\Omega) \cap P L_{s}(\Omega)(s>1)$ and that $\|a\|_{n, \Omega}$ is sufficiently small. Let $p_{1}, p_{2}, q$ and $r$ be positive numbers satisfying

$$
\begin{gathered}
\frac{1}{q}=\left(\frac{1}{s}-\frac{1}{p_{1}}\right) \frac{n}{2}, \quad \frac{1}{r}=\left(\frac{1}{n}+\frac{1}{s}-\frac{1}{p_{2}}\right) \frac{n}{2}, \\
p_{1}>\max \left\{\frac{n+1}{n-1}, s\right\}, \quad q>\max \left\{\frac{n+1}{n}, s\right\}, \quad p_{2}>\max \left\{\frac{n+2}{n},\left(\frac{1}{n}+\frac{1}{s}\right)^{-1}\right\},
\end{gathered}
$$

and

$$
r>\max \left\{\frac{n+2}{n+1}, s\right\}
$$

Then the solution $u$ constructed in (i) has the properties

$$
\begin{aligned}
& u \in L_{q}\left(0, \infty ; P L_{p_{1}}(\Omega)\right) \subset L_{p_{1}, q}\left(Q_{\infty}\right) \\
& \partial u \in L_{r}\left(0, \infty ; P L_{p_{2}}(\Omega)\right) \subset L_{p_{2}, r}\left(Q_{\infty}\right)
\end{aligned}
$$

Kato [4] and Giga [3] already obtained similar results, using the special feature of the non-linear term

$$
(u \cdot \operatorname{grad}) u^{i}=\operatorname{div}\left(u^{i} u\right)
$$

whereas we do not need such a feature.

The $L_{p, q}$-estimates for the Navier-Stokes system give the criteria for the regularity of weak solutions. For various regularity theorems on this system, the reader is referred to [2], [3] and references cited therein.
2.2 Semi-linear heat equations. The second example is the simplest case $A=-\Delta$ ( $P=$ identity, $\Delta=$ Laplacian (with the Dirichlet condition if $\partial \Omega \neq \varnothing$ ), i.e.,

$$
\left\{\begin{align*}
u_{t} & =\Delta u+N_{1}(u, \partial u)+N_{2}(u)  \tag{2.2.1}\\
u(0) & =a \\
\left.u\right|_{\partial \Omega} & =0 \text { if } \partial \Omega \neq \varnothing
\end{align*}\right.
$$

As is shown in [6], our assumptions on $A$ are fulfiled for $T=\infty$. Theorems 1.2 and 1.3 yield the regularity of the solutions which are constructed in Theorem 1.1. For simplicity, we assume $a \in \bigcap_{s \geq n} L_{s}(\Omega)$. For $\varepsilon \in(0,1), k, l \in(0,2)$, set

$$
\begin{aligned}
& p_{1}=\frac{n^{2}}{(1-\varepsilon)(n-k)}, \quad q_{1}=\frac{2 n}{k(1-\varepsilon)}, \\
& p_{2}=\frac{n^{2}}{(2-\varepsilon) n-l(1-\varepsilon)}, \quad q_{2}=\frac{2 n}{l(1-\varepsilon)}, \\
& s_{1}=s_{2}=\frac{n}{1-\varepsilon} .
\end{aligned}
$$

If $1-\varepsilon$ is sufficiently small, the conditions in Theorem 1.2 hold for $(p, q, s)=\left(p_{1}, q_{1}, s_{1}\right)$ and those in Theorem 1.3 do for $(p, r, s)=\left(p_{1}, q_{2}, s_{2}\right)$. Hence we have $N_{1}(u, \partial u) \in L_{p, q}\left(Q_{\infty}\right)$, where $1 / p=1 / p_{1}+1 / p_{2}, 1 / q=1 / q_{1}+1 / q_{2}$. If $k+l$ is sufficiently small, then $p<q$ holds. Therefore $N_{1}(u, \partial u) \in L_{p}\left(Q_{T}\right)$ is valid for any $T \in(0, \infty)$. For any $\delta>0$, we take $1-\varepsilon$ and $k+l$ so small that $p \geq(n+2) /(2+\delta)$ holds. We choose $\delta$ sufficiently small.

