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1. Introduction. The study of affine differential geometry started with the work
of Blaschke and his coworkers around 1920 ([B]). Let M be a nondegenerate
hypersurface in Rn + 1. Then starting from the usual connection D on Rn+1 and the
standard volume form on Rn + 1 given by the determinant, one can induce in a unique
way an affine connection V and a semi-Riemannian metric h on M. This semi-Riemannian
metric h on M is called the affine metric. Together with the canonical affine connection
V, the affine metric together with its Levi Civita connection plays an important role in
affine differential geometry (see [B] among others). We say that C=(V/z) is the cubic
form. It is well-known that the vanishing of the cubic form C implies that M is an open
part of a nondegenerate quadric. Let M be a 2-manifold. In this case, K. Nomizu and
U. Pinkall investigated the condition that the cubic form is parallel with respect to V.
This condition gives a characterization of the Cayley surface. The condition that (VC) = 0
was studied in [M-N]. Here, using a method different from that in [M-N], we will
study affine surfaces with V-higher order parallel cubic form, i.e., which satisfy (VwQ = 0
for some natural number n. In Section 2, we recall some elementary facts about affine
differential geometry. In Section 3, we give some examples of affine surfaces with V-higher
order parallel cubic form. Finally in Section 4, we show that these examples are essentially
the only ones by proving the following two theorems.

THEOREM 4.1. Let M be a locally strongly convex Blaschke surface in R3 with

V"C=0. Then either

(i) M is affinely equivalent to an open part of an elliptic paraboloid,

(ii) M is affinely equivalent to an open part of a nondegenerate ellipsoid or a

two-sheeted hyperboloid, or

(iii) M is affinely equivalen t to an open part of the affine surface described by xyz = 1.

Notice that these surfaces are exactly the locally strongly convex affine spheres
with constant curvature Blaschke metric. However, in the non-convex case the situation
is quite different, as the following theorem shows:
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THEOREM 4.2. Let x: M^R3 be a non-convex Blaschke surface with V-higher order

parallel cubic form. Then, either M is an open part of a one-sheeted hyperboloid or every

point p of M has a neighbourhood U of' M on which one of the following holds:

(i) U is affinely congruent with an open part of the Blaschke surface described by

(ii) We can identify U with an open part of R\ and there exist two polynomials K

and L in one variable on U such that x(U) is affinely congruent to xKL(U), where xKL is

as defined in Section 3.

The author would like to thank Professor K. Nomizu for many valuable discussions

on affine differential geometry.

2. Preliminaries. Let Mn be a differentiate manifold, V a torsion-free affine

connection on M and T a (0, fc)-tensor field on M. Let R denote the curvature tensor

of V. Then R acts on T as a derivation in the following way:

(R'T)(X9Y9Xl9'-,Xk)

= - T(R(X, Y)Xl9 X29 '9XJ- -Tχxl9- ,Xk_l9 R(X9 Y)Xh) .

From the skew-symmetry of R it follows that R T is skew-symmetric in its first and

second components. Furthermore, it is clear from the definition that if T is symmetric

(resp. skew-symmetric) in its z-th and y'-th component, RT is also symmetric (resp.

skew-symmetric) in its (z' + 2)-nd and (y'-f 2)-nd components. Then, the higher derivatives

of T with respect to R are defined inductively as follows:

Clearly, RnT is skew symmetric in its (2A:— l)-st and 2A>th components for

k=\,2, - , n. Furthermore, we have the following lemma the proof of which is similar

to that of Lemma 2 in [V].

LEMMA 2.1. Let M be a differentiable manifold and V a torsion-free affine connection

on M with curvature tensor R. If a (0, k)-tensor T on M satisfies

vτ=o,
then

where m = [(m+ l)/2], and [x] denotes the integer part of x.

Let / : Mn-^Rn + 1 be an immersion of a connected differentiable manifold of

dimension n into the affine space Rn+1 equipped with its usual flat connection D and

a parallel volume element ω. Let ξ be an arbitrary local vector field transversal to/(M").

For any vector fields X and Y on M", we write
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(2.1) DM Y) =US7X Y) + h(X, Y)ξ ,

thus defining an afiine connection V and a symmetric tensor of type (0, 2). We call h

the second fundamental form. We can also define a volume element Θ on M by

(2.2) θ(Xl9 X2, ,Xn) = ω(f*Xu "JmXH9 ξ),

for any tangent vectors Xu , Xn to M".

