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Introduction. Let H={z = x + iy;y>0} be a hyperbolic plane with the Poincare
metric ds2 = (dx2 + dy2)jy2 of constant curvature — 1. The group PSL(2, R) acts on H
as the group of orientation-preserving isometries. A hyperbolic element y of PSL(2, R)
has two fixed points in /?u{oo}; the repelling fixed point α and the attracting one β.
The geodesic ay connecting α and β is called the axis of y. Let Γ be a Fuchsian group
in PSL(2,R) and φ = φΓ: //->///Γ be the natural projection on the quotient space.
Then the equivalence classes of axes {η(aγ); ηeΓ} of hyperbolic elements of Γ and the
closed geodesies on H/Γ (which include a kind of geodesic segments for some cases,
see § 1) are in one-to-one correspondence under the map induced by φ: ay \—• φ{ay). The
purpose of the present paper is to show that a closed geodesic with some self-intersections
cannot be too short. To state our main theorem we first give the following condition
imposed on hyperbolic elements y of PSL(2, R):

(oo) There exists a Fuchsian group Γ containing y and another element δ in such

a way that δ does not preserve the axis ay of y (that is, ay Φ δ(ay)) and that ay and

δ(ay) = aδyδ-ι intersect each other.

THEOREM. For each hyperbolic transformation y e PSL(2, R) satisfying the condition

(oo), the trace ofy satisfies

| ^ c 0 = 2cos(2π/7)+l=2.2469 .

Moreover, the constant c0 cannot be replaced by any greater value.

In the condition (oo) there are no restrictions on the Fuchsian group Γ. If, in
particular, y is contained in a Fuchsian group Γ without elliptic elments for which the
condition (oo) is satisfied, then inequality | try |^2χ/ 2 holds ([5], [13]).

The author would like to thank the referees who have made helpful suggestions
and corrected many errors.

1. Preliminaries. Let y be a hyperbolic element of a Fuchsian group Γ. The
projection φ(ay) = φΓ(ay) of the axis of y is a geodesic curve on H/Γ. Let l(y) be the
length of φ(ay) counting multiplicities. Then we have

| = 2cosh(/(y)/2)

(cf. [1, p. 173]). Suppose that an elliptic element of order 2 in Γ preserves ar A circular
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arc at a hyperbolic distance ε from ay is projected under φ onto a closed curve Cε. We

can regard φ(ay) as the degeneration of Cε as ε->0. If Cε are simple closed curves for

small values of ε, we call also φ(ay) a simple closed geodesic.

A subset D of H is said to be staWe with respect to Γ if, for all η in Γ, either

η(D) = D or η(D)nD = 0

([1, 6.3]); ΓD = {ηeΓ; η(D) = D} is called the stabilizer of D. Then </>(#>>) is simple closed

if and only if ay is stable with respect to Γ. Assume that φ(ay) is simple closed and γ

generates the maximal cyclic subgroup <y> of the stabilizer Γay of ay. Let C(ω, ay)

denote the hyperbolic ω-neighborhood of ar If C(ω, ay) is stable with respect to Γ, we

call its projection φ(C(ω, ay)) a ctf/for of width ω about 0(tfy). F ° r a positive number

/, let ω(/) be the value determined by 2sinh ω(/) = (sinh //2)"1. Then the collar lemma

([4]) says that, if Γαy = <y>, C(ω(/(y)), ay) is stable with respect to Γ. If Γfly contains an

elliptic element δ of order 2, we can find a subgroup G of Γ such that Γ = GuGδ and

Gαv = <y> By the collar lemma C(ω(/(/y)), αy) is stable with respect to G. Then

C(ω(/(y)), 0y) is preserved by δ and hence stable with respect to Γ.

2. Two-generator Fuchsian groups of the first kind.

2.1. Let us observe that in order to prove the inequality in the theorem it suffices

to consider hyperbolic transformations in two-generator Fuchsian groups of the first

kind.

Let y satisfy the condition (oo) with respect to a Fuchsian group Γ. An element

δ of Γ does not preserve ay, and ay and aδyδ-ι intersect each other. Let Γ' be the group

generated by y and δ. Then obviously y satisfies (oo) with respect to Γ'.

We replace Γ by the above Γ' and proceed with the two-generator group Γ. Note

that Γ is non-elementary, because the endpoints of ay and aδyδ-i are limit points of Γ.