On the other hand, Corollary 1.2 gives us $N_{2}(u) \in \bigcap_{r \geq(n+2) / 3} L_{r}\left(Q_{\infty}\right)$. Therefore the nonlinear terms belong to $L_{p}\left(Q_{T}\right)$. A priori estimate of $W_{p}^{2,1}\left(Q_{T}\right)$-type [7, IV, Theorem 9.1 or VII, Theorem 10.4] gives $u \in W_{p}^{2,1}\left(Q_{T}\right)$ provided $a \in W_{p}^{2-2 / p}(\Omega)$. Using [7, II, Lemma 3.3], we have $N_{1}(u, \partial u)+N_{2}(u) \in L_{p^{\prime}}\left(Q_{T}\right)$ for some $p^{\prime}>(n+2) / 2$, and therefore $u \in W_{p^{\prime}}^{2,1}\left(Q_{T}\right)$ provided $a \in W_{p^{\prime}}^{2,-2 / p^{\prime}}(\Omega)$. By the same procedure we obtain $u \in W_{r}^{2,1}\left(Q_{T}\right)$ provided $a \in W_{r}^{2-2 / r}(\Omega)$ for some $r>n+2$. By virtue of [7, II, Lemma 3.3] again, the Hölder continuity of non-linear terms follows from the Hölder continuity of the coefficients $a_{i j k}, b_{i j k}$. Finally the Schauder estimate [7, IV, Theorems $5.1 / 5.2$ or VII, Theorems $10.1 / 10.2]$ gives the fact $u \in H^{\alpha+2, \alpha / 2+1}\left(\overline{Q_{T}}\right)$ for some $\alpha \in(0,1)$ provided that $a$ is Hölder continuous up to its second orderderivatives. Hence we have:

Theorem 2.2. We assume that $a_{i j k}$ and $b_{i j k}$ are Hölder continuous in $\overline{Q_{\infty}}$. If a belongs to $\bigcap_{s \geq n} W_{s}^{2-2 / s}(\Omega)$, if $\|a\|_{n, \Omega}$ is small, and if it is hölder continuous up to its second order derivatives, then there exists a unique global classical solution to (2.2.1).

Remark. Looking at the above argument more carefully, we find that we can weaken the assumption on $a$.

Using a standard bootstrap argument, we get:
Theorem 2.3. Suppose that the hypotheses of Theorem 2.2 are satisfied and that $a_{i j k}, b_{i j k}, a$ and $\partial \Omega$ (if it exists) are $C^{\infty}$-smooth. Moreover when $\partial \Omega \neq \varnothing$, we assume that the compatibility conditions of any order hold between the initial and boundary data. Then the solution is also $C^{\infty}$.
2.3 The equations of Yang-Mills' gradient flow. Let $\left(\Omega, d x^{2}\right)$ be a smooth $\left(=C^{\infty}\right)$ $n$-dimensional Riemannian manifold. $E=\left(\Omega \times \boldsymbol{R}^{m},\langle\rangle,\right)$ is a Riemannian vector bundle over $\Omega$ of rank $m . \mathscr{C}_{E}$ is the space consisting of all smooth metric connections on $E$. For $\nabla \in \mathscr{C}_{E}$, we define the $\operatorname{Hom}(E, E)$-valued 2-form $R^{\nabla}$, called the curvature, by

$$
R_{V, W}^{\nabla}=\nabla_{V} \nabla_{W}-\nabla_{W} \nabla_{V}-\nabla_{[V, W]}
$$

for any smooth vector fields $V, W$ on $\Omega$. The Yang-Mills functional $\mathscr{Y} \mathscr{M}: \mathscr{C}_{\boldsymbol{E}} \rightarrow[0, \infty]$ is defined by the square integral of $R^{\nabla}$ :

$$
\mathscr{Y} \mathscr{M}(\nabla)=\frac{1}{2} \int_{\Omega}\left\langle R^{\nabla}, R^{\nabla}\right\rangle_{x}
$$

We call $\nabla$ the Yang-Mills connection, if it is a critical point of the functional. To find such a connection and to study its stability, we consider the flow

$$
\begin{equation*}
\frac{d \nabla(t)}{d t}=-\operatorname{grad} \mathscr{Y} \mathscr{M}(\nabla(t)) . \tag{2.3.1}
\end{equation*}
$$

In [6], we studied the asymptotical stability of the flat connection $\nabla_{0}$ by reducing (2.3.1) to certain system of heat equations. Taking the gauge invariance of the functional into consideration, we put

$$
\nabla(t)=g(t)\left(\nabla_{0}+A(t)\right) g^{-1}(t),
$$

where $A(t) \in \Omega_{0}^{1}\left(\mathfrak{g}_{E}\right), g(t) \in \mathscr{G}$ (see $[6, \S 1]$ for the definition of $\Omega_{0}^{1}\left(g_{E}\right)$ and $\left.\mathscr{G}\right)$. Then the principal part of the right-hand side of (2.3.1) is

$$
-\delta^{\nabla_{0}} d^{\nabla_{0}} A(t)+\left[\nabla_{0}+A(t), Y(t)\right]
$$

where $Y(t)=g^{-1}(t) d g(t) / d t$, and $\delta^{\nabla_{0}}$ is a formal adjoint operator of the covariant derivative $d^{\nabla_{0}}$. This does not satisfy our assumption because of the lack of ellipticity. We impose Yokotani's idea [9] on $g(t)$, i.e., it satisfies

$$
\begin{equation*}
\frac{d g(t)}{d t}=-g(t) \delta^{\nabla_{0}} A(t), \quad g(0)=\text { identity } . \tag{2.3.2}
\end{equation*}
$$

