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1. Introduction. The study of affine differential geometry started with the work
of Blaschke and his coworkers around 1920 ([B]). Let M be a nondegenerate
hypersurface in R"*!. Then starting from the usual connection D on R"*! and the
standard volume form on R"*! given by the determinant, one can induce in a unique
way an affine connection V and a semi-Riemannian metric 2 on M. This semi-Riemannian
metric 4 on M is called the affine metric. Together with the canonical affine connection
V, the affine metric together with its Levi Civita connection plays an important role in
affine differential geometry (see [B] among others). We say that C=(Vh) is the cubic
form. It is well-known that the vanishing of the cubic form C implies that M is an open
part of a nondegenerate quadric. Let M be a 2-manifold. In this case, K. Nomizu and
U. Pinkall investigated the condition that the cubic form is parallel with respect to V.
This condition gives a characterization of the Cayley surface. The condition that (VC)=0
was studied in [M-N]. Here, using a method different from that in [M-N], we will
study affine surfaces with V-higher order parallel cubic form, i.e., which satisfy (V"C)=0
for some natural number #. In Section 2, we recall some elementary facts about affine
differential geometry. In Section 3, we give some examples of affine surfaces with V-higher
order parallel cubic form. Finally in Section 4, we show that these examples are essentially
the only ones by proving the following two theorems.

THEOREM 4.1. Let M be a locally strongly convex Blaschke surface in R® with
V"C=0. Then either
(i) M is affinely equivalent to an open part of an elliptic paraboloid,
(i) M is affinely equivalent to an open part of a nondegenerate ellipsoid or a
two-sheeted hyperboloid, or
(iii) M is affinely equivalent to an open part of the affine surface described by xyz=1.

Notice that these surfaces are exactly the locally strongly convex affine spheres
with constant curvature Blaschke metric. However, in the non-convex case the situation
is quite different, as the following theorem shows:
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THEOREM 4.2. Let x: M — R® be a non-convex Blaschke surface with V-higher order
parallel cubic form. Then, either M is an open part of a one-sheeted hyperboloid or every
point p of M has a neighbourhood U of M on which one of the following holds:

(1) U is affinely congruent with an open part of the Blaschke surface described by
x3(x3+x3)=1.

(i) We can identify U with an open part of R? and there exist two polynomials K
and L in one variable on U such that x(U) is affinely congruent to xg (U), where xy, is
as defined in Section 3.

The author would like to thank Professor K. Nomizu for many valuable discussions
on affine differential geometry.

2. Preliminaries. Let M" be a differentiable manifold, V a torsion-free affine
connection on M and T a (0, k)-tensor field on M. Let R denote the curvature tensor
of V. Then R acts on T as a derivation in the following way:

(é T)(X7 Y’ Xl’ T, Xk)
=—TRX, V)X, Xqp -+, X)- - = T(Xy, -+, X1, RX, Y)X,) .
From the skew-symmetry of R it follows that R- T is skew-symmetric in its first and
second components. Furthermore, it is clear from the definition that if 7 is symmetric
(resp. skew-symmetric) in its i-th and j-th component, R- 7T is also symmetric (resp.
skew-symmetric) in its (i + 2)-nd and (j+ 2)-nd components. Then, the higher derivatives
of T with respect to R are defined inductively as follows:
R"“T=R-(R"'-T).

Clearly, R" T is skew symmetric in its (2k—1)-st and 2k-th components for
k=1,2, - - -, n. Furthermore, we have the following lemma the proof of which is similar
to that of Lemma 2 in [V].

LemMa 2.1.  Let M be a differentiable manifold and V a torsion-free affine connection
on M with curvature tensor R. If a (0, k)-tensor T on M satisfies

V'T=0,
then
R™T=0,
where m=[(m+1)/2], and [x] denotes the integer part of x.