Assume that Γ is of the second kind. Following the method described in Bers's paper

[2], we shall construct the Nielsen extension of H/Γ. For a greater detail, see [2]. Let

Ω be the region of discontinuity for the action of Γ on the extended complex plane

Cu{oo}. The J=Ωn(Ru{oo}) is a union of open intervals, and Ω = HuH*υJ, where

H* is the lower half plane. Let φ: Ω-+Ω/Γ be the natural projection and χ: H-*Ω be

a universal covering mapping. If K is the Fuchsian group leaving φ ° χ invariant, then

Ω/Γ is represented by H/K (Maclachlan [8]). Let / be the identity on H/Γ = φ(H). Then

there exists a conformal mapping fx: H-tf^H) cz H which makes the following diagram

commute:

/l

H • H

ΦΓ

f
H/Γ • H/K=Ω/Γ
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The set ψ(J) consists of a finite number of simple closed curves Cί9 - —,CV Each C, is

a geodesic with respect to the hyperbolic metric on H/K induced by φκ. Thus ft(H)9 a

lift of φ(H)9 is a convex region bounded by axes of hyperbolic elements corresponding

to Cu , Ct. Let Kx be the stabilizer of fx(H) in K. For any hyperbolic half plane D

of H\fi(H), a hyperbolic element which has dD as the axis generates the stabilizer

(K^D of D in Kv Hence H/K1 is obtained from φ(H) by attaching the ring domains

of the form D/iK^ to Cl9 , Cf. We call N(H/Γ) = H/Kί the Mέ?&έ?/i extension of

/ί/Γ. By replacing Â  by a conjugation of K in PSL(2, R), we can normalize /i so that

/i fixes i=\l — 1. Since λ^ is the group of covering transformations leaving <

invariant, fγ induces an isomoφhism θί: Γ-*K1 defined by 0iθ7)°/i=/i °η for

We define inductively NS(H/Γ) = H/KS (s = 2, 3, •) to be N{HIKs_γ) by using a similar

conformal mapping fs: H^H to the / x as above, such that fs(ί) = L Let θs: Ks_ί-^KS

be the isomorphism defined by θs(η)° fs=fs°η for ηeKs_x.

We set Θs = θs° °θ1 and Fs = fs° - - - °fλ. Then Θ s : Γ^KS is an isomorphism

and F s is conformal and fixes /. Moreover we set ys = Θs(γ) and ^ s = Θs(δ) for the gen-

erators γ and <5 of Γ. Let d(,) denote the hyperbolic distance in H. The Ahlfors-Schwarz

lemma (a holomorphic mapping is distance decreasing between Riemann surfaces with

hyperbolic metrics) yields that for s= 1, 2, ,

d(Fs(z)J)<d(z9i) for zeH

and, in particular, that

d(ys(i), i)<d(γ(ί), i) and d(δs(ΐ), i)<d(δ(i), i).

These inequalities imply that {Fs} is locally uniformly bounded in H and that {yj and

{δs} contain subsequences converging in PSL(2, R). By replacing them by suitable

subsequences, we may assume that

Fs-+F ys~>yo and δs^δ0.

By a theorem of Jorgensen ([6, Theorem 1]), the group Ko generated by y0 and (50 is a

non-elementary Fuchsian group and there is an isomorphism Θ: Γ-+Ko such that

Θ(γ) = y0 and Θ(δ) = δ0. By the limiting process, we have that

(2.1) Θ(η)oF=Foη for ηeΓ.

From this it follows that Fis not constant, since F(y(ί)) = γo(ί)Φi = i=F(ί). Hence Fis

conformal. By proceeding precisely as in [2], we can see that Ko is of the first kind. We

call H/Ko the infinite Nielsen extension of H/Γ.

To verify that γ0 is hyperbolic and satisfies the condition (oo), note first either one

of the following cases occurs:

(1) The endopints of F(αγ) separate those of F(αδyδ-i), or

(2) F(αγ) and F(αδγδ-ι) have a common fixed point.

The case (2) occurs in particular if γ0 is parabolic. By (2.1) y0 fixes the endpoints of
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F(ay) and ^oyo^o"1 fiχes those of F(aδyδ-ι). Then the case (2) is impossible, since Ko is
a non-elementary Fuchsian group. Hence only the case (1) occurs, and y0 satisfies the
condition (oo) with respect to Ko. Finally by the Ahlfors-Schwarz lemma, if z is a point
of av

I tr y I = 2 cosh(φ, y(z))/2)> 2 cosh(</(F(z), y0F(z))/2) ̂  | tr y0 | .

Thus for our purpose, it suffices to consider two-generator Fuchsian groups of the first
kind.

The classification of all two-generator Fuchsian groups has been already completed
(see [10], [11]). We write the signature as (g; ml5 , mr, oo, , oo) with oo repeated
s times, instead of (g;mί9 ,mr;s;0), which is employed in [1]. The signatures of
two-generator Fuchsian groups of the first kind are: (a) (1; p\ 2^p, (b) (0; 2, 2, 2,/?),
p odd ̂ 3 and (c) (0; p, q, r), 2^p, q9 r and \/p + \/q + \/r< 1 (the signatures of triangle
groups).

2.2. We consider a Fuchsian group Γ with signature (1 /?),/? ̂  2. The surface HjΓ
is either a torus with φΓ: H-^H/Γ branched over a single point if /?<oo, or a
once-punctured torus if/?=oo.