If (M, V) is an affine manifold, an immersion/is called an affine immersion if there

exists locally a transversal vector field such that (2.1) holds. If (V, θ) is an equiaffine

structure on M, i.e., if V and θ satisfy V0 = O, then an affine immersion is said to be

equiaffine if θ satisfies (2.2).

We say that / is nondegenerate if h is nondegenerate (and this condition is

independent of the choice of ξ). In this case, it is known (see [N], [ N - P ] ^ that there

is a unique choice of ξ such that the corresponding induced connection V, the

nondegenerate metric h, and the induced volume element θ satisfy the following

conditions:

(i) V0 = 0, thus (V, θ) is an equiaffine structure on Mn;

(ii) θ = ωh (volume element given by h).

We call V the induced connection and h the affine metric. If h is positive (or negative)

definite, the immersion is said to be locally strongly convex. If this is not the case, we

say that the immersion is non-convex. Condition (i) implies that Dxξ is tangent to/(M w )

for any tangent vector X to Mn. We define a tensor field S of type (1, 1) on Mn, called

the shape operator, by

(2.3) Dxξ=-fφ(SX).

From now on, we will call an affine immersion satisfying (i) and (ii) a Blaschke

immersion. We have the following fundamental equations.

Equation of Gauss: The curvature tensor R of V is given by

(2.4) R(X, Y)Z=h(Y, Z)SX-h{X, Z)SY.

Equation of Codazzί for h:

(2.5) (VA)(JT, Y9 Z) = (VA)( Y9 X, Z).

Equation of Codazzi for S:

(2-6) (VxS)(Y) = (VrS)(X).

Equation of Riccϊ.

(2.7) h(SX,Y) = h(X,SY).

Apolarity:

(2.8) VωA = 0 .
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We call M an affine sphere if S is a multiple of the identity. Since dim(M) > 2, it

follows from (2.6) that S=λl, where λ is constant on M. If λ = 0, we say that M is an

improper affine sphere and if λφO, we say that M is a proper affine sphere. From (2.5)

it follows that C(X, Y, Z) = (Vh)(X,Y, Z) is symmetric in X, Y and Z. We call C the

cubic form for the affine immersion/. Apolarity (2.8) can also be expressed by

(2.9) trace Kx = 0 for every tangent vector X,

where KXY=VXY— VXY, V denoting the Levi Civita connection for h. Another

equivalent condition is

(2.10) %(X) = 0 for each X,

where ^ is defined by

r, Y9 Z)} ,

where traceΛ denotes the trace with respect to the affine metric h.

From now on, we will assume that dim(M) = 2. Also, we will need the following

theorems from [D-N-V] and [M-R].

THEOREM OF RADON ([D-N-V]). If(M2, h) is a simply connected, semi-Riemannian

2-manifold and V is a torsion free, strongly compatible connection, i.e., V and h satisfy

(2.5) and (2.8), then there exists a Blaschke immersion f: M->/?3 with induced affine

connection V and induced second fundamental form h if and only if J2? = O, where ££ is

defined by

<£{Y, Z) = traceA{(JT, W)^(VXR)(Y, Z) W] .

Furthermore, this immersion is unique up to an affine transformation of R3.

THEOREM 2.1 ([M-R]). Let M be an affine sphere which is flat with respect to h.

Then, up to an affine transformation of R3, M is an open part of one of the following'.

(1) the elliptic paraboloid x3 = xl + X2, if h is locally strongly convex and M is an
improper affine sphere,

(2) a ruled surface of the form X3=x1x2 + φ(x2), where φ is an arbitrary function

depending only on x2, if h is not convex and M is an improper affine sphere,

(3) the surface given by xxx2x3 = 1, ifh is convex and M is a proper affine sphere,

(4) the surface described by x3(xl +x2) = 1, if h is not convex and M is an proper

affine sphere.

3. Some examples of affine surfaces with V-higher order parallel cubic form.

In this section, we will give some examples of affine surfaces which satisfy (VnC) = 0

for some n. In the next section, we will show that these examples are basically the

only ones.

If n = 0, i.e., if M has vanishing cubic form, it is well-known ([B], [N-P] 2) that
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M must be affinely equivalent to a nondegenerate quadric. Affine surfaces which

satisfy VC=0 have been classified by Nomizu and Magid in [M-N]. They obtain

the following classification result:

Let M be an affine Blaschke surface which satisfies VC = 0. Assume furthermore

that C is not identically zero on M. Then, there exists an affine transformation

of R3 such that one of the following holds:

(3.1) M is an open part of the affine Blaschke surface described by xxx2x3 = 1.

