CERTAIN ASPECTS OF TWISTED LINEAR ACTIONS, II

Dedicated to Professor Akio Hattori on his 60th birthday

FUICHI UChida*)

(Received May 17, 1988)
0. Introduction. In the previous papers [1], [2], we have introduced the concept of a twisted linear action which is an analytic action of a non-compact Lie group on a sphere.

We have shown that there are uncountably many topologically distinct analytic actions of $\boldsymbol{S L}(n, \boldsymbol{R})$ on an $(n k-1)$-sphere for each $n>k \geqq 2$. Furthermore, we have shown that there are uncountably many C^{1}-differentiably distinct but topologically equivalent analytic actions of $\boldsymbol{S L}(n, \boldsymbol{R})$ on a k-sphere for each $k \geqq n \geqq 2$.

In this paper, we shall show other aspects of twisted linear actions. In particular, we shall show that there are uncountably many C^{2}-differentiably distinct but C^{1}-differentiably equivalent analytic actions of \boldsymbol{R}^{n} on an n-sphere for each n.

1. Twisted linear actions. Here we recall the definition of twisted linear actions. Throughout this paper, a matrix means only the one with real coefficients.
1.1. Let $\boldsymbol{u}=\left(u_{i}\right)$ and $\boldsymbol{v}=\left(v_{i}\right)$ be column vectors in \boldsymbol{R}^{n}. As usual, we define their inner product by $\boldsymbol{u} \cdot \boldsymbol{v}=\sum_{i} u_{i} v_{i}$ and the length of \boldsymbol{u} by $\|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$. Let $M=\left(m_{i j}\right)$ be a square matrix of degree n. We say that M satisfies the condition (T) if the quadratic form

$$
\boldsymbol{x} \cdot M \boldsymbol{x}=\sum_{i, j} m_{i j} x_{i} x_{j}
$$

is positive definite. It is easy to see that M satisfies (T) if and only if

$$
\frac{d}{d t}\|\exp (t M) \boldsymbol{x}\|>0 \quad \text { for each } \quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n}=\boldsymbol{R}^{n}-\{\mathbf{0}\}, \quad t \in \boldsymbol{R}
$$

If M satisfies (T^{\prime}), then

$$
\lim _{t \rightarrow+\infty}\|\exp (t M) x\|=+\infty \quad \text { and } \quad \lim _{t \rightarrow-\infty}\|\exp (t M) x\|=0
$$

for each $\boldsymbol{x} \in \boldsymbol{R}_{0}^{n}$, and hence there exists a unique real valued analytic function τ on $\boldsymbol{R}_{0}^{\boldsymbol{n}}$

[^0]such that
$$
\|\exp (\tau(\boldsymbol{x}) M) \boldsymbol{x}\|=1 \quad \text { for } \quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n}
$$

Therefore, we can define an analytic mapping π^{M} of \boldsymbol{R}_{0}^{n} onto the unit ($n-1$)-sphere S^{n-1} by

$$
\pi^{M}(\boldsymbol{x})=\exp (\tau(\boldsymbol{x}) M) \boldsymbol{x} \quad \text { for } \quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n},
$$

if M satisfies the condition (T).
1.2. Let G be a closed subgroup of $\boldsymbol{G L}(n, \boldsymbol{R})$. A square matrix M of degree n is called a G-endomorphism if $g M=M g$ for each $g \in G$. For a G-endomorphism M satisfying the condition (T), we can define an analytic mapping

$$
\xi: G \times S^{n-1} \rightarrow S^{n-1} \quad \text { by } \quad \xi(g, x)=\pi^{M}(g x),
$$

and we see that ξ is an analytic G-action on S^{n-1}. We call $\xi=\xi^{M}$ a twisted linear action of G on S^{n-1} determined by the G-endomorphism M.
1.3. For a given closed subgroup G of $\boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{R})$, we introduce certain equivalence relations on G-endomorphisms satisfying the condition (T). Let M and N be G-endomorphisms satisfying the condition (T).

We say that M is algebraically equivalent to N, if there exist a G-automorphism A and a positive real number c satisfying

$$
c N=A M A^{-1} .
$$

We say that M is C^{r}-equivalent to N, if there exists a C^{r}-diffeomorphism f of S^{n-1} onto itself such that the following diagram is commutative:

We call f a G-equivariant C^{r}-diffeomorphism.
Remark. It is known that (cf. [1], [2]), if M is algebraically equivalent to N, then M is C^{ω}-equivalent to N.
2. Certain twisted linear actions on the circle. Here we shall introduce certain twisted linear actions on the circle S^{1}.
2.1. Let G be the closed subgroup of $\boldsymbol{G L}(2, \boldsymbol{R})$ consisting of matrices in the form

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

Then any G-endomorphism satisfying the condition (T) is written in the form

$$
c\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) ; \quad c>0, \quad|a|<2
$$