Let yeΓ be a hyperbolic element satisfying the condition (oo) with respect to Γ.
Assume first that φ(aγ) does not intersect a simple closed geodesic g on H/Γ. Let D be
a lift of H/Γ\g to //containing ar Then y satisfies the condition (oo) with respect to
the stabilizer ΓD of Zλ Now ΓD is of the second kind. By considering the infinite Nielsen
extension of H/ΓD as in 2.1, we can find a Fuchsian group G and an isomorphism
θ: ΓD->G such that | tr θ(y) \ < \ tr y \ and θ(y) satisfies (oo) with respect to G. The signature
of G is (0;/?, oo, oo), which we shall treat later.

Assume next that φ(aγ) intersects every simple closed geodesic on H/Γ. If a simple
closed geodesic has a collar of width ω for which 2 cosh ω ̂  c0 = 2 cos(2π/7) + 1, the
length of φ(ay) is greater than 2ω, and hence | tr y \ ^ c 0 . Thus we may assume that for
every simple closed geodesic the maximal width of collars satisfies 2 cosh ω<c0. By the
collar lemma our assumption means that every simple closed geodesic has length greater
than l0 with (2 s i n h / o ^ ' ^ s i n h ί c o s h " 1 ^ ^ ) ) . Here note that 2 cosh ίo/2>2J>co.
The curve φ(ay) can be divided into some simple closed curves Cί9 , CΛ. At least one
of them, say C l 9 is not contractible to the projection of the elliptic fixed point (or the
puncture) of the torus. Then the length of φ(aγ) is greater than /0, since it is greater
than the length of the simple closed geodesic freely homotopic to C1. Thus we have
| t ry |>c 0 .

2.3. Next we consider a hyperbolic element γ satisfying the condition (oo) with
respect to a Fuchsian group Γ with signature (0; 2, 2, 2,/?), p odd ̂ 3 . H/Γ is a sphere
and φΓ is branched over four points with branching orders 2, 2, 2 and p. As in 2.2 we
may assume that φ(aγ) intersects every simple closed geodesic on H/Γ, all of which have
length greater than /0 as above.
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If φ(aγ) is a closed curve in the usual sense, then a closed curve in φ(ay) bounds
either a disc containing two projections of elliptic fixed points of order 2, or two discs
each of which contains one projection of such a point. Then the curve has length >/0.
If an elliptic element of order 2 preserves av then we consider the closed curve Cε as
in § 1. By applying the same argument to Cε, we know the length of Cε is greater than
/0. By letting ε->0, the length of φ(ay) is not less than /0. Therefore we can conclude
that | t τy |>c 0 .

3. Triangle groups. In this section we shall only be concerned with triangle
groups. Hence we abbreviate the notation of a signature (0; p, q, r) to (p, q, r). We write
(p, q, r)^(p', q\ rr) if the inequalities p^p\ q^q' and r^r' hold simultaneously.

3.1. We assume first that/?, q and r are all finite. The triangle group with signature
(p,q,r) has a group presentation {A, B; Ap = Bq = (B-1A-1)r=l}. A triangle group
Γ = Γ(p, q, r) is generated by the following two matrices:

" x sin(π/ςr)"|

os(π/q) J '

and
cos(τφ)J

(3.1)
Γcos(π/?) -λ~
|_/l sin(π/#) cos(

where the constant λ = λ(p, q,r)>\ is to be determined. Since C=B~1A~1 is elliptic of
order r and tr A>0 and tr B>0, we have ([9, p. 489, Corollary])

t rC=2cos(— Jcosί — ) - v ,

Now we obtain

(3.2) A-A(p, <s

sinί

n Λ
)sin(

ί i n w)

:f)
where E=cos(π/r)+cos(π/p) cos(π/q). Denote by px the fixed point in H of an elliptic
transformation X of PSL(2, R). Then we have pA = i, pB = λ~ιi,

-(λ-λ~x) sin(—λ sinf—\ + 2 sii/—\

2 λcos — sm — +sin — cos —
V \PJ \qj \PJ \q

(3.3)
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- (λ2 -1) sin( — ) cos( — ) + λi
\pj \pJ

2 cos2 — +sin 2 —
\PJ \P

λ2 cos

where D = ABA 1. If p< oo, we can define Γ(p, q, oo) and Γ(/?, oo, oo) to be the limit
of Γ( p, g, r) as r-» oo and #, r-» oo, respectively. We define Γ(oo, oo, oo) to be the group

(i)

(ϋ)

(iϋ)

(0

(ϋ)

(i)

(ϋ)

(3

(P,

(P,

(4,

(2,

(2,

(2,

(2,

,4,

q,

3,

3,

?,

4,

4,

3,

4)

»*)

»•)

r)

r)

r)

r)

r)

and

with 4 ^ p g q ^ r anc

with 5 ̂ p S r

with 5 ̂  r

with 5-ζq-^r

with 7 ̂  r

with r = 5 and 6

with 7 ̂  r

(3,3,-r) with 4g

The groups Γ(p, g, r) and Γ(/?', #', r') are conjugate to each other in PSL(2, R) if and
only if (p\ q'9 r') is a permutation of (p, g, r). We classify the signatures into four types:

Type I (i) (p,q,r) with 4 ^ p g g ^ r and /?<oo

Type II

Type III

Type IV

Note that except for Γ(oo, oo, oo) any triangle group Γ(p, q, r) is conjugate to a group
with a signature listed above. As we have seen in §2, it suffices to show the following
for the proof of the inequality in the theorem:

PROPOSITION 3.1. For any hyperbolic transformation γ contained in a triangle group

it holds that | tr γ | ̂  c0 = 2 cos(2π/7) + 1 .