Let f: M">R""' be an immersion of a connected differentiable manifold of
dimension # into the affine space R"*! equipped with its usual flat connection D and
a parallel volume element w. Let £ be an arbitrary local vector field transversal to f(M").
For any vector fields X and Y on M", we write
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2.1 Dy fe(V) =1 (VxY)+h(X, Y)¢,

thus defining an affine connection V and a symmetric tensor of type (0, 2). We call A
the second fundamental form. We can also define a volume element 8 on M by

(22) Q(XI’XZ’ ...7Xn)=w(f*X15 ..'7f*Xmé)’

for any tangent vectors Xy, - - -, X, to M".

If (M, V) is an affine manifold, an immersion fis called an affine immersion if there
exists locally a transversal vector field such that (2.1) holds. If (V, ) is an equiaffine
structure on M, i.e., if V and 0 satisfy VO=0, then an affine immersion is said to be
equiaffine if 6 satisfies (2.2).

We say that f is nondegenerate if 4 is nondegenerate (and this condition is
independent of the choice of £). In this case, it is known (see [N], [N-P],) that there
is a unique choice of ¢ such that the corresponding induced connection V, the
nondegenerate metric 4, and the induced volume element 6 satisfy the following
conditions:

(1) VO=0, thus (V, 0) is an equiaffine structure on M";

(i) 6=w, (volume element given by #).

We call V the induced connection and /4 the affine metric. If 4 is positive (or negative)
definite, the immersion is said to be locally strongly convex. If this is not the case, we
say that the immersion is non-convex. Condition (i) implies that D¢ is tangent to f(M™")
for any tangent vector X to M". We define a tensor field S of type (1, 1) on M", called
the shape operator, by

2.3) Dyl=—£,(SX).

From now on, we will call an affine immersion satisfying (i) and (ii) a Blaschke
immersion. We have the following fundamental equations.
Equation of Gauss: The curvature tensor R of V is given by

2.4 R(X, Y)Z=h(Y, Z)SX—h(X, Z)SY .
Equation of Codazzi for h:

2.5) Vh(X, Y, Z)=(Vh)(Y, X, Z) .
Equation of Codazzi for S:

(2.6) (VxS)(Y)=(VyS)(X) .
Equation of Ricci:

2.7 h(SX, Y)=h(X, SY).
Apolarity:

(2.8) Va,=0.
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We call M an affine sphere if S is a multiple of the identity. Since dim(M)>2, it
follows from (2.6) that S=A1, where 4 is constant on M. If =0, we say that M is an
improper affine sphere and if 1#0, we say that M is a proper affine sphere. From (2.5)
it follows that C(X, Y, Z)=(Vh)(X ,Y, Z) is symmetric in X, ¥ and Z. We call C the
cubic form for the affine immersion f. Apolarity (2.8) can also be expressed by

2.9 trace Ky =0 for every tangent vector X,

where KyY=VyY—V,Y, V denoting the Levi Civita connection for h. Another
equivalent condition is

(2.10) %(X)=0 for each X',
where € is defined by
€(X)=trach,{(Y, Z)>(Vh)(X, Y, Z)},

‘where trace, denotes the trace with respect to the affine metric 4.
From now on, we will assume that dim(M)=2. Also, we will need the following
theorems from [D-N-V] and [M-R].

THEOREM OF RADON ([D-N-V]). If (M?2, h) is a simply connected, semi-Riemannian
2-manifold and V is a torsion free, strongly compatible connection, i.e., V and h satisfy
(2.5) and (2.8), then there exists a Blaschke immersion f: M— R*® with induced affine
connection V and induced second fundamental form h if and only if ¥ =0, where & is
defined by

LY, Z)=trace,{(X, W)—>(VxR)(Y, Z)W} .
Furthermore, this immersion is unique up to an affine transformation of R*.

THEOREM 2.1 ([M-R]). Let M be an affine sphere which is flat with respect to h.
Then, up to an affine transformation of R®, M is an open part of one of the following:

(1)  the elliptic paraboloid xy=x?} +x3, if h is locally strongly convex and M is an
improper affine sphere, '

(2) a ruled surface of the form x;=x,x,+ ¢(x,), where ¢ is an arbitrary function
depending only on x,, if h is not convex and M is an improper affine sphere,

(3) the surface given by x,x,x3 =1, if his convex and M is a proper affine sphere,

(4) the surface described by x3(x%+x3)=1, if h is not convex and M is an proper
affine sphere.