Denote by ξ^{a} the twisted linear G-action on S^{1} determined by the G-endomorphism $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ satisfying $|a|<2$. Then

$$
\xi^{a}\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right),\binom{u}{v}\right)=e^{\theta}\binom{u+(x+a \theta) v}{v},
$$

where θ is uniquely determined by the equation

$$
(u+(x+a \theta) v)^{2}+v^{2}=e^{-2 \theta} .
$$

If $v \neq 0$, then we see that

$$
\binom{u}{v}=\xi^{a}\left(\left(\begin{array}{ll}
1 & x \tag{1}\\
0 & 1
\end{array}\right),\binom{0}{\varepsilon}\right) \Longleftrightarrow \Longleftrightarrow \varepsilon=v|v|^{-1}, \quad x=u v^{-1}-a \log |v| .
$$

In particular, if $a=0$, then

$$
\binom{u}{v}=\xi^{0}\left(\left(\begin{array}{ll}
1 & x \tag{2}\\
0 & 1
\end{array}\right),\binom{0}{\varepsilon}\right) \Longleftrightarrow u=\frac{\varepsilon x}{\left(1+x^{2}\right)^{1 / 2}}, \quad v=\frac{\varepsilon}{\left(1+x^{2}\right)^{1 / 2}} .
$$

Denote by $E_{+}\left(\right.$resp. $\left.E_{-}\right)$the upper (resp. lower) semicircle. Then, by the above arguments, we see that the G-action ξ^{a} has just four orbits, two of them are fixed points and the other two of them are open orbits E_{+}and E_{-}.

Denote by $S^{1}(a)$ the circle with the twisted linear G-action ξ^{a}. In the rest of this section, we shall show the following.

Theorem 2.1. Let a, b be real numbers satisfying $|a|<2,|b|<2$. Then, there exists an equivariant C^{1}-diffeomorphism from $S^{1}(a)$ onto $S^{1}(b)$. If $a \neq b$, then there is no equivariant C^{2}-diffeomorphism from $S^{1}(a)$ onto $S^{1}(b)$.

2.2. Define

$$
L(v)=v \log |v| \quad \text { for } \quad v \neq 0 \quad \text { and } \quad L(0)=0 .
$$

Then L is a continuous function on the real line. Put

$$
D(u, v ; a)=\left((u-a L(v))^{2}+v^{2}\right)^{1 / 2}
$$

and define

$$
\begin{equation*}
\bar{u}=(u-a L(v)) D(u, v ; a)^{-1}, \quad \bar{v}=v D(u, v ; a)^{-1} . \tag{3}
\end{equation*}
$$

Then the correspondence from (u, v) to (\bar{u}, \bar{v}) defines a continuous mapping f_{a} of the circle onto itself. By 2.1(1), (2) we see that f_{a} is an equivariant homeomorphism from $S^{1}(a)$ onto $S^{1}(0)$.

Geometrically the above correspondence (3) is explained as follows (see Figure). Consider integral curves of the linear system

$$
\dot{u}=u+a v, \quad \dot{v}=v .
$$

Figure
If $v \neq 0$, then there is just one point $(\varepsilon x, \varepsilon)$ on the integral curve through (u, v), where $\varepsilon=v|v|^{-1}$, and we can define (\bar{u}, \bar{v}) as the intersection point of the circle and the line segment joining the origin and $(\varepsilon x, \varepsilon)$.

By (3), we obtain

$$
\begin{aligned}
& \frac{\partial \bar{u}}{\partial u}(u, v)=v^{2} D^{-3}, \quad \frac{\partial \bar{u}}{\partial v}(u, v)=-v(u+a v) D^{-3}, \\
& \frac{\partial \bar{v}}{\partial u}(u, v)=-v(u-a L(v)) D^{-3}, \quad \frac{\partial \bar{v}}{\partial v}(u, v)=(u+a v)(u-a L(v)) D^{-3}
\end{aligned}
$$

for $v \neq 0$, where $D=D(u, v ; a)$, and we obtain directly

$$
\frac{\partial \bar{u}}{\partial u}(u, 0)=\frac{\partial \bar{u}}{\partial v}(u, 0)=\frac{\partial \bar{v}}{\partial u}(u, 0)=0, \quad \frac{\partial \bar{v}}{\partial v}(u, 0)=|u|^{-1} .
$$

Let us show $(\partial \bar{u} / \partial v)(u, 0)=0$, for completeness.

$$
\begin{aligned}
\frac{\partial \bar{u}}{\partial v}(u, 0) & =\lim _{v \rightarrow 0} \frac{\bar{u}(u, v)-\bar{u}(u, 0)}{v}=\lim _{v \rightarrow 0} \frac{u-a L(v)-|u|^{-1} u D}{v D} \\
& =\lim _{v \rightarrow 0} \frac{(u-a L(v))^{2}-D^{2}}{\left(u-a L(v)+|u|^{-1} u D\right) v D}=\lim _{v \rightarrow 0} \frac{-v}{\left(u-a L(v)+|u|^{-1} u D\right) D}=0 .
\end{aligned}
$$