Any hyperbolic element γ of Γ(oo, oo, oo) satisfies | t r y | ^ 3 > c 0 . The groups
Γ(3, 4, 4) and Γ(3, 3, r) (r ̂ 4) are conjugate to a subgroup of Γ(2, 4, 6) and Γ(2, 3, 2r),
respectively, in PSL{2, R) (see [3], [12]). Therefore we need only to consider the triangle
groups with signatures of type I, II and III. For more details about triangle groups, see [7].

3.2. We consider then the triangle group Γ(p, q, r) with p< oo. Let Q = Q(p, q, r)
be the hyperbolic quadrilateral with verticespA,pB >Pc and/j^ (see Figure 3.1). Poincare's
theorem ([1, 9.8]) implies that Q is a fundamental domain for Γ = Γ(p,q,r). Define
R = R(p,q9r) by

R = Q for p^3 and R = QuA(Q) for p = 2



CLOSED GEODESICS ON A RIEMANN SURFACE 533

(here Q is the closure of Q). If p^3, label the sides PAPD, PAPB> PBPC
 a n c

 PCPD °f R by
the letters A, A'1, C and C" 1, respectively. If p = 2, label the sides pDpc, PD^(PC)^

pBA(pc) and Pβpc by A, A'1, C and C" 1 , respectively. We call the side labelled by the
letter A the Aside of R and so on. By abuse of notation we denote by d(A9 C) the
hyperbolic distance between the v4-side and the C-side. Since R is symmetric with repect
to the hyperbolic line throughpA andp cifp^3, or throughpB and pDifp = 2, d(A, C)

PD

FIGURE 3.1

is also the hyperbolic distance between the A ^side and the C ^side. We shall estimate

the value of d(A,C).

LEMMA 3.2. For the triangle groups Γ{p, q, r) the following inequalities hold: If

(p, q, r) is a signature of type I or type II,

2 cosh(d(A, Q/2) >co = 2 cos(2π/7) + 1 ,

and if(p, q, r) is of type III,

2 cosh d(A,C)^c0.

PROOF, (i) Case of type I. For a while we treat arbitrary signatures (p, q, r) with
3 Sp, q, r- Define LA to be the hyperbolic line which is the extension of the Λ-side of
R. Define Lc, LA-i and Lc-i similarly. The hyperbolic distance d(LA, Lc) between LA

and Lc satisfies d(LA, Lc)^d(A,C). We write D(p,q,r) = d(LA, Lc) when we are
concerened with the signature (p, q, r).

We shall show that LA and Lc are disjoint. Suppose that LA and Lc meet in a point
p0. Let pγ and p2 be the vertices on the side of R closest to p0. Hence {pup2} = W ^ }
or {/>!>,/><;}• Consider the hyperbolic triangle A with vertices 0̂» ^i and p2. Since the
angle at each vertex of R is not greater than π/3, the angle sum of Δ exceeds π. This
is a contradiction ([1, 7.13 Corollary]).

We prove then that:
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(3.4) D(p,q,r) = D(r,q,p)9 D(p, q, r)<D(p, q, r +1) and D{p9q9q)<D{p9q9+l9q).

The first equality holds, since R(p, q, r) is congruent to R(r, q9 p) in hyperbolic geometric

sense. The line LA is the same for the signatures (p, q, r) and (p, q, r + 1 ) . On the other

hand Lc for (p,q,r) and that for (p, q, r + 1 ) are different. We distinguish them by

writing Lc(r) and L^(r-\-1), respectively. Two lines Lc(r) and L^r-\-1) meet Z^-i in the

points λ{p,q,r)~1i and λ{p,q,r +l)~ιί with the same angle π/#. From (3.2) follows

KP> 4>r)<^(P> <Z> f+1) . Hence Lc(r) separates L c ( r+1) from LA. Thus D(p,q9r)<

D(p, q,r + 1). Let 5 be the hyperbolic quadrilateral with vertices pA, pB, pc and A(pc).