This condition makes $-d^{\nabla_{0}} \delta^{\nabla_{0}} A(t)$ of the term $\left[\nabla_{0}, Y(t)\right]$. Since $-\left(\delta^{\nabla_{0}} d^{\nabla_{0}}+d^{\nabla_{0}} \delta^{\nabla_{0}}\right)=\Delta$,
the principal part recovers the ellipticity, and (2.3.1) is reduced to the following system of heat equations:

$$
\left\{\begin{align*}
& \frac{d A(t)}{d t}= \Delta A(t)+\left[A(t),-\delta^{\nabla_{0}} A(t)\right]-\delta^{\nabla_{0}}[A(t), A(t)]  \tag{2.3.3}\\
&+\sum_{\alpha=1}^{n}\left[A_{e_{\alpha}}(t), d^{\nabla_{0}} A_{e_{\alpha}}(t)\right]+\sum_{\alpha=1}^{n}\left[A_{e_{\alpha}}(t),\left[A_{e_{\alpha}}(t), A(t)\right]\right] \\
&\left.A\right|_{\partial \Omega=}=0 \quad \text { if } \partial \Omega \neq \varnothing
\end{align*}\right.
$$

where $\left\{e_{\alpha}\right\}_{\alpha=1, \cdots, n}$ is an orthonormal basis on $T_{x} \Omega$. For the detailed derivation of above system, the reader is referred to [9] and [5].

Our results are applicable to the equations (2.3.3). The global solvability and the stability of (2.3.2) and (2.3.3) with the given initial data $A(0)$ are established in [6, Theorem 1], provided that the components of $A(0)$ belong to $\mathscr{W}_{n}^{1}(\Omega)$ and $\|A(0)\|_{n, \Omega}$ is sufficiently small. (It is enough to assume $A(0) \in L_{n}(\Omega)$ to solve (2.3.3), but it is not sufficient to solve (2.3.2)).

The Sobolev imbedding theorem gives the fact $\dot{W}_{n}^{1}(\Omega) \subset \bigcap_{s \geq n} L_{s}(\Omega)$. Therefore we can apply the argument of the previous subsection.

Theorem 2.4. If $A(0)$ belongs to $W_{n}^{1}(\Omega) \cap \bigcap_{s \geq n} W_{s}^{2-2 / s}(\Omega)$, if $\|A(0)\|_{n, \Omega}$ is small and if it is Hölder continuous up to its second order derivatives, then there exists a unique global classical solution to (2.3.2)-(2.3.3). Moreover if $A(0)$ is $C^{\infty}$ and the compatibility conditions of any order hold between the initial and boundary data in the case $\partial \Omega \neq \varnothing$, then the solution is also $C^{\infty}$.

Proof. It is enough to see the regularity of $g(t)$. This follows from the theorems of regularity and continuous dependence on parameters of ordinary differential equations.

## References

[1] D. Fujiwara and H. Morimoto, An $L_{r}$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 685-700.
[2] Y. Giga, Regurality criteria for weak solutions of the Navier-Stokes system, Proc. Sympos. Pure Math. 45 (1) (1986), 449-453.
[3] Y. GigA, Solutions for semilinear parabolic equations in $L^{p}$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), 186-212.
[4] T. Kato, Strong $L^{p}$-solutions of the Navier-Stokes equation in $\boldsymbol{R}^{m}$, with applications to weak solutions, Math. Z. 187 (1984), 471-480.
[5] K. Kono, Weak Asymptotical Stability of Yang-Mills Fields, Master’s thesis, Keio Univ., 1988 (in Japanese).
[6] K. Kono and T. Nagasawa, Weak asymptotical stability of Yang-Mills' gradient flow, Tokyo J. Math. 11 (1988), 339-357.
[7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, R. I., 1968.
[8] S. Mizohata, Theory of Partial Differential Equations, Iwanami, Tokyo, 1965 (in Japanese; English ed.: Cambridge Univ. Press, 1973).
[9] M. Yokotani, Local existence of the Yang-Mills gradient flows, preprint.

Department of Mathematics<br>College of General Education<br>Tôhoku University<br>Sendai 980<br>JAPAN