Hence we see that f_{a} is C^{1}-differentiable. Moreover, we obtain

$$
\frac{d}{d u} \bar{u}\left(u,\left(1-u^{2}\right)^{1 / 2}\right)=\frac{1+a u\left(1-u^{2}\right)^{1 / 2}}{D^{3}}>0 \quad \text { for } \quad-1<u<1
$$

and

$$
\frac{d}{d v} \bar{v}\left(\left(1-v^{2}\right)^{1 / 2}, v\right)=\frac{\left(\left(1-v^{2}\right)^{1 / 2}-a L(v)\right)\left(1+a v\left(1-v^{2}\right)^{1 / 2}\right)}{\left(1-v^{2}\right)^{1 / 2} D^{3}}>0
$$

for $|v| \ll 1$. Hence we see that f_{a} is a C^{1}-diffeomorphism by the inverse function theorem.
Consequently, we see that a composite mapping $f_{b}^{-1} f_{a}$ is an equivariant C^{1}-diffeomorphism from $S^{1}(a)$ onto $S^{1}(b)$. This proves the first half of Theorem 2.1.
2.3. Next, we shall show that the composite mapping $f_{b}^{-1} f_{a}$ is not C^{2}-differentiable at a point $(1,0)$ if $a \neq b$.

$$
f_{b}^{-1} f_{a} \text { maps }\left(\left(1-v^{2}\right)^{1 / 2}, v\right) \text { to }\left(\left(1-w^{2}\right)^{1 / 2}, w\right)
$$

where $w=w(v)$ is a C^{1}-diffeomorphism of an open interval $(-1,1)$ onto itself satisfying $w(0)=0$. By 2.1(1), we obtain

$$
\begin{equation*}
v^{-1}\left(\left(1-v^{2}\right)^{1 / 2}-a L(v)\right)=w^{-1}\left(\left(1-w^{2}\right)^{1 / 2}-b L(w)\right) . \tag{4}
\end{equation*}
$$

Differentiating both sides of (4) as functions of the variable v, we obtain

$$
\frac{a v+\left(1-v^{2}\right)^{-1 / 2}}{-v^{2}}=\frac{b w+\left(1-w^{2}\right)^{-1 / 2}}{-w^{2}} \cdot \frac{d w}{d v}
$$

Therefore

$$
\frac{d w}{d v}=\frac{a v+\left(1-v^{2}\right)^{-1 / 2}}{b w+\left(1-w^{2}\right)^{-1 / 2}}\left(w v^{-1}\right)^{2}
$$

Moreover, we obtain

$$
\frac{d^{2} w}{d v^{2}}=\left(w v^{-1}\right)^{2} \frac{d}{d v}\left(\frac{a v+\left(1-v^{2}\right)^{-1 / 2}}{b w+\left(1-w^{2}\right)^{-1 / 2}}\right)+\frac{a v+\left(1-v^{2}\right)^{-1 / 2}}{b w+\left(1-w^{2}\right)^{-1 / 2}}\left(2 w v^{-1}\right) \frac{d}{d v}\left(w v^{-1}\right)
$$

and

$$
\frac{d}{d v}\left(w v^{-1}\right)=\frac{(a-b) w^{2}}{v^{2}\left(b w+\left(1-w^{2}\right)^{-1 / 2}\right)}+\frac{w\left(w\left(1-w^{2}\right)^{1 / 2}-v\left(1-v^{2}\right)^{1 / 2}\right)}{v^{3}\left(b w+\left(1-w^{2}\right)^{-1 / 2}\right)\left(1-v^{2}\right)^{1 / 2}\left(1-w^{2}\right)^{1 / 2}} .
$$

By (4), we obtain

$$
\begin{aligned}
w\left(1-w^{2}\right)^{1 / 2}-v\left(1-v^{2}\right)^{1 / 2} & =(v+w)\left(\left(1-w^{2}\right)^{1 / 2}-\left(1-v^{2}\right)^{1 / 2}\right)+a w L(v)-b v L(w) \\
& =\frac{(v+w)\left(v^{2}-w^{2}\right)}{\left(1-v^{2}\right)^{1 / 2}+\left(1-w^{2}\right)^{1 / 2}}+v w(a \log |v|-b \log |w|) .
\end{aligned}
$$

Moreover, we obtain

$$
\lim _{v \rightarrow 0}\left(w v^{-1}\right)=\lim _{v \rightarrow 0} \frac{\left(1-w^{2}\right)^{1 / 2}-b L(w)}{\left(1-v^{2}\right)^{1 / 2}-a L(v)}=1, \quad \lim _{v \rightarrow 0} \frac{d}{d v}\left(\frac{a v+\left(1-v^{2}\right)^{-1 / 2}}{b w+\left(1-w^{2}\right)^{-1 / 2}}\right)=a-b .
$$

Hence we obtain

$$
\lim _{v \rightarrow 0} \frac{d^{2} w}{d v^{2}}=\lim _{v \rightarrow 0}(a-b)(3+2 \log |v|) .
$$

Therefore, we see that $w=w(v)$ is not C^{2}-differentiable at $v=0$ if $a \neq b$. Consequently, we see that the composite mapping $f_{b}^{-1} f_{a}$ is not C^{2}-differentiable at the point $(1,0)$ if $a \neq b$.
2.4. Finally, we shall show that there is no equivariant C^{2}-diffeomorphism from $S^{1}(a)$ onto $S^{1}(b)$ if $a \neq b$.