Then S = E(2p)(Q(p,r,q)), where £(2p) is the transformation given in (3.1). It follows

from this that d(pA,pc) = \ogλ(p, r, q). As before we write Lc(q), Lc(q+1), pc(q) and

Pc^q+l) to distinguish L c 's and /?c's for the signatures (/?, q, q) and (p, ̂ f+1, ̂ ). Let M

be the hyperbolic bisector of the angle which LA and LA-ι make at/?A. Then Lc(^f) and

meet Λf in /?c(^) and /?c(^+l)? respectively, with the same angle π/r. Since

A» PάΦ) = l o β ^ ( A ^ Φ <log A(p, ̂  + 1 , 4)<d(p A , /?cte +1)), Lc(q) separates Lc(q +1)

from LA. Thus D(p9 q, q)<D(p, q+l,q).

By combinations of relations (3.4), we can obtain

,4) for (p9q9r) of type I (i), and

,5) for (p9q9r) of type I (ii), (iii).

We first evaluate 2 cosh(D(4, 4,4)/2). Consider the hyperbolic triangle Δ with vertices pA,

pc and pD. Draw a hyperbolic perpendicular from the midpoint px of the segment /?^/?c

to LA. Then the foot p2 of the perpendicular lies on the ^4-side of R, since the angle of

all vertices of A do not exceed π/2. Observe that R = R(4, 4, 4) is preserved by the elliptic

transformation of order 2 ofPSL(2, R) with a fixed point/?!. Thus D(4, 4, 4)/2 = d(pΐ,p2).

Then by applying the sine rule ([1, 7.12]) to the hyperbolic triangle with vertices pl9 p2

and pA, we obtain

sinh(D(4,4, 4)/2)_sinh((l/2) log λ(4, 4, 4))

sin(π/4) sin(π/2)

Since 2 cosh x = 2(1+ sinh2 JC) 1 / 2, 2 cosh(D(4, 4,4)/2) = 2[1 + {cos(π/2) + cos(π/4)}/2]1/2

>2.32.

Next we evaluate 2 cosh(D(4, 3, 5)/2). P^ regard Lc-ι as a Euclidean circle. Then

it has the center ξ and radius p described by

Z_\PC\2-\PD\2

 a n d JPC-PD\\PC-PD\

Since D(4,3,5) = d(LA-ι,Lc-1), (ξ-pKξ + pΓ1 tanh2(Z)(4, 3, 5)/2)=l ([1,7.23]). Then

2cosh(D(4, 3, 5)/2) = [ 2 p - 1 ( ρ - ξ ) ] 1 / 2 In this case, by (3.3),

a n d

2Re(pc-pD) P 2\Re(pc-pD)\
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1+J5 +2J2 +

PD =

Hence 2 cosh(D(4, 3, 5)/2>2.29. Summing up the results obtained so far, we conclude
that 2 cosh(d(,4, C)/2)>c0 for signatures of type I.

(ii) Case of type II and III. Draw the hyperbolic perpendicular from pA to
Lc-ι, and let p3 be the foot of the perpendicular. As in the previous case we can
see that d(A, C) = 2d(pA,p3). Again the sine rule applied to the triangle with ver-
tices pA, pB and p3 yields 2cosh(d(A, C)/2) = 2(cos2(π/r) + cos2(π/^))1/2. Hence
2cosh(d(A, C)β)Z min{2^/T cos(π/5), (2 + 4cos2(π/7))1/2}>c0 for signatures of type
II, and 2 cosh d(A9 C) = 4 cosh2(d(A, C)/2)-2^min{4 cos2(π/5), 4 cos2(π/7)-1} =c0

for those of type III. q.e.d.

For a signature (p, q, r) of type I, the segment PAPC intersects perpendicularly to
the segment PBPD. Consider the hyperbolic triangle which their point of intersection
makes with pA and pB. Then the sine rule yields

ίπ\ (π\ ίπ\\2 . J π
:os — + cos — cos — I I — sin —
• \rj \pj \qJJ \p.

sinΊ —

Thus,

(3.5) 2 cosh(d (pβ, /?D)/2) >c0 if (p, 4, r) is of type I .

In a similar way we obtain

(3.6) 2 cosh(d(pc, A(pc))/2) > c0 if (p, g, r) is of type II or type III.

3.3. We fix a signature (p, q, r) of type I, II or III. Let Γ = Γ{p, q, r). Let Jί be
the set of images of dR under Γ; its vertices are elliptic fixed points of Γ and its edges
are equivalent to the sides of R under Γ. We call y(R) with γ e Γ simply a copy of R.
For a hyperbolic element y of Γ we regard the axis ay as a directed line which tends to
the attracting fixed point.

LEMMA 3.3. Let y be a hyperbolic element of Γ. If ay passes through a vertex in

Jί, then | t ry |>c 0 .