(3.2) M is an open part of the affine Blaschke surface described by x3{x\ + x2) = l

(3.3) M is an open part of the Cay ley surface, i.e., the surface described by x3 =

XγX2 \ X2

Other examples of surfaces with V-higher order parallel cubic form can be found in

[M-R], where the authors classify the affine spheres which are flat with respect to h.

Apart from open parts of the paraboloids and the surfaces given by (3.1), (3.2) and

(3.3), the only other such surfaces can be described as the graph of

where φ is an arbitrary function depending only on x2. A straightforward computation

shows that such a surface satisfies V"C=0 for some n if and only if φ is a polynomial

in x2 of degree at most n + 2. However, these surfaces are just special cases of the ones

which we will consider next.

We take M=R2 and we consider on M the standard Minkowski metric h. Let V

be the Levi Civita connection of h. Then on R2, we can consider globally defined

coordinates {y, z] such that dy and dz satisfy

h(dy,dy) = h(dx9dz) = 09 h(dy,dz)=\.

Then we can define a torsion-free affine connection V on M, which is strongly compatible

with respect to h, by

Vdydy = 2^2(K(y) + zL(y))dz, Vdyd2 = Vdzdy = V , A = 0 ,

where K and L are differentiable function of one variable defined on the whole of R.

If we denote the curvature tensor of V by R, we find after a straightforward computa-

tion that

(3.4) R(dy,dz)dz = 0,

(3.5) R(dy,dz)dy=-2y/2L(y)dz.

From this, we deduce that

(VdyR)(dy, dz)dz = 0 = (VdzR)(dy> Sz)dy .

Therefore, we can apply Radon's theorem to obtain a Blaschke immersion from (R2, h)
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into R3, with V as induced affine connection and with h as affine metric. We will denote

this immersion by xKL. Notice that by the definition of V and h, we immediately obtain

that the immersion is ruled. Further, using (3.4), (3.5) and the Gauss equation, we see

that the Blaschke immersion obtained in this way is also affinely minimal. Notice that

if we choose the function L to be identically zero, we deduce from (3.4), (3.5) and the

Gauss equation that M is an improper affine sphere. Then, it is not too difficult to see

that the immersions xκo coincide with the examples found by M. Magid and P. Ryan.

By a straightforward computation, one can check that xKL(R2) satisfies (V"C) = 0,

for some n, if and only if K (resp. L) is a polynomial of degree at most n — 1 (resp. n — 2).

4. Proof of the theorem. We will divide the proof in several lemmas. Let M be a

Blaschke surface in R3 such that V π C=0 for some n. Then, we know by Lemma 2.1

that Rm C = 0 for some m. Affine surfaces satisfying that condition are characterized by

the following lemma.

LEMMA 4.1. Let M be a Blaschke surface in R3 such that Rm-C = 0for some m.

Then either

(i) M is an open part of a nondegenerate ellipsoid or hyperboloid,

or

(ii) R = 0, i.e., M is flat with respect to h on the whole of M.

PROOF. Since d i m M = 2 and V is the Levi Civita connection of the semi-

Riemannian metric h, the curvature tensor R of V is given by

R(X, Y)Z = μ(h(Y, Z)X-h(X9 Z)Y) ,

where μ is a differentiable function on M. Then, we will first show by induction that

the following formulas hold at every point p of M:

(4.1) ( R 2 n + 1 C)(el9 e29 el9 el9 --9el9 el9 e,) = {- l ) n + 1εn32n+1μ2n+1C(e2, el9 e2)

(R2n+1C)(eu e29 el9 el9 --9el9 e29 e2) = (- \ ) n ε n + 132n+1μ2n + 1C(e2, e29 e2)

9 e29 el9 e29 - 9el9 el9 e2) = {- \ ) n + Hn32n^μ2n+1C{e^ el9 ex) ,

where {el9e2} is a basis of TpM such that A(^1,g1) = ε, εe{ — 1, 1}, h(e2,e2)=\ and

h(eu e2) = 0. First, by applying the definition of RC and the apolarity condition, we

obtain that

R-C(el9 e29 el9 el9 e,)= -3C(R(el9 e2)el9 el9 ex)

= 3μεC(e2, eί9 ex)= -3μC(e2, e2, e2) .