Suppose that there is an equivariant C^{2}-diffeomorphism f from $S^{1}(a)$ onto $S^{1}(b)$. Then, we can assume that $f\left(E_{+}\right)=E_{+}$, because the correspondence from (u, v) to $(-u,-v)$ is an equivariant C^{ω}-diffeomorphism of $S^{1}(a)$ onto itself. Moreover, we can assume $f((0,1))=(0,1)$, because the abelian group G acts transitively on E_{+}via ξ^{a}.

Consequently, we can assume $f=f_{b}^{-1} f_{a}$ on the closure of E_{+}. Hence we obtain $a=b$ by the arguments in 2.3. Therefore, we see that there is no equivariant C^{2}-diffeomorphism from $S^{1}(a)$ onto $S^{1}(b)$ if $a \neq b$. This proves the second half of Theorem 2.1.

3. First generalization.

3.1. Let G_{n} be the closed subgroup of $\boldsymbol{G L}(n+1, \boldsymbol{R})$ consisting of matrices in the form
(*)

$$
\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{n} \\
& 1 & & 0 \\
& & \cdot & \\
0 & & & 1
\end{array}\right)
$$

Denote by $\left[x_{1}, \cdots, x_{n}\right]$ the above matrix. Then G_{n} is an abelian Lie group isomorphic to \boldsymbol{R}^{n}. Moreover, any G_{n}-endomorphism satisfying the condition (T) is written in the form

$$
c\left[a_{1}, \cdots, a_{n}\right] ; \quad c>0, \quad a_{1}^{2}+\cdots+a_{n}^{2}<4 .
$$

For $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right)$ satisfying $a_{1}^{2}+\cdots+a_{n}^{2}<4$, denote by $\xi^{[a]}$ the twisted linear G_{n}-action on S^{n} determined by the G_{n}-endomorphism [a_{1}, \cdots, a_{n}]. Then
$\xi^{[a]}\left(\left[x_{1}, \cdots, x_{n}\right],\left(u_{0}, u_{1}, \cdots, u_{n}\right)\right)=e^{\theta}\left(u_{0}+\left(x_{1}+a_{1} \theta\right) u_{1}+\cdots+\left(x_{n}+a_{n} \theta\right) u_{n}, u_{1}, \cdots, u_{n}\right)$, where θ is uniquely determined by the equation

$$
\left(u_{0}+\left(x_{1}+a_{1} \theta\right) u_{1}+\cdots+\left(x_{n}+a_{n} \theta\right) u_{n}\right)^{2}+u_{1}^{2}+\cdots+u_{n}^{2}=e^{-2 \theta} .
$$

If $\left(u_{1}, \cdots, u_{n}\right) \neq(0, \cdots, 0)$, then we see that

$$
\left(u_{0}, u_{1}, \cdots, u_{n}\right)=\xi^{[a]}\left(\left[x_{1}, \cdots, x_{n}\right],\left(0, v_{1}, \cdots, v_{n}\right)\right)
$$

if and only if

$$
\begin{align*}
& v_{j}=u_{j}\left(1-u_{0}^{2}\right)^{-1 / 2} \quad \text { for } \quad 1 \leqq j \leqq n \\
& u_{0}=x_{1} u_{1}+\cdots+x_{n} u_{n}+\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right) \log \left(u_{1}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2} . \tag{1}
\end{align*}
$$

In particular, if $\left(a_{1}, \cdots, a_{n}\right)=(0, \cdots, 0)$, then

$$
\left(u_{0}, u_{1}, \cdots, u_{n}\right)=\xi^{[0, \cdots, 0]}\left(\left[x_{1}, \cdots, x_{n}\right],\left(0, v_{1}, \cdots, v_{n}\right)\right)
$$

if and only if

$$
u_{j}=\frac{v_{j}}{\left(1+\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right)^{2}\right)^{1 / 2}} \quad \text { for } \quad 1 \leqq j \leqq n
$$

$$
\begin{equation*}
u_{0}=\frac{x_{1} v_{1}+\cdots+x_{n} v_{n}}{\left(1+\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right)^{2}\right)^{1 / 2}} \tag{2}
\end{equation*}
$$

By the above arguments, we see that the G_{n}-action $\xi^{[a]}$ has just two fixed points

$$
(1,0, \cdots, 0), \quad(-1,0, \cdots, 0)
$$

and each of the other orbits is diffeomorphic to an open interval.
Denote by $S^{n}(a)$ the n-sphere with the twisted linear G_{n}-action $\xi^{[a]}$. In the rest of this section, we shall show the following.

Theorem 3.1. Let $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \cdots, b_{n}\right)$, for $n \geqq 1$. Suppose

$$
a_{1}^{2}+\cdots+a_{n}^{2}<4, \quad b_{1}^{2}+\cdots+b_{n}^{2}<4 .
$$

Then, there exists a G_{n}-equivariant C^{1}-diffeomorphism from $S^{n}(\boldsymbol{a})$ onto $S^{n}(\boldsymbol{b})$. If $\boldsymbol{a} \neq \boldsymbol{b}$, then there is no G_{n}-equivariant C^{2}-diffeomorphism from $S^{n}(\boldsymbol{a})$ onto $S^{n}(\boldsymbol{b})$.
3.2. Define

$$
L=L\left(u_{1}, \cdots, u_{n} ; \boldsymbol{a}\right)=\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right) \log \left(u_{1}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2}
$$

for $\left(u_{1}, \cdots, u_{n}\right) \neq(0, \cdots, 0)$ and $L(0, \cdots, 0 ; a)=0$. Then L is a continuous function on the n-plane. Put

$$
D=D\left(u_{0}, u_{1}, \cdots, u_{n} ; \boldsymbol{a}\right)=\left(\left(u_{0}-L\right)^{2}+u_{1}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2}
$$

and define

$$
\begin{equation*}
\bar{u}_{0}=\left(u_{0}-L\right) D^{-1}, \quad \bar{u}_{j}=u_{j} D^{-1} \quad(1 \leqq j \leqq n) . \tag{3}
\end{equation*}
$$