3. Some examples of affine surfaces with V-higher order parallel cubic form.
In this section, we will give some examples of affine surfaces which satisfy (V*C)=0
for some n. In the next section, we will show that these examples are basically the
only ones.

If n=0, i.e., if M has vanishing cubic form, it is well-known ([B], [N-P],) that
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M must be affinely equivalent to a nondegenerate quadric. Affine surfaces which
satisfy VC=0 have been classified by Nomizu and Magid in [M-N]. They obtain
the following classification result:
Let M be an affine Blaschke surface which satisfies VC=0. Assume furthermore
that C is not identically zero on M. Then, there exists an affine transformation
of R® such that one of the following holds:

(3.1) M is an open part of the affine Blaschke surface described by xx,x;=1.

(3.2) M is an open part of the affine Blaschke surface described by x;(x?+x3)=1.

(3.3) M is an open part of the Cayley surface, i.e., the surface described by x,=
XX, +X3.

Other examples of surfaces with V-higher order parallel cubic form can be found in
[M-R], where the authors classify the affine spheres which are flat with respect to A.
Apart from open parts of the paraboloids and the surfaces given by (3.1), (3.2) and
(3.3), the only other such surfaces can be described as the graph of

X3=X1X,+¢(x3),

where ¢ is an arbitrary function depending only on x,. A straightforward computation
shows that such a surface satisfies V"C=0 for some  if and only if ¢ is a polynomial
in x, of degree at most n+ 2. However, these surfaces are just special cases of the ones
which we will consider next.

We take M= R? and we consider on M the standard Minkowski metric h. Let V
be the Levi Civita connection of . Then on R?, we can consider globally defined
coordinates { y, z} such that d, and 0, satisfy

h(0,, 0,)=h(0,, 0,)=0, h(d,,0,)=1.

Then we can define a torsion-free affine connection V on M, which is strongly compatible
with respect to A, by

Vo0, =2/ 2(K(y) +2L(y)0,,  V50,=V,0,=V,0,=0,

where K and L are differentiable function of one variable defined on the whole of R.
If we denote the curvature tensor of V by R, we find after a straightforward computa-
tion that

34 R(9,, 0,)0,=0,
3.5) R(0,, 0,)0,= —2./2L(y)0, .
From this, we deduce that

(Vo, R0y, 0,)0,=0=(V, R)(0,, 0,)0, .

Therefore, we can apply Radon’s theorem to obtain a Blaschke immersion from (R2, h)
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into R3, with V as induced affine connection and with 4 as affine metric. We will denote
this immersion by x,,. Notice that by the definition of V and A, we immediately obtain
that the immersion is ruled. Further, using (3.4), (3.5) and the Gauss equation, we see
that the Blaschke immersion obtained in this way is also affinely minimal. Notice that
if we choose the function L to be identically zero, we deduce from (3.4), (3.5) and the
Gauss equation that M is an improper affine sphere. Then, it is not too difficult to see
that the immersions xg, coincide with the examples found by M. Magid and P. Ryan.

By a straightforward computation, one can check that x, (R?) satisfies (V"C)=0,
for some n, if and only if K (resp. L) is a polynomial of degree at most n— 1 (resp. n—2).

4. Proof of the theorem. We will divide the proof in several lemmas. Let M be a
Blaschke surface in R® such that V”C=0 for some n. Then, we know by Lemma 2.1
that R™- C=0 for some m. Affine surfaces satisfying that condition are characterized by
the following lemma.

LEMMA 4.1. Let M be a Blaschke surface in R* such that R™-C=0 for some m.
Then either

(1) M is an open part of a nondegenerate ellipsoid or hyperboloid,
or

(ii) R=0, i.e., M is flat with respect to h on the whole of M.