Similarly, we find that

R-C(eί9 e29 e29 e29 e2) = 3μεC(el9 eί9 e±),
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R'C(eu e2, eί9 eί9 e2)= -3μC(eι, eί9 eγ),

Λ-C{eί9 el9 eu e2, e2) = 3μεC(e2, e2, e2).

Hence (4.1) holds for « = 0. Therefore let us now assume that (4.1) holds for a natural
number n and prove that (4.1) also holds for n + 1. Using the skew symmetry of R2n + 1C
in its (4&+l)-st and (4£ + 2)-nd components for k=\929 •••,/!, and the induction
hypothesis, we obtain that

2'C)(el9e2, ••-,eueue1) =

= εn + 1 ( - \)n + 132n + 2μ2n + 2C(eu el9 ex) .

Similarly, we also obtain that

9 e29 -- 9el9 el9 e2) = εn + 2 ( - \)n + 232n + 2μ2n + 2C{ei, el9 ex)

e29 9e29 e29 e2) = εn + 1(-l)n+ί32n + 2μ2n + 2C(e29 e2, e2)

e29 " - 9 e l 9 el9 e1) = εn + 1(-\T + 232n + 3μ2n+3C(e2, e2, e2)

(R2n + 3 C)(el9 e29 - " 9 e l 9 e29 e2) = εn + 2(-l)n + 132n + 3μ2n + 3C(e2, e29 e2).

(R2H + 3'C)(el9e29 '--,e2,e2,e2) = εn + 2 ( - \ γ + ί32n + 3μ2n + 3C(e1,e1,e1).

Hence (4.1) holds for every n. Using the apolarity condition, we find from (4.1) and
the assumption of the lemma that for each point p of M the following holds:

(4.2) μ(p) = 0 or Cp = 0.

Let U={peM\μ(p)φϋ}. Then, U is an open part of M. If UΦ0, then μ = 0 on the
whole of M and we obtain the lemma. Therefore, we may assume that U is not
empty. Then, from (4.2) it follows that C vanishes identically on U. Thus from
Berwald's theorem it follows that every connected component of U is an open part
of a quadric. Since μ is different from zero on U, these quadrics must be ellipsoids or
hyperboloids. But for an ellipsoid or an hyperboloid μ is a constant different from
zero. Hence, since μ is differentiable on M, U=M and thus connected. Therefore M
is an open part of a nondegenerate ellipsoid or a nondegenerate hyperboloid. This
completes the proof. •

From now on, we will assume that M is not a part of a quadric. Then, it follows
from Lemma 4.1 that Mis flat with respect to h. LetpeM. Since M is flat with respect
to h, we know that there exist coordinates {«, υ} defined on a neighbourhood U of p
such that
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K*u> xu) = ε , *(*«,, ^ ) = 1 > A(xtt, x j = 0,

where ε = 1 or — 1 on U. So VXuxu = VXuxv = VJCυxα = VJCυxι; = 0. Therefore, it follows from

V n C=0 and the apolarity condition that there exist polynomials P and Q of two variables

u and v, which are of degree at most n — 1 such that

C(xu, xu, xu) = - 2P(u, v), C(xv, xv, xv) = - 2Q(u, v),

C(xu9 xΌ, xv) = 2εP(u, v), C(xu, xu, xv) = 2εQ(u, v).

Then, the components of the induced connection V and of the curvature tensor R are

computed in the following two lemmas.

LEMMA 4.2. On U we have

VXMXM = Pεxu-εQxv, V ^ x , = - P x u + Qxv, VXuxv = VXvxu =-Qxu-Pεxv.

PROOF. On U, we define functions a1 up to a6 by

VXMXM = axxu + a2xv, V^x, = a3xu + aAxυ, V^x,, = S7Xvxu = a5xu + a6xv.

Then, we know that — 2P~C(xu, xu, xu)= —2h(VXuxu, xu)= —2εa1. Hence ax=εP. The

other equations are then obtained in a similar way. •

LEMMA 4.3. The curvature tensor RofV is given by

R(xu, xv)xv = (-Pu + Qv- 2(P2ε + Q2))xu + (Qu + Pvε)xv,

Λ(xM, xv)xu = (-Qu-Pv£)*u + β(~Pu +
 2

PROOF. Since V^x,, — WXvxu = [xM, x j = 0, we have

R(xu, xv)xv = VxyXvxv - WxWXuxΰ

= - Puxu + Quxv + Qvxu + P.εx, - 2Pε(Pxu - Qxv) + 2β( - βxw -

= (~ ^ + QΌ - 2(P2ε + β 2 ))x u + (βM + P^x, , .