PROOF. Assume that ay passes through a vertex v in Jί. Consider the edges in Jί
opposite to v in some copies of R and let J be their union. Suppose that ay meets J
in two points wx and w2 in this order. The segment st = wtv (/= 1, 2) is equivalent under
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Γ to a segment in R connecting a vertex of R to one of its opposite sides. Hence
d(wh v)>d(A, C). Ifγ(s1)φs2, we obtain by Lemma 3.2 that | try | >c0. If otherwise, we
have y(w1) = v. Then, for an element η of Γ, ηisj connects two equivalent vertices of
R under Γ. This means η(sι)=pBpD if/? ^ 3 and η(s1)=pcA(pc) or PβpD ifp = 2. For the
first two cases (3.5) and (3.6) yield the desired result. For the last case, either ηyη'1 or
ηy~1η~1 equals ABP for some k, \^k<q. By (3.1) and (3.2), we have
| t r ^ 5 f c | = 2|cos(π/r)sin(fcπ/^)|(sin(π/^))"1. Hence if (p,q,r) is of type III (i) and
2i^ki^q-2, I txABfi\^2^J 2 cos(π/5)>c0. For other cases AlP cannot be hyperbolic.

q.e.d.

Any conjugacy class of a hyperbolic element in Γ contains an element whose axis
passes through R. Hence by Lemma 3.3 we need only to consider hyperbolic elements
whose axes pass through R and meet no vertices in Jί. Let T be the collection of such
elements. Let γ be an element of T. Suppose that its axis ay meets the edges Eί9 , En__ l 5

En = γ(E1) in Jί in succession. Here Ex and E2 are sides of R. We call (Eί9 , En) the
edges associated to y. We shall also associate to γ a sequence of pairs of the letters A,
A'1, Cand C" 1 :

(3.7) w=w(y)=(χ-\ x2χx2\ x3y -(jr-Λ, xn).

Here we use the convention (A~1)~ί=A9 (C~1)~1 = C. Let st ( ί=l, , « - l ) be the
subarc of ay which connects ^ and Ei+ί. Then ΛΊ is contained in R. Knowing that sx

goes from the Xj^-side to AVside of R, we obtain the first pair (Xj"1* ^2)- Let yx be
the transformation of Γ which sends the AVside to its corresponding side, namely the
X2 ^side. Then y^sj is contained in î . Then the second pair {X2

ι, X3) means that
yί(s2) goes from the A^-side to the ^-side of R. Next we choose the transformation
y2 sending the Ayside to the XJ ^side and consider 7271(̂ 3) contained in R. Continuing
in this manner, we obtain the sequence w in (3.7). We call w the word associated to y.
Let w0 be some sequence of pairs of the letters. If w contains w0 k times in a row, we
contract this part by writing w%. Set P= {(A, C), (C, A), (A"\ C"*), (C~\A~1)}. Then
the word w satisfies:

If p^3, (a) χriφχ.+ 1 for i= 1, , n-1 ,

(b) * ! = * , , and

(c) w contains no subsequences of the forms:

{A,A~ι)\ {A~\Af with fep/2,

( ς C " 1 ) 1 , {C~\C)k with A ^r/2,

[(X"1, ^(y-SJT)]* with k^q/2, where (X,

If p = 2, (a)' XriφXi+1 for i = l , , Λ - 1 ,

(b)'(l) Xx=Xn or (2) (JT^jrjeP, and-
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(c)' w contains no subsequences of the forms:

(A, A~x)\ (A~\ A)\ (C, C"1)*, (C-1, C)k with feq/2 ,

l(X~\ Y)(Y-\X)f with Ik^rβ and

l(X~\ Y){Y~\ X)]\X-\ Y) with 2k + l^r/2 ,

where (X, Y)eP.

For the case /? = 2, let Λ* = C, (^- 1 )* = C" 1 , C* = Λ and (C'1)* = A~1. Then the

condition (2) in (b)' can be replaced by

(2)' X*,=Xn.

The conditions (c) and (c)' are due to the fact that ay is a geodesic so that the shortest

pass between two points on it lies in ar For the case p = 2, the ^4-side and the C-side,

and the ^"^side and the C^-side of R are equivalent under the action of A of Γ.

Hence the condition (2) in (b)' arises. We call a sequence w of the form (3.7) with the

above conditions a word even if it is not associated to a hyperbolic element. The inverse

of w in (3.7) is the word w'1 = (Xn9 X~}xy -(X2, Xϊι\

Let w(γ) be a word as in (3.7) associated to a hyperbolic element y. Let yx be the

transformation of Γ which sends the AVside to the Xΐ ^side of R. Then the conjugation
1 causes the change of the words such as

(A) (*r\X2){XΪ\χ3y (X--UXi) —^{Xϊ\χ*)'-(Xn-uXi)(χ:\χ2)

or, for w(y) satisfying (2) in (b)r,

(B) (jrr \ x2)(x; \x3y-(x;_\, xn) — . {x~2 \xzy (x;}u xn)(x~

We regard (A) and (B) as operations on the set of words. We also consider the operation

w\—• w"1, that is,

(C) (Xϊ\ X2)(X-2 \ X3)• • • (X-.\, Xn) • (Xn, X-_\)• • • (X3, XIi)(ΛT2, ΛΓfx) .