PROOF. Since dimM=2 and V is the Levi Civita connection of the semi-
Riemannian metric 4, the curvature tensor R of V is given by

RX, V)Z=uh(Y, Z)X—h(X, Z2)Y),

where u is a differentiable function on M. Then, we will first show by induction that
the following formulas hold at every point p of M:

A1) (R 1-C)ey, e, €1, €5, €5, €4, 00)=(— 1) 16320 10211 ey, €5, €5)
(RP"1-C)ey, €3, €1, €3, " * €1, €3, €2) =(— 1)'e" 132" 1 u2" " 1 Cey, 5, €5)
(R2"+1 ‘C)(ep €3, €1,€5, """, €3, €7, ez)z(— 1)"3n+132n+1‘u2n+lc(e1’ €1 el)
(}22"-&1 ~C)(e1, €y, €1, """, €,€, ez)=(_ 1)”+1£"32"+1ﬂ2"+1C(€1, e, 91) s

where {e;, e,} is a basis of T,M such that h(e,, e,)=¢, ee{—1, 1}, h(e,, e;)=1 and
h(e,, e;)=0. First, by applying the definition of R-C and the apolarity condition, we
obtain that

R'C(eh €y, €y, €y, €)= —3C(jé(31, ey)ey, ey, eq)
=3ueCle,, €4, €)= —3uCl(e,, €, €;) .
Similarly, we find that

R. C(els €, eZ, €, 62)=3#8C(el’ €15 el) )
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R'C(ely ey, ey, ey,e)=—3uC(e,, ey, e;),
ﬁ'c(el, ey, €1, €3, ;) =3ueCle,, e,, €) .

Hence (4.1) holds for n=0. Therefore let us now assume that (4.1) holds for a natural
number » and prove that (4.1) also holds for # + 1. Using the skew symmetry of R*"*1-C
in its (4k+1)-st and (4k+2)-nd components for k=1,2, ---, n, and the induction
hypothesis, we obtain that

(ﬁ2"+2-C)(e1, €3, ", €y, 91,6’1)=3#8(ﬁ2"+1'c)(e1s ey, "7, €1, €)

=gt )32t 2 00, e o)) .
Similarly, we also obtain that

(R2"+2-C)(e1, €y ", ey, e, e,) ="t 2(— 1) H23IMF L2200, o) ) .
(ﬁ2”+2'C)(el, €y """, ey, ey e2)=8n+2(__ 1)n+232n+2#2n+2c(el’ e, e,).
(ﬁ2"+2'c)(€1, €y, ", €y, €, ep)=¢"" =1y 132n+2“2n+2c(e2, €5, €,).
(ﬁ2"+3'C)(el, €y, ", ey, e, e)=e""1(— 1)+232043,2043 (. e, e,) .
(RP"3-C)ey, €5, -y €1, €1, €)= " 1(— 1)1+ 23204320430 (e ey ey) .
(IQZ"”-C)(el, ey s e, e e2)=£n+2(_1)n+132n+3#2n+3c(e2’ €, €,).
(R"*3-C)ey, eq, €3, €5, €3) =" 2(— 132+ 32n%3C(e,, €4, €4) .

Hence (4.1) holds for every n. Using the apolarity condition, we find from (4.1) and
the assumption of the lemma that for each point p of M the following holds:

“4.2) u(p)=0 or C,=0.

Let U={pe M |u(p)#0}. Then, U is an open part of M. If U# &, then u=0 on the
whole of M and we obtain the lemma. Therefore, we may assume that U is not
empty. Then, from (4.2) it follows that C vanishes identically on U. Thus from
Berwald’s theorem it follows that every connected component of U is an open part
of a quadric. Since u is different from zero on U, these quadrics must be ellipsoids or
hyperboloids. But for an ellipsoid or an hyperboloid u is a constant different from
zero. Hence, since p is differentiable on M, U= M and thus connected. Therefore M
is an open part of a nondegenerate ellipsoid or a nondegenerate hyperboloid. This
completes the proof. B

