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Introduction. As is well known, the Teichmiiller space T(S) of a Riemann surface
S of finite analytic type (p, n) with 3p—3+n>0 is a complex manifold of dimension
3p—3+n, and is complete with respect to the Teichmiiller metric. Bers [B2] gave a
classification of modular transformations in terms of the translation lengths, and showed
that the types of modular transformations are characterized by the self-mappings of S
inducing them. By definition and facts shown in [B2], hyperbolic modular
transformations are expected to have properties similar to that of hyperbolic Mdbius
transformations. For example Bers [B2] showed that a non-periodic modular
transformation is hyperbolic if and only if it has an invariant Teichmiiller line, and
gave a remark (without proof) that for each hyperbolic modular transformation the
invariant line is unique by Thurston’s theory. He also posed a problem to prove the
uniqueness of the invariant line using quasiconformal mappings. In this paper we show
(§2) this by combining the theory of quasiconformal mappings and the result of Bowen
and Marcus [BM]. Using this fact we give a simple proof of the theorem of McCarthy
about the centralizer and normalizer of a hyperbolic cyclic subgroup of the modular
group (Theorem 2.4).

It is also well-known that the Teichmiiller space 7'(S) is identified with a bounded
domain of C*”73*" via the embedding introduced by Bers, and each point of the
boundary corresponds to a Kleinian group. From the discontinuity of the action of the
modular group, for every non-periodic modular transformation [f],, induced by a
self-mapping /: S— S, and for a point T e 7T(S) the accumulation points set of the sequence
{[f1%(x)} =~ is contained in the boundary of T(S). Interesting investigations about
relations between the type of the modular transformation [f], and the type of the
Kleinian groups corresponding to accumulating points of {[f]%(1)}-, are seen in
[B3], [S], and [H]. It is natural to expect that the Kleinian group corresponding to
an accumulation point of the sequence {[ f15(7)},.—, inherits the property of f, if the
mapping f has some symmetric property. This line of thought is developed in §3. The
argument there yields a different way of approach to necessary conditions, studied by
Birman, Lubotsky and McCarthy [BLM], for two non-hyperbolic modular trans-
formations to commute.

The author is grateful to Professor H. Shiga for his helpful suggestions. She is also
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grateful to Professor S. Morita for useful information about mapping class groups.

1. Notation. In this section we fix our notation and recall some known results.

Let G be a finitely generated torsion free Fuchsian group of the first kind acting
on the upper half plane U. The Riemann surface S= U/G has a finite genus p >0 and
is compact except for n>0 punctures with 3p—3+n>0. First we describe the
Teichmiiller space T(S) of S. Later we recall the relation between 7(S) and the
Teichmiiller space T(G) of G. See Lehto [L] for details. Two quasiconformal
homeomorphisms f; : S—S; and f,: S—S,, where S, and S, are Riemann surfaces of
type (p, n), are said to be equivalent if there is a conformal mapping 4: S; —>S, such
that f; ohof, : S—S is homotopic to the identity. The Teichmiiller space T(S) of S is
the set of all such equivalence classes. The Teichmiiller space T(S) is a complex manifold
of dimension 3p—3+n. The Teichmiiller metric d on T(S) is defined by

d([f], [gD)=inf{27 " log K(f" ()™ ) [/ 1=L/1. lg1=[41}

where [ /1, [gle T(S), ' and g’ are quasiconformal mappings, and K(f-(g')~ ') is the
maximal dilatation of f"o(g")~!. A Teichmiiller disc is the image of the unit disc
A={|z| <1} by a holomorphic isometry of 4 into T(S) with respect to the non-Euclidean
metric on 4 and the Teichmiiller metric on 7(S). The image of a non-Euclidean geodesic
line in 4 by such a mapping is called a Teichmiiller line.

A quasiconformal homeomorphism f: S—S induces an automorphism [f], of
T(S) defined by [g]—[g-f~'], where [g] denotes the equivalence class of a
quasiconformal homeomorphism g : S—g(S). The automorphism [ /], depends only on
the homotopy class of f. Such an automorphism is called a modular transformation, and
the set of all modular transformations of 7T(S) is called the modular group of T(S) and
is denoted by Mod(S). Every modular transformation is a holomorphic isometry.