The proof of the second formula is completely similar. •

LAMMA 4.4. The polynomials P and Q, defined on U, satisfy the following system

of differential equations'.

(i) ( β T O - εβuu - 2Pm) - 6(PPvε + QQV) + 2(QPU- PQU) = 0 ,

(ii) (Pυvε - Puu + 2QJ + 6(PPuε + QQJ + 2ε(QPυ - PQυ) = 0 .

PROOF. By Radon's theorem, we know that V and R satisfy

(4.2) ε(VXuR)(xu, xυ)xu + (VXvR)(xu, xv)xv = 0 .

On the other hand, by using Lemma 4.2 and Lemma 4.3, we obtain that
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(4.3) (yXuR)(xu,xυ)xu

u, xv)xu)-R(xu, xv)VXuxu-R(VXuxu, xv)xu-R(xu, VXuxv)xu

u))xv

+ Q2)){ - Qxu - Pεxv)

+ Q2))xυ)

* + Q2))χu + (Qu + Pj)xv)

+ β 2 ) K + ( - Puue + βu,β + 6ε(PPuε + ββM)
2ε + Q2))xv.

Similarly, we obtain that

(4.4) φXvR){χu> *v)xv = (-Puv + Qw + 4β(^2ε + β2)-6(PP vε + β β j

+ 2(PUQ - PQu))xu + ( β w + Pvvε + 4εP(P2ε + β 2 ) K .

Then, substituting (4.3) and (4.4) into (4.2) completes the proof. •

PROOF OF THEOREM 4.1. Let us assume that M is not affinely equivalent to an

open part of a nondegenerate ellipsoid or a two-sheeted hyperboloid. Then, it follows

from Lemma 4.1 that Mis flat with respect to h. LetpeM. Then, we know from Lemma

4.2 and Lemma 4.3 that there exist polynomials P and β in two variables u and v, on

a neighbourhood U of/?, which satisfy the system of differential equations described in

Lemma 4.4. Since M is locally strongly convex, we have ε= 1 in Lemma 4.4. First, we

will prove that P and Q must be constants. Let us assume that degP^degβ. If

deg/>>degβ, we denote by P1 the terms of the highest degree of P. Then it follows

from Lemma 4.4 (i) and (ii) that

«Λ)2),=o, ((Λ)2)«=o.

Hence P1 is a constant. Therefore, P is a constant and β is zero. Similarly, if

deg(β) > deg(P), we find that β is a constant and that P is zero. Therefore, we may

assume that deg(.P) = deg(β). We will assume that P and β are not both constants and

derive a contradiction. Let Px (resp. β x ) denote the terms of highest degree of P (resp.

β). Then degP 1 =degβ 1 =deg/ > = degg>0. Therefore, by looking at the terms of

highest degree in Lemma 4.4 (i) and (ii), we find that Px and Q1 must satisfy the system

of equations

(4.5) - 3(Λ(Λ), + βi(βi),) + ( β i ( Λ ) u " Λ ( β i ) J = 0 ,

(4.6)

Then, if we put K=P1 + iQ1 and L = P1 — iQί, the equations (4.5) and (4.6) respectively

become

(4.7) - 3(KLV + LKV) - i(KLu - LKU) = 0 ,
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(4.8) 1{KLU + LKU) - i(KLv - LKV) = 0 .

Now, let α be an irreducible factor of K with multiplicity k. Since K is homogeneous

and deg(AΓ) > 0, so Ku and Kv are not simultaneously zero and α is then an irreducible

factor of Ku or Kυ with multiplicity exactly (k — 1). Further, it follows from (4.7) and

(4.8) that

Hence ock | LKV and ock | LΛ .̂ So α | L. Therefore, by applying the same argument with K

and L interchanged, we see that K and L have the same irreducible factors. So, we can

decompose K and L over C in the following way:

(4.9) K=Cl^
k22'-'^,

(4.10) I

where cx # 0 / c 2 , /i> 1, k{φ^Φlu αf and α,- are distinct mutually irreducible factors of

degree 1. Then, if we substitute this expression in (4.7) and (4.8), and compute the result

modulo α ϊ 1 + ί l , we find that

However, since deg(αj= 1, we know that (αx)M and ( α j ^ are not both zero. Hence

c1c2{9{k1 +1,) 2 - (kί -1,) 2 ) = 0, or Cίc2(Sk2 + SI2 + 20^/0 = 0 .