From now on, we will assume that M is not a part of a quadric. Then, it follows
from Lemma 4.1 that M is flat with respect to A. Let pe M. Since M is flat with respect
to h, we know that there exist coordinates {u, v} defined on a neighbourhood U of p
such that
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h('xu9 xll) =& > h(xv’ xl)) = 1 > h(xll’ xv) =0 b

where e=1o0r —1 on U. So @xuxu=qux,, =@xux,,=vax,,=O. Therefore, it follows from
V"C =0 and the apolarity condition that there exist polynomials P and Q of two variables
u and v, which are of degree at most n—1 such that

C(x,, x,, x,)=—2P(u, v), C(x,, Xpy X,)=—20(u, v) ,
C(x,, x,, x,)=2eP(u, v), C(x,, x,, x,)=2e0(u, v) .

Then, the components of the induced connection V and of the curvature tensor R are
computed in the following two lemmas.

LEMMA 4.2. On U we have

V., X.= Pex,—eQx, , V. %=—Px,+0x,, vV, X,=V, x,= —Q0x,— Pex, .

Proor. On U, we define functions a, up to a4 by
V. Xu=a1x,+azx,, V. Xo=0a3X,+a.x,, V. Xo=V . Xy=asx,+aex, .

Then, we know that —2P=C(x,, x,, x,)= —2h(V, Xx,, x,)= —2ea,. Hence a; =¢P. The
other equations are then obtained in a similar way. [ ]

LEMMA 4.3. The curvature tensor R of V is given by
R(xy, Xp)x,= (=P, + Q,— 2(P?e+ 0*)x, +(Q, + Pe)x, ,
R(xy, Xp)x,=(— 0y~ Poe)x, +&(— P, + Q,+ 2P?e+ 0*))x, .

Proor. Since V, x,—V, x,=[x,, x,]=0, we have

R(x,, %)%, =V, V. x, =V, Vo x,
=—-Px,+Q0,x,+0,x,+ P,ex,—2Pe(Px,— Qx,)+20(— QOx,— Pex,)
=(=P,+Q,— 2P+ 0%)x, +(Qu+ Pe)x, .
The proof of the second formula is completely similar. [ |

LamMMA 4.4. The polynomials P and Q, defined on U, satisfy the following system
of differential equations:

@ (Qvo—8Qu—2P,)—6(PPe+00,)+2QP,—PQ,)=0,
(ii) (Pt — Py +20,,) +6(PPe+Q0,) +2:(QP,— PQ,)=0.
ProoF. By Radon’s theorem, we know that V and R satisfy

4.2) eV R)(X,> X)X, + (V. R)(x,5 X,)x,=0..

On the other hand, by using Lemma 4.2 and Lemma 4.3, we obtain that
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(4.3) (Vo R)(x,, x,)x,

=V, (R(x,, x,)x,) — R(x,, x,)V, x,— R(V, x,, x,)%,— R(x,, V, x,)x,

=(—Quu— Pu®)x,+(—P,e+Q,e+4e(PPe+Q00,))x,
+(—Q,— Pe)(Pex,— Qex,) + (— P+ Q.6+ 2e(P*e + Q%)) — Qx, — Pex,)
— Pe((— Qu— Poo)x, +&(— P, + 0, +2(P*s+ 0*)x,)
+Qe((— Pu+Q,—2(P%+ 0))x, +(Q, + P.£)x,)

=(— Quu— Put—4Qe(P?e+ 0)x, + (= Pe+ Qe+ 66(PP g+ 0Q,)
+2(QP,— PQ,)—4P(P*c+Q?)x, .