Now we recall the classification of modular transformations. See Bers [B2]. For
r€Mod(S), let a(y) denote the infimum of d(t, y(tr)) for 1€ T(S). The modular
transformation y is said to be elliptic if it has a fixed point in T(S), parabolic if a(y)=0
and there exists no fixed point in T(S), hyperbolic if a(y) >0 and there is a point t€ T(S)
with a(y)=d(z, x(z)), pseudo-hyperbolic if a(x)>0 and a(y)<d(z, x(t)) for every point
1€ T(S). A non-periodic modular transformation y is hyperbolic if and only if there
exists an invariant Teichmiiller line /, namely, y(/)=/ For a hyperbolic modular
transformation y, a point te 7(S) satisfies d(t, y(tr)) =a(y) if and only if it is on an
invariant line of y. The type of a modular transformation is characterized by topological
property of a self-mapping of S by which the modular transformation is induced, as
follows (Bers [B2]): a system of disjoint Jordan curves £={C,, - -+, C;} on S is said
to be admissible if no C; is homotopic to a point, a boundary component of S, or C;
with i#j. A self-mapping f: S— S is said to be reduced by a system of curves 2 if X' is
admissible and f(2)=2. A self-mapping f of S is said to be reducible if it is isotopic to
a reduced mapping, irreducible otherwise. When f is reduced by X, f is said to be
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completely reduced by X if for each component S, of S— X and for the smallest positive
integer j with f(S)=S,, the map f7 is irreducible. Every reducible mapping is isotopic
to a completely reduced mapping. Hence every modular transformation is induced either
by a completely reduced mapping or by an irreducible mapping. If there is an integer
k such that f* is homotopic to the identity, we shall say that fis periodic. A modular
transformation [f], is elliptic if and only if it is induced by a periodic mapping,
hyperbolic if and only if it is induced by a non-periodic irreducible mapping. If [ ],
is induced by a non-periodic mapping f completely reduced by an admissible system of
curves X, [ f], is parabolic if and only if for every component S; of S—2X and for the
smallest integer with f™(S;)=S, the mapping /™|, is periodic, pseudo-hyperbolic if
and only if there exists a component S; of S—ZX such that for the smallest integer m
with f™(S,)=S, the mapping f° "'|S1 is non-periodic irreducible.

Next we describe Teichmiiller mappings. Let ¢ be an integrable holomorphic
quadratic differential on .S, namely, holomorphic quadratic differential with | ¢ | < 0.
For each point pe S, there exists a local parameter { defined in a neighborhood of p,

such that
r+2\2
¢>=< 5 >C’dC2,

where r is the order of ¢ at p. The parameter ( is called a natural parameter (see Lehto
[L]). A quasiconformal homeomorphism f: S—S’ is called a Teichmiiller mapping if
its Beltrami differential is of the form k¢/| ¢ | where 0<k<1 and ¢ is an integrable
holomorphic quadratic differential on S which is not identically zero. The quadratic
differential ¢ is called the initial differential of f. For the Teichmiller mapping f, there
exists an integrable holomorphic differential y on the target Riemann surface S’ with
the following properties:

(a) For each point peS and a natural parameter { of ¢ at p and a natural
parameter {’ of Y at f(p), the mapping f has the representation

/ [U+I2 4 () +DI2\ 206+ D)
pep=(EHHOTE)

where 0 <k <1 and j is the order of ¢ at p.

(b) The order of ¢ at p equals the order of ¥ at f(p).

) fislol=Ils1yI.

The differential y is called the terminal differential of f.

Now we define the Teichmiiller space of the Fuchsian group G. (Recall that G
denotes the Fuchsian group such that U/G=S.) Let W, and W, be quasiconformal
homeomorphisms of € such that W,|L is conformal and W}(—i)=0, W(—2i)=1,
Wi{—3i)=oc0,and W;ogo (W)~ ! is a M&bius transformation for each ge G (i=1, 2). Here
L denotes the lower half plane. The quasiconformal homeomorphisms W, and W, are
said to be equivalent if W, IL= W2|L. The set of all such equivalence classes is denoted
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by T(G) and is called the Teichmiiller space of G. The spaces T(S) and T(G) are identified
in the following way: letf: S—S’ be a quasiconformal homeomorphism. The mapping
[is lifted to a quasiconformal self-mapping w of U via the canonical projection U—S.
Let W, be the quasiconformal mapping such that

) » W,|Uow™ and W,|L are conformal
and

The assignment fi— W,, induces a bijection between T(S) and T(G). Now let B,(L, G)
denote the space of bounded holomorphic quadratic differentials on L for G, namely,

B,(L, G)={¢; holomorphic on L, sup | {Im z}2¢(z)| < o0, (¢ > g)(g')>*=¢ for Vge G} .

The space B,(L,G) is a (3p—3+n)-dimensional Banach space, where (p, n) is the
signature of S. The Bers embedding (see Bers [B1]) ¥: T(G)— B,(L, G) is defined as follows:
For each point [W] of T(G), ¥([W]) is the Schwarzian derivative of W|L. Then the
image P(7(G)) is a bounded domain of B,(L, G). We identify the spaces T(S), T(G)
and Y(T(G)), so we call the boundary of ¥Y(T(G)) in B,(L, G) the boundary of T(S)
or T(G), and denote it by dT(S) or 0T(G). For a point e T(G)u dT(G), let W, denote
the (necessarily univalent) meromorphic function on L with the Schwarzian derivative
¢ normalized by the formula (1). Then for each g € G there exists a Mobius transformation
X,(g) such that W, og=y,g)> W,. The map G3g y,(g) is an isomorphism, and the
group G, = x,(G) is a Kleinian group with an invariant component W (L). If a hyperbolic
element g€ G is mapped to a parabolic element x,(g9) € G, the element x(g) is called an
accidental parabolic element of G,

2. Uniqueness of invariant lines of hyperbolic modular transformations. In this
section we show the uniqueness of the invariant Teichmiiller line of each hyperbolic
modular transformation and investigate modular transformations commutative with a
hyperbolic modular transformation as a corollary.