Then the correspondence from $\left(u_{0}, u_{1}, \cdots, u_{n}\right)$ to ($\bar{u}_{0}, \bar{u}_{1}, \cdots, \bar{u}_{n}$) defines a continuous mapping f of the n-sphere onto itself. We see that f induces the identity mapping on the ($n-1$)-sphere determined by the equation $u_{0}=0$. By 3.1(1), (2) we see that f is a G_{n}-equivariant homeomorphism from $S^{n}(\boldsymbol{a})$ onto $S^{n}(\mathbf{0})$, where $0=(0, \cdots, 0)$.

By (3), we obtain

$$
\begin{aligned}
& \frac{\partial \bar{u}_{0}}{\partial u_{0}}=\left(u_{1}^{2}+\cdots+u_{n}^{2}\right) D^{-3}, \quad \frac{\partial \bar{u}_{j}}{\partial u_{0}}=-u_{j}\left(u_{0}-L\right) D^{-3} \quad(1 \leqq j \leqq n), \\
& \frac{\partial \bar{u}_{0}}{\partial u_{j}}=-\left(\left(u_{1}^{2}+\cdots+u_{n}^{2}\right) \frac{\partial L}{\partial u_{j}}+u_{j}\left(u_{0}-L\right)\right) D^{-3} \quad(1 \leqq j \leqq n), \\
& \frac{\partial \bar{u}_{i}}{\partial u_{j}}=\left(\delta_{i j} D^{2}-u_{i} u_{j}+\left(u_{0}-L\right) u_{i} \frac{\partial L}{\partial u_{j}}\right) D^{-3} \quad(1 \leqq i, j \leqq n),
\end{aligned}
$$

for $\left(u_{1}, \cdots, u_{n}\right) \neq(0, \cdots, 0)$, where

$$
\frac{\partial L}{\partial u_{j}}=\frac{u_{j}\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right)}{u_{1}^{2}+\cdots+u_{n}^{2}}+a_{j} \log \left(u_{1}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2} \quad(1 \leqq j \leqq n),
$$

and we obtain directly

$$
\frac{\partial \bar{u}_{0}}{\partial u_{j}}=\frac{\partial \bar{u}_{j}}{\partial u_{0}}=0 \quad(0 \leqq j \leqq n), \quad \frac{\partial \bar{u}_{i}}{\partial u_{j}}=\frac{\delta_{i j}}{\left|u_{0}\right|} \quad(1 \leqq i, j \leqq n)
$$

for $\left(u_{1}, \cdots, u_{n}\right)=(0, \cdots 0)$. Hence we see that f is C^{1}-differentiable.
By the geometric meaning of the construction (3), we see that f induces a C^{ω}-diffeomorphism from $S^{n}(\boldsymbol{a})-\{(\varepsilon, 0, \cdots, 0)\}$ onto $S^{n}(\mathbf{0})-\{(\varepsilon, 0, \cdots, 0)\}$.

Moreover, we obtain

$$
\frac{\partial}{\partial u_{j}} \bar{u}_{i}\left(\varepsilon\left(1-u_{1}^{2}-\cdots-u_{n}^{2}\right)^{1 / 2}, \quad u_{1}, \cdots, u_{n}\right)=\delta_{i j} \quad(1 \leqq i, j \leqq n)
$$

at the point $(\varepsilon, 0, \cdots, 0)$. Hence we see that $f=f_{a}$ is a C^{1}-diffeomorphism from $S^{n}(a)$ onto $S^{n}(0)$ by the inverse function theorem.

Consequently, we see that a composite mapping $f_{b}^{-1} f_{a}$ is a G_{n}-equivariant C^{1}-diffeomorphism from $S^{n}(a)$ onto $S^{n}(b)$. This proves the first half of Theorem 3.1.
3.3. Next, we shall show that there is no G_{n}-equivariant C^{2}-diffeomorphism from $S^{n}(\boldsymbol{a})$ onto $S^{n}(\boldsymbol{b})$ if $\boldsymbol{a} \neq \boldsymbol{b}$.