If we can deform a word wt into another one w2 by a finite number of operations (A),

(B), (C) and their inverses, then we say that wx and w2 are equivalent and write wx ~ vv2.

We consider the case p = 2. For a pair (X, Y) of letters we define an element Φ(X, Y)

oίΓby

Φ(X,Y) =

ABA if Y=A,

AB~γA if Y=A~1

B if r = C ,

B1 if Y=C~1

Note that Φ(X, Y) is the transformation which sends the Y ^side of R to the F-side.

For a word w = (X^,X2) •-(X;}uXn) define Φ(w) = Φ(X:\ X2) • Φ(X;}U Xn) if
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Xn = X1 andΦ(w) = Φ(JT1-
1, X2y Φ(X~}U Xn)A'ύXn = Xt' For ay in Γ . l e t ^ , , En)

and w be the edges and the word associated to y. Then by the definition of Φ we see

that Φ(w) sends Ex to En. Hence γ = Φ(w). We remark that if wι^w2, then Φ(wx) is

conjugate to either Φ(w2) or Φ(w2)~ί. For the case/?^ 3, we can define a similar function

of words into Γ by setting Φ{(Xϊι, X2)'' *(^7-i> Xr)) = x i ' ' Xn- However we do not

need Φ for the rest of this paper.

3.4. Let P={(A,Cl (A-\C~ι\ (C,A), (C"1,^"1)}. Let (El9- ,EJ and

(Xϊ1, X2)'' '(Xn-i, Xn) be the edges and word associated to an element y of T. Then

two consecutive edges Et and Ei+1 do not have a common vertex if and only if

(AT"1, Xi+1)eP. In this case the part of ay connecting Et and Ei+1 has length not less

than d(A, C). Let ̂ (Et) denote the hyperbolic polygon made up of copies of R which

have a common vertex with E{. Then the interior of ̂ (E^ contains all points of H

which are at a distance <d(A9 C) from E{.

PROOF OF PROPOSITION 3.1. By Lemma 3.3 we need only to consider the hyperbolic

elements of T. First we consider Γ with signature (p, q9 r) of type I or II. Let γ e T and

let (El9 , En) be the edges associated to y.

If Ei and Ei+ί do not have a common vertex for some /, then the part of ay

connecting E{ and Ei+1 has length ^ d(A9 C). Hence by Lemma 3.2 we obtain | tr y \ > c0.

If Eι and Ei+1 have a common vertex for all i= 1, , n— 1, we divide the edges

into groups

ε1 = (Eu '-,Eh),ε2 = (Eh, ' ", Eώ> " ' >*a = <βja-ι> " ' > En)

so that the edges in the same group εb have a common vertex vb. We remark that a^2,

since otherwise Eγ and En have a common vertex, which means that γ is elliptic. By

the condition (c) or (c)', Ejb + 1 lies in d^r{Ejb^ι), \^b^a—\, and hence the part of

aγ connecting Ejb_ x and Ejb +1 has length ^ d(A, C). Therefore, by Lemma 3.2 we obtain

I tr γ I > c0. Now we conclude that | tr y \ > c0 for every hyperbolic element y of Γ(p, q, r),

if (p, q, r) is of type I or II. Figure 3.2 is not correct in view of hyperbolic geometry,

but we can conceive the idea of the proof from it.

FIGURE 3.2
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Next we consider y with signature (2, q, r) of type III. Let ye T and (Eu ,En)
be the edges associated to 7.

Assume that Et and Ei+1 do not have a common vertex for some i. Let η be the
transformation of Γ which sends the copy of R whose sides contain Ei and Ei + 1 to R.
Then the edges associated to ηyη'1 are (*/(£;), m,η(En), ηy{Ex), , ηyiEJ) and η(Et)
and η(Ei+ί) do not have a common vertex. Hence by replacing y by ηyη'1 we may
assume that /= 1. If there exists another pair of consecutive edges Ej and Ej+ί with no
common vertex, then the part of aγ connecting E1 and Ej+1 has length ^.2d(A, C).
Then, by Lemma 3.2 we obtain |try | ^ c 0 . On the other hand, if Et and Ei + 1 have a
common vertex for all i = 2, , w — 1, we divide the edges into groups each of which
contains edges with a common vertex:

ε1 = (E2, "',Eh),ε2 = (Eh, '-,Eh), • , εa = (Eja_ι9 -",En).

If a ̂  2, the length of the part of aγ connecting Eh _ x and Ejl + ί is not less than d(A, C).
Since the part of aγ connecting E1 and E2 has already length ^d(A9 C), we obtain
Itr y\^c0. The first pair (X, Y) of the word w associated to y belongs to P. Thus, if
α = l , w would be either (X, Y){Y~\ Y)\ fel, (X, Y)[{Y-\ X){X~\ X)f, fel or
(X, Y)l(Y~\X)(X-\ Y)f(Y-\ X), k^l. However none of these words satisfy the
condition (b)r and hence cannot be associated to y.