THEOREM 2.1. For each hyperbolic modular transformation, there exists exactly
one invariant Teichmiiller line.

Before proving this theorem, we recall the definition of a pseudo-Anosov mapping.
Let S denote the compact Riemann surface into which S is embedded. A singular
foliation # on S with a finite set E of singularities is a decomposition of S into a disjoint
union of leaves as follows (see [CB], [FLP]): for each point xe S there exists a
neighborhood V of x and a local C®-chart ¢: V- C with ¢(x)=0 such that

(i) the decomposition & | V into leaves are obtained by ¢! (horizontal lines in
C), if xeS—E,

(ii) the decomposition # ] Vinto leaves are obtained by ¢ ~ ! (horizontal trajectories



CYCLIC SUBGROUPS OF MODULAR GROUPS 293

of a quadratic differential z”~2dz?), for some integer p>3 if xe SnE, and for some
integer p>3 or p=1if xe(S—S)nE.

A transverse measure u to a singular foliation # defines a Borel measure y|rx on
each arc a transverse to & with the following properties:

(a) For every subarc o of a, uloz’ is the restriction of ,ulcx.

(b) If two arcs a; and a, transverse to & are homotopic via a homotopy
@: [0, 1] x [0, 1]—Ssuch that &([0, 1] x 0)=a,, ([0, 1] x 1) =a,, and that &(¢ x [0, 1])
is contained in a leaf & for all 1€[0, 1], then u(o,)=pu(a,).

A pair (£, p) of a singular foliation & and its transverse measure u is called a
measured foliation. Two measured foliations (&%, u;) and (%,, u,) are said to be
transverse if they have the same set of singularities £, and transverse to each other in
S—E. A self-mapping f: S—S is called a pseudo-Anosov diffeomorphism if there are
transverse measured foliations (£°, p) and (¥, p*) and a positive number 4> 1 such
that

1
(fgrs’f*'us)=<g;s, 7/"5) ’ (fg/‘:u,f*#u)=(9'u, lﬂ“) s

and if fis differentiable in S— E. The foliations #* and #* are called the stable foliation
and the unstable foliation of f, respectively. For relations of non-periodic irreducible
mappings and pseudo-Anosov mappings, see Bers [B2, §9] or Gardiner [G, §11].

PrROOF OF THEOREM 2.1. Let y be a hyperbolic modular transformation and let
/, and /, be invariant lines for y. Fix a point t; of /; (i=1.2). We may assume that the
point 7, is the base point of the Teichmiiller space. Let S; denote the corresponding
Riemann surface (i=1, 2). Take a diffeomorphism ¢: S;—S, representing the point
1,5, 1.e., 7,=[@] € T(S,). Then the modular transformation y is induced by a Teichmiiller
mapping w;: S;—S; (e, y=[w,;],=[¢ 'ow,0¢],) whose initial differential and
terminal differential coincide (i=1, 2) (Bers [B2]). Let &, denote the initial (= terminal)
differential of w;. For each ze A={|z| <1} let f* denote the quasiconformal homeo-
morphism of S; onto another Riemann surface with Beltrami differential z$,/| @, |.
Then the Teichmiiller line /; is represented as

L={[/"; —1<k<l}

(Bers [B2, §6]. We shall show that the Teichmiiller line /, is contained in the Teichmiiller
line /,.

The family & of horizontal trajectories of @; and the family & of vertical
trajectories of @; are made into measured foliations on S; with transverse measures
,u:-‘=|Im\/$,~| and uj =|Re\/$,~l, respectively. The mapping w; is a pseudo-Anosov
mapping with transverse measured foliations (%3, ui) and (£, u¥) (Bers [B2, §9]). It
follows that the mapping ¢ ~!ow,o ¢ is homotopic to w,, and is a pseudo-Anosov
mapping of S; with transverse measured foliations (¢ ~*#%, @*u3) and (@~ FY, p*us).
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Here we note the following two lemmas:

LEMMA 2.2. Two homotopic pseudo-Anosov diffeomorphisms ¢, and ¢, are
conjugate by a diffeomorphism homotopic to the identity.

A proof appears in [FLP Exposé 12, p. 238-241], which consists of two parts. In
the first part it is shown that the sequence {¢;"- @7} converges uniformly. The limit
mapping 4 of the sequence satisfies 4o ¢, ch~'=¢,. In the second part 4 is shown to
be a diffeomorphism. The argument there first shows that 2 maps leaves of the stable
(resp. unstable) foliation of ¢, to those of the stable (resp. unstable) foliation of ¢,.
Then the following lemma is used:

LEMMA 2.3 (unique ergodicity). Let u and