Hence, we obtain a contradiction. Therefore, P and Q must be constant on U. But then

it follows from Lemma 4.3 and the Gauss equation that

Sxu = - 2(P2 + <22)xtt, Sxv = - 2(P2 + Q2)xv.

Hence Sp is a multiple of the identity for every point p of M. Thus M is an afϊine sphere

which is flat with respect to h. Applying then Theorem 2.1, we are done. •

So in the last part of this section, we will assume that M is not locally strongly

convex, i.e., we will assume that ε= — 1. Then, the solutions of the differential equations

are given by the following lemma.

LEMMA 4.5. Let ε = — 1. Then, the polynomials P and Q defined on U satisfy the

system of differential equations given in Lemma 4.4 if and only if one of the following holds:

(a) P and Q are constant on U,

(b) P = QandPvv + Puu = 2Puv,

(c) P + Q = 0 and Pvv + PUU=-2PUV.
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PROOF. By Lemma 4.4, we know that the polynomials P and Q satisfy the following

system of differential equations:

(Qvv + Quu ~ 2PU0) - 6( - PPV + QQV) + 2(QPU - PQU) = 0 ,

i-Pw- Puu+2QUV)+6( - P P M + ρ ρ u ) - 2(β/>, - p β , ) = o .

If we put K=P + Q, L = P—Q, these equations become

(4.11) ^(Kvv + Kuu-Lvv-Luu-2(Kuv + LJ)^3(KLv + LKv) + (KLu

(4.12) ^ + *MU + L^ + L t t M - 2 ( ^ ^

If # = 0 or if L = 0, we see that (4.11) and (4.12) reduce to Case (b) and Case (c). If K

is a non-zero constant, we find from (4.11) and (4.12) that

where L denotes the terms of highest degree of L. From this it follows that L, and

hence L, is also a constant. Similarly, we can prove that if L is a non-zero constant,

then K is also a constant. Therefore, we may now assume that deg(ΛΓ) > 0 and deg(L) > 0.

Let K (resp. L) denote the terms of highest degree of K (resp. L). Then it follows from

(4.11) and (4.12) that K and L satisfy the following system of differential equations:

(4.13)

(4.14) 3(KLU + LKU) + (KLV - LKV) = 0 .

But now, just as in the proof of Theorem 4.1, we can deduce from this that K and L

must have the same irreducible factors over R. So we can write

A — c 1 α 1 α 2 α π , L — c2ccίoc2 ocn ,

where deg(α, )e{ l , 2}, kh lt>\, cιφ^φc1, n>\ and for distinct indices / and j , αf and

0Cj are mutually irreducible. Substituting these expression in (4.13) and (4.14) and

computing the result modulo oc\ι+li, we get

Since (o^X, and {OL1)V are not both zero modulo αi1 + Zl, we deduce that

This is a contradiction. •

PROOF OF THEOREM 4.2. Let us assume that M is not a part of a nondegenerate

hyperboloid. Then, we know by Lemma 4.1 that M is flat with respect to h. So, we can
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apply Lemmas 4.2, 4.3, 4.4 and 4.5. Let p e M and let U be a neighbourhood of p. Since

M is flat with respect to h, by taking U sufficiently small, we can identify U with an

open part of R\. By Lemma 4.5, we have to consider three different cases on U.

Case 1. P and Q are constant on U and P2ΦQ2. In this case, it follows from

Lemma 4.3 and the Gauss equation that x(U) is a proper affine sphere. So U is flat

with respect to h and U is a proper affine sphere. Therefore, by the theorem of M.

Magid and P. Ryan, we obtain that x(U) is affine congruent to an open part of the

surface x3(xl + xl) = 1.

Case 2. P = Q on U. In this case, we know that P also satisfies the differential

equation Puu + Pvv = 2PUV. Then, we make the following change of coordinates on U:

Then, a straightforward computation shows that Pzz = 0. Hence there exist polynomials

of one variable K and L on U such that

Furthermore, we find that

V,2*z = VXyxz = V x Λ = 0 , WXyxy = 2^/2(K(y) + zL(y))xz,

h(xy9 xy) = h(xz, xz) = 09 h(xy, xz) = 1 .

Hence, we have two Blaschke immersions from (£/, h) into R3 with the same induced

connection, namely x and the immersion xKL defined in Section 3. By Radon's theorem

there exist an affine transformation A of/?3 such that A(x(U)) = xKL(U). This completes

the proof of the theorem in this case.

Case 3. P= —Q on U. The proof of this case is completely similar to the proof

of the previous case. •
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