Finally we assume that Et and Ei+1 have a common vertex for all /= 1, -,n-\.
Again we divide the edges into groups εί=(E1,

 m

9Eh)9 -9εa = (EJa_ί9 , En) so
that the edges in the same group εb have a common vertex vb. As in the previous
argument we have a^.2. We consider the cases.

(1) Case a^4. Consider two parts of aγ; one connecting Eh-γ and Ejx + 1 and
the other connecting Eh _ x and EJ3 +1. Since both parts have length ^ d(A, C), by Lemma
3.2 we obtain | tr y | ̂  c0.

(2) Cα^ α = 3. In this case υ1 and v3 are equivalent under the action of Γ. Hence
for a suitable transformation η of Γ, the edges associated to ηyη~ι are divided into two
groups (η(Eh), , η(En\ ηyiEJ, , ηγ(Eh)) and (*/?(£,•,), . , i/yί^)). So we transfer
the argument to the case of a = 2.

(3) Case a = 2. The possibilities are the equivalence classes of the following
words:

P J - ^ r f ί J " 1 ) with (X, Y)eP,
(3.8)

[(X, Y - ^ Y , * - 1 ) ] * ^ , y ^ y , Y"1) with (X, Y ) G P ,

The images of the words in (3.8) under Φ are conjugate to ACk (2^fc<r/2 + 2) or
their inverses. The transformation Ck has the following expression:
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(Im pc) cos( — J + (Re pc) sinί — J -1 pc 12 sinί —

Imp,
(Imp c)cosί— j - ( R e pc)

For the present case, Imp c = cos(π/^)~1 sin(π/r) and |p cl = l Hence |trΛCk | =
2 sinίπ/r)"1 cos(π/^)|sin(A:π/r)|. If (p, q, r) = (2, 4, 6) or (p, g, r) = (2,4, 5) and k =
2, 3, | t r^C k | ^27Tcos(π/5)>c 0 . If (p, 4, r) = (2, 4, 5), AC* = B is elliptic. For signa-
tures (2, 3,r), rΞ>7, AC2 = (ACA)C~1(ACA)~1 and y4C Γ " 1 =^C" 2 = (^Cv4)~1C(ACA)
are elliptic. If 3 g Λ; ̂  r - 3, then | tr ΛC* | ̂ sin(3π/7) sin(π/7)"1 = c0. Therefore we con-
clude that I tr γ | ̂  c0 for every hyperbolic element y of Γ(2, q, r), if (2, q, r) is of type III.
Now the proof of the proposition is completed. We remark that | tr AC3 | = c0 for AC3

in the group Γ(2, 3, 7).

4. Completion of the proof of the theorem. It is not difficult to show that there

are no simple closed geodesies on H/Γ if Γ is a triangle group, from which the sharpness
of the inequality of the theorem follows. However we conclude the theorem by a direct
computation. Let us consider the following elements of Γ(2, 3, 7) both of which have
the absolute value of trace c0:

1+3/T2 -(λ-λ~i)

- - ( i - r V 3 i+3Λ2 J

\+3λ~2 (λ-λ-^Ύl

(λ-λ-^JT l + 3/ί2 J

where λ = λ(2, 3, 7) = {2cos(π/7) + (4cos2(π/7)-3)1/2}/VT. We set D = {3(λ2 + λ~2) +
2}2-43. Then the fixed points (3(λ2-λjί)±x]~D)l2j 3 (λ-λ-1) of CBA separates the
fixed points (-3(λ2-λ~2)±yJΊ))/2yJ 3 (λ-λ'1) of BAC in R, since

Thus CBA satisfies the condition (00) with respect to Γ(2, 3, 7) and now we can conclude
the theorem.

We remark that the axis aCBA of CBA is projected under φ: //->///Γ(2, 3, 7) onto
a geodesic segment which connects the projection of the elliptic fixed points of order
2 to itself. This fact follows, since CBA and ACB = A(CBA)A~1 have the same fixed
points and thus the same axes. The set φ(aCBA) is topologically a simple closed curve.
However, as mentioned in §1, φ(aCBA) is regarded here as a degenerate closed curve.
From this point of view we can say that φ(aCBA) has self-intersections.
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Added in proof on November 9, 1989. After this paper was submitted, Professors
A. F. Beardon and Ch. Pommerenke informed the author that the theorem on p. 527
was already obtained by Pommerenke and Purzitski [14]. Their proof was based on
computation of commutators defined in an iterational manner. Our proof is more
geometric. Professor Beardon also pointed out the following: Using Theorem 11.6.8
in [1] it can be shown that, if a hyperbolic element γ satisfies the condition (oo) in a
Fuchsian group Γ, then | tr y | ̂  2^ 2 >c0 except when Γ has one of the signatures
(0; 2, 3, q\ (0; 2, 4, q) and (0; 3, 3, 4).
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