Similarly, we obtain that
(44) (Vx,,R)(xua xv)xv = ( - Puv + vi + 4Q(P28 + QZ) - 6(PP08 + QQv)
+ 2(PuQ - PQu))xu + (qu + Pvus +48P(P2£ + QZ))xv .
Then, substituting (4.3) and (4.4) into (4.2) completes the proof. [ ]

ProOOF OF THEOREM 4.1. Let us assume that M is not affinely equivalent to an
open part of a nondegenerate ellipsoid or a two-sheeted hyperboloid. Then, it follows
from Lemma 4.1 that M is flat with respect to 4. Let p e M. Then, we know from Lemma
4.2 and Lemma 4.3 that there exist polynomials P and Q in two variables ¥ and v, on
a neighbourhood U of p, which satisfy the system of differential equations described in
Lemma 4.4. Since M is locally strongly convex, we have e=1 in Lemma 4.4. First, we
will prove that P and Q must be constants. Let us assume that deg P#degQ. If
deg P>deg 0, we denote by P, the terms of the highest degree of P. Then it follows
from Lemma 4.4 (i) and (ii) that

((Pl)z)v=0 > ((Pl)z)u=0 .

Hence P, is a constant. Therefore, P is a constant and Q is zero. Similarly, if
deg(Q) >deg(P), we find that Q is a constant and that P is zero. Therefore, we may
assume that deg(P)=deg(Q). We will assume that P and Q are not both constants and
derive a contradiction. Let P, (resp. Q,) denote the terms of highest degree of P (resp.
Q). Then deg P, =deg Q, =deg P=deg Q >0. Therefore, by looking at the terms of
highest degree in Lemma 4.4 (i) and (ii), we find that P, and Q, must satisfy the system
of equations

4.5) —3(Py(P1)p+ Q1(21)0) +(Q1(P1),— P (1) =0,
(4.6) 3(Py(P)utQ1(91))+(21(P1),— P1(Q1),)=0.

Then, if we put K= P, +iQ, and L= P, —iQ,, the equations (4.5) and (4.6) respectively
become

4.7) —3(KL,+LK,)—i(KL,— LK,)=0,
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(4.8) 3(KL,+ LK,)—i(KL,— LK,)=0 .

Now, let a be an irreducible factor of K with multiplicity k. Since K is homogeneous
and deg(K)>0, so K, and K, are not simultaneously zero and « is then an irreducible
factor of K, or K, with multiplicity exactly (k—1). Further, it follows from (4.7) and
(4.8) that

o*|(—3LK,+iLK,),
o*| (ALK, +iLK,) .

Hence oz"l LK, and o* | LK,. So « ] L. Therefore, by applying the same argument with K
and L interchanged, we see that K and L have the same irreducible factors. So, we can
decompose K and L over C in the following way:

(49) K=cla’;1a§z. . .a:n ,
(410) L=cza111alzz. . .aLn ,
where ¢; #0#c,, n>1, k;#0+#1,, o; and «; are distinct mutually irreducible factors of

degree 1. Then, if we substitute this expression in (4.7) and (4.8), and compute the result
modulo o *!, we find that

C S3eieqlly + 1))y + iy ea(ky — 1 )(0ty), = 0(mod a1
3cicyky + 1)) (o), +icicp(ky —1)(2y), =0(mod okt 1) .
However, since deg(«,)=1, we know that («,), and («,), are not both zero. Hence
¢k, +1)? —(k,—1,)*)=0, or c¢yc,(8k?+81%+20k1,)=0.

Hence, we obtain a contradiction. Therefore, P and Q must be constant on U. But then
it follows from Lemma 4.3 and the Gauss equation that

Sx,=—2P*+0%x,,  Sx,=—2(P*+Q%)x,.

Hence S, is a multiple of the identity for every point p of M. Thus M is an affine sphere
which is flat with respect to A. Applying then Theorem 2.1, we are done. [ ]

So in the last part of this section, we will assume that M is not locally strongly
convex, i.e., we will assume that ¢= — 1. Then, the solutions of the differential equations
are given by the following lemma.