Denote by $G_{n}(i)$ the closed subgroup of G_{n} consisting of matrices in the form

$$
\left[x_{1}, \cdots, x_{n}\right] ; \quad x_{i}=0
$$

and by $F_{i}(a)$ the fixed point set of the restricted $G_{n}(i)$-action on $S^{n}(a)$. Then we see that

$$
F_{i}(\boldsymbol{a})=\left\{\left(u_{0}, \cdots, u_{n}\right) \in S^{n} \mid u_{j}=0 \text { for } j \neq 0, i\right\} .
$$

Define a C^{ω}-diffeomorphism h_{i} from S^{1} onto $F_{i}(a)$ by the correspondence from (u,v) to ($u, 0, \cdots, 0, v, 0, \cdots, 0$). Then, we obtain

$$
\begin{equation*}
\xi^{[a]}\left(\left[x_{1}, \cdots, x_{n}\right], h_{i}(u, v)\right)=h_{i}\left(\xi^{a_{i}}\left(\left[x_{i}\right],(u, v)\right)\right) . \tag{4}
\end{equation*}
$$

Now, we suppose that there is a G_{n}-equivariant C^{2}-diffeomorphism f from $S^{n}(a)$ onto $S^{n}(\boldsymbol{b})$. Then, f induces naturally a G_{n}-equivariant C^{2}-diffeomorphism from $F_{i}(\boldsymbol{a})$ onto $F_{i}(b)$. Then, by (4), we obtain an equivariant C^{2}-diffeomorphism from $S^{1}\left(a_{i}\right)$ onto $S^{1}\left(b_{i}\right)$ for each $i=1, \cdots, n$. Then we obtain $\boldsymbol{a}=\boldsymbol{b}$ by Theorem 2.1. This proves the second half of Theorem 3.1.

4. Second generalization.

4.1. Let G_{n}^{*} be the closed subgroup of $\boldsymbol{G} \boldsymbol{L}(n+1, \boldsymbol{R})$ consisting of matrices in the form
(**)

$$
\left(\begin{array}{cccc}
1 & & 0 & x_{1} \\
& \ddots & & \vdots \\
& & 1 & x_{n} \\
0 & & & 1
\end{array}\right)
$$

Denote by $\left[x_{1}, \cdots, x_{n}\right]^{*}$ the above matrix. Then G_{n}^{*} is an abelian Lie group isomorphic to $\boldsymbol{R}^{\boldsymbol{n}}$. Moreover, any G_{n}^{*}-endomorphism satisfying the condition (T) is written in the form

$$
c\left[a_{1}, \cdots, a_{n}\right]^{*} ; \quad c>0, \quad a_{1}^{2}+\cdots+a_{n}^{2}<4 .
$$

For $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right)$ satisfying $a_{1}^{2}+\cdots+a_{n}^{2}<4$, denote by $\xi^{[a]^{*}}$ the twisted linear G_{n}^{*}-action on S^{n} determined by the G_{n}^{*}-endomorphism [$\left.a_{1}, \cdots, a_{n}\right]^{*}$. Then

$$
\begin{gathered}
\xi^{[a]^{*}}\left(\left[x_{1}, \cdots, x_{n}\right]^{*},\left(u_{1}, \cdots, u_{n+1}\right)\right) \\
=e^{\theta}\left(u_{1}+\left(x_{1}+a_{1} \theta\right) u_{n+1}, \cdots, u_{n}+\left(x_{n}+a_{n} \theta\right) u_{n+1}, u_{n+1}\right),
\end{gathered}
$$

where θ is uniquely determined by the equation

$$
\left(u_{1}+\left(x_{1}+a_{1} \theta\right) u_{n+1}\right)^{2}+\cdots+\left(u_{n}+\left(x_{n}+a_{n} \theta\right) u_{n+1}\right)^{2}+u_{n+1}^{2}=e^{-2 \theta} .
$$

If $u_{n+1} \neq 0$, then we see that

$$
\left(u_{1}, \cdots, u_{n+1}\right)=\xi^{[a]^{*}}\left(\left[x_{1}, \cdots, x_{n}\right]^{*},(0, \cdots, 0, \varepsilon)\right)
$$

if and only if

$$
\begin{equation*}
\varepsilon=\frac{u_{n+1}}{\left|u_{n+1}\right|}, \quad x_{j}=\frac{u_{j}}{u_{n+1}}-a_{j} \log \left|u_{n+1}\right| \quad(1 \leqq j \leqq n) . \tag{1}
\end{equation*}
$$

In particular, if $\left(a_{1}, \cdots, a_{n}\right)=(0, \cdots, 0)$, then

$$
\left(u_{1}, \cdots, u_{n+1}\right)=\xi^{[0, \cdots, 0]^{*}}\left(\left[x_{1}, \cdots, x_{n}\right]^{*},(0, \cdots, 0, \varepsilon)\right)
$$

if and only if

$$
\begin{equation*}
u_{j}=\frac{\varepsilon x_{j}}{\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}} \quad \text { for } \quad 1 \leqq j \leqq n, \tag{2}
\end{equation*}
$$

$$
u_{n+1}=\frac{\varepsilon}{\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}} .
$$

Denote by E_{+}(resp. E_{-}) the upper (resp. lower) hemisphere determined by the inequality $u_{n+1}>0$ (resp. $u_{n+1}<0$). Then, by the above arguments, we see that E_{+}and E_{-}are open orbits of the G_{n}^{*}-action $\xi^{[a]^{*}}$ and the other points are fixed points.

Denote by $S^{n}(a)^{*}$ the n-sphere with the twisted linear G_{n}^{*}-action $\xi^{[a]^{*}}$. In the rest of this section, we shall show the following.

Theorem 4.1. Let $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \cdots, b_{n}\right)$, for $n \geqq 2$. Suppose

$$
a_{1}^{2}+\cdots+a_{n}^{2}<4, \quad b_{1}^{2}+\cdots+b_{n}^{2}<4 .
$$

Then, there exists $a G_{n}^{*}$-equivariant homeomorphism from $S^{n}(a)^{*}$ onto $S^{n}(\boldsymbol{b})^{*}$. If $a \neq \boldsymbol{b}$, then there is no G_{n}^{*}-equivariant C^{1}-diffeomorphism from $S^{n}(\boldsymbol{a})^{*}$ onto $S^{n}(\boldsymbol{b})^{*}$.

4.2. Define

$$
L(v)=v \log |v| \quad \text { for } \quad v \neq 0 \quad \text { and } \quad L(0)=0 .
$$

Then L is a continuous function on the real line. Put

$$
D=\left(\left(u_{1}-a_{1} L\left(u_{n+1}\right)\right)^{2}+\cdots+\left(u_{n}-a_{n} L\left(u_{n+1}\right)\right)^{2}+u_{n+1}^{2}\right)^{1 / 2}
$$

and define

$$
\begin{equation*}
\bar{u}_{j}=\left(u_{j}-a_{j} L\left(u_{n+1}\right)\right) D^{-1} \quad(1 \leqq j \leqq n), \quad \bar{u}_{n+1}=u_{n+1} D^{-1} . \tag{3}
\end{equation*}
$$

Then the correspondence from (u_{1}, \cdots, u_{n+1}) to ($\bar{u}_{1}, \cdots, \bar{u}_{n+1}$) defines a continuous mapping $f=f_{a}$ of the n-sphere onto itself. By 4.1(1), (2) we see that f is a G_{n}^{*}-equivariant homeomorphism from $S^{n}(a)^{*}$ onto $S^{n}(\mathbf{0})^{*}$.

Consequently, we see that the composite mapping $f_{b}^{-1} f_{a}$ is a G_{n}^{*}-equivariant homeomorphism from $S^{n}(\boldsymbol{a})^{*}$ onto $S^{n}(\boldsymbol{b})^{*}$. This proves the first half of Theorem 4.1.
4.3. Next, we shall show that the composite mapping $F=f_{b}^{-1} f_{a}$ is not C^{1}-differentiable at a point $(0, \cdots, 0,1,0, \cdots, 0)$, if $n \geqq 2$ and $\boldsymbol{a} \neq \boldsymbol{b}$. F maps $\left(u_{1}, \cdots, u_{n+1}\right)$ to $\left(w_{1}, \cdots, w_{n+1}\right)$, where

$$
w_{j}=w_{j}\left(u_{1}, \cdots, u_{n+1}\right) \quad(1 \leqq j \leqq n+1)
$$

are continuous mappings. Then, by 4.1(1), we see that

$$
\begin{equation*}
\left(u_{j}-a_{j} L\left(u_{n+1}\right)\right) w_{n+1}=\left(w_{j}-b_{j} L\left(w_{n+1}\right)\right) u_{n+1} \tag{4}
\end{equation*}
$$

for $1 \leqq j \leqq n$.
For each $k(1 \leqq k \leqq n)$, define a C^{ω}-differentiable mapping

$$
c_{k}(s)=\left(u_{1}^{k}(s), \cdots, u_{n+1}^{k}(s)\right)
$$

from an open interval $(-1,1)$ to the n-sphere by

$$
u_{j}^{k}(s)=\delta_{k j}\left(1-s^{2}\right)^{1 / 2} \quad \text { for } \quad 1 \leqq j \leqq n, \quad u_{n+1}^{k}(s)=s,
$$

and put

$$
F\left(c_{k}(s)\right)=\left(w_{1}^{k}(s), \cdots, w_{n+1}^{k}(s)\right) .
$$

By (4), we obtain

$$
\frac{w_{n+1}^{k}(s)}{s}=\frac{w_{n+1}^{k}(s)}{u_{n+1}^{k}(s)}=\frac{w_{k}^{k}(s)-b_{k} L\left(w_{n+1}^{k}(s)\right)}{u_{k}^{k}(s)-a_{k} L\left(u_{n+1}^{k}(s)\right)},
$$

and hence

$$
\lim _{s \rightarrow 0} \frac{w_{n+1}^{k}(s)}{s}=1
$$

because $w_{k}^{k}(0)=u_{k}^{k}(0)=1$ and $w_{n+1}^{k}(0)=u_{n+1}^{k}(0)=0$. Moreover, by (4), we obtain

$$
\frac{w_{j}^{k}(s)}{w_{n+1}^{k}(s)}=\left(b_{j}-a_{j}\right) \log |s|+b_{j} \log \left|w_{n+1}^{k}(s) s^{-1}\right|
$$

for each $j(\neq k, n+1)$. Hence we obtain

$$
\frac{d w_{j}^{k}}{d s}(0)=\lim _{s \rightarrow 0} \frac{w_{j}^{k}(s)}{s}=\lim _{s \rightarrow 0} \frac{w_{j}^{k}(s)}{w_{n+1}^{k}(s)}=\lim _{s \rightarrow 0}\left(b_{j}-a_{j}\right) \log |s|
$$