LEMMA 4.5. Let ¢e=—1. Then, the polynomials P and Q defined on U satisfy the
system of differential equations given in Lemma 4.4 if and only if one of the following holds:

(@) P and Q are constant on U,

(b) P=Qand P,,+P,=2P,,

(¢c) P+Q=0and P,,+P,=—2P,,.
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ProoF. By Lemma 4.4, we know that the polynomials P and Q satisfy the following
system of differential equations:
Qv+ Quu—2P,,)—6(—PP,+00,)+2(QP,— PQ,)=0,
(=Py,— Py +20,,)+6(—PP,+Q00Q,)—2QP,— PQ,)=0.
If we put K=P+Q, L=P—(, these equations become

1
(4 11 ) E(va + Kuu - va - Luu - 2(I<uu + Luv)) + 3(I(Lv + LKv) + (KLu - LKu) =0 s

1
(4 1 2) ‘2‘(Kw + Kuu + va + Luu - 2(Kuv - Luu)) + 3(KLu + LKu) + (KLv - LKv) =0.

If K=0 or if L=0, we see that (4.11) and (4.12) reduce to Case (b) and Case (c). If K
is a non-zero constant, we find from (4.11) and (4.12) that

3L, +L,=0, 3L,+L,=0,

where I denotes the terms of highest degree of L. From this it follows that £, and
hence L, is also a constant. Similarly, we can prove that if L is a non-zero constant,
then Kis also a constant. Therefore, we may now assume that deg(K) >0 and deg(L) > 0.
Let K (resp. L) denote the terms of highest degree of K (resp. L). Then it follows from
(4.11) and (4.12) that K and I satisfy the following system of differential equations:

(4.13) 3(KL,+ LK)+ (KL,—LK)=0,
(4.14) 3(KL,+ LR)+(RL,—LR,))=0.

But now, just as in the proof of Theorem 4.1, we can deduce from this that K and

must have the same irreducible factors over R. So we can write
K=C1°"{'°"§2' . .a‘;n, L=(32(Xllldlzz' ..ain,

where deg(a;) e {1, 2}, ki, ;>1, ¢; #0%#c¢,, n>1 and for distinct indices i and j, «; and
a; are mutually irreducible. Substituting these expression in (4.13) and (4.14) and
computing the result modulo ok, we get

3c,co(ky +1)(0y), —cica(hy —1))(0y), =0(mod okt *11) |
3c,ea(ky + 1) (o), —crea(ky —1)(ay), =0(mod ok *11) .
Since (a,), and («,), are not both zero modulo o%!*", we deduce that
239k, +1)*+(k, —1,)*)=0.
This is a contradiction. [ ]

PrROOF OF THEOREM 4.2. Let us assume that M is not a part of a nondegenerate
hyperboloid. Then, we know by Lemma 4.1 that M is flat with respect to 4. So, we can
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apply Lemmas 4.2, 4.3, 4.4 and 4.5. Let pe M and let U be a neighbourhood of p. Since
M is flat with respect to 4, by taking U sufficiently small, we can identify U with an
open part of R?. By Lemma 4.5, we have to consider three different cases on U.

Case 1. P and Q are constant on U and P*# Q?*. In this case, it follows from
Lemma 4.3 and the Gauss equation that x(U) is a proper affine sphere. So U is flat
with respect to 4 and U is a proper affine sphere. Therefore, by the theorem of M.
Magid and P. Ryan, we obtain that x(U) is affine congruent to an open part of the
surface x;(x7 +x3)=1.

Case 2. P=Q on U. In this case, we know that P also satisfies the differential
equation P,,+ P,,=2P,,. Then, we make the following change of coordinates on U:

y=(/Dw+v),  z=(1/y/2(—u+v).

Then, a straightforward computation shows that P,,=0. Hence there exist polynomials
of one variable K and L on U such that

P(y, 2)=K(»)+zL(p) .
Furthermore, we find that
Ve x:=Vex, =V, x,=0,  V,x,=2/2K(y)+zL())x, ,
h(x,, x,)=h(x,, x,)=0, h(x,, x)=1.

Hence, we have two Blaschke immersions from (U, k) into R® with the same induced
connection, namely x and the immersion xg; defined in Section 3. By Radon’s theorem
there exist an affine transformation 4 of R® such that A(x(U))=xg,(U). This completes
the proof of the theorem in this case.

Case 3. P=—Q on U. The proof of this case is completely similar to the proof
of the previous case. n
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