for each $j(\neq k, n+1)$.
Therefore, if the mapping F is C^{1}-differentiable at $c_{k}(0)$, then we obtain $a_{j}=b_{j}$ for each $j(\neq k, n+1)$. Consequently, we see that if $n \geqq 2$ and F is C^{1}-differentiable at each point $c_{k}(0)(1 \leqq k \leqq n)$, then $\boldsymbol{a}=\boldsymbol{b}$.
4.4. Finally, we shall show that there is no G_{n}^{*}-equivariant C^{1}-diffeomorphism from $S^{n}(a)^{*}$ onto $S^{n}(b)^{*}$, if $n \geqq 2$ and $a \neq b$.

Suppose that there is a G_{n}^{*}-equivariant C^{1}-diffeomorphism f from $S^{n}(a)^{*}$ onto $S^{n}(b)^{*}$. Then, we can assume that

$$
f(0, \cdots, 0,1)=(0, \cdots, 0,1)
$$

for the same reason as in 2.4. Hence we can assume $f=f_{b}^{-1} f_{a}$ on the closure of the upper hemisphere E_{+}. Hence we obtain $\boldsymbol{a}=\boldsymbol{b}$ by the arguments in 4.3. This proves the second half of Theorem 4.1.

5. Concluding remark.

5.1. Let G be a closed subgroup of $\boldsymbol{G L}(n, \boldsymbol{R})$ and let M and N be G-endomorphisms satisfying the condition (T). We say that M is weakly C^{r}-equivalent to N, if there exist an automorphism α of G and a C^{r}-diffeomorphism f of S^{n-1} onto itself such that the following diagram is commutative:

We call f a weakly G-equivariant C^{r}-diffeomorphism.
5.2. For $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$, denote by $[\boldsymbol{x}]$ and $[\boldsymbol{x}]^{*}$ the matrices in the form 3.1(*) and $4.1(* *)$, respectively. We shall show the following result due to a colleague, Shinichi Watanabe.

TheOrem 5.2. Let $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \cdots, b_{n}\right)$, for $n \geqq$. Suppose

$$
0<a_{1}^{2}+\cdots+a_{n}^{2}<4, \quad 0<b_{1}^{2}+\cdots+b_{n}^{2}<4
$$

Then, (i) there exists a weakly G_{n}-equivariant analytic diffeomorphism from $S^{n}(a)$ onto $S^{n}(b)$, and (ii) there exists a weakly G_{n}^{*}-equivariant analytic diffeomorphism from $S^{n}(a)^{*}$ onto $S^{n}(b)^{*}$.

Proof. We see that there exist P, Q in $\boldsymbol{G L}(n, \boldsymbol{R})$ satisfying $\boldsymbol{a}=\boldsymbol{b} P$ and $\boldsymbol{b}=\boldsymbol{a}^{t} Q$. Denote

$$
P^{(1)}=\left(\begin{array}{ll}
1 & 0 \\
0 & P
\end{array}\right), \quad Q_{(1)}=\left(\begin{array}{ll}
Q & 0 \\
0 & 1
\end{array}\right),
$$

respectively. Define automorphisms α_{P} of G_{n} and α_{Q}^{*} of G_{n}^{*} by

$$
\alpha_{P}([x])=\left[x P^{-1}\right], \quad \alpha_{Q}^{*}\left([x]^{*}\right)=\left[x^{t} Q\right]^{*},
$$

respectively. Define an analytic diffeomorphism f_{P} from $S^{n}(a)$ onto $S^{n}(b)$ by

$$
f_{P}(\boldsymbol{u})=\pi^{[b]}\left(P^{(1)} \boldsymbol{u}\right) \quad \text { for } \quad \boldsymbol{u}=\left(u_{0}, \cdots, u_{n}\right)
$$

and an analytic diffeomorphism $f_{\mathbb{Q}}^{*}$ from $S^{n}(a)^{*}$ onto $S^{n}(\boldsymbol{b})^{*}$ by

$$
f_{Q}^{*}(\boldsymbol{u})=\pi^{[\boldsymbol{b}]^{*}}\left(Q_{(1)} \boldsymbol{u}\right) \quad \text { for } \quad \boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right) .
$$

Then, we see that the following diagrams are commutative:

Therefore, f_{P} is a weakly G_{n}-equivariant analytic diffeomorphism from $S^{n}(a)$ onto $S^{n}(b)$, and f_{Q}^{*} is a weakly G_{n}^{*}-equivariant analytic diffeomorphism from $S^{n}(a)^{*}$ onto $S^{n}(\boldsymbol{b})^{*}$.
q.e.d.

References

[1] F. Uchida, On a method to construct analytic actions of non-compact Lie groups on a sphere, Tôhoku Math. J. 39 (1987), 61-69.
[2] F. Uchida, Certain aspects of twisted linear actions, Osaka J. Math. 25 (1988), 343-352.
Department of Mathematics
Faculty of Science
Yamagata University
Yamagata, 990
Japan

[^0]: ${ }^{*)}$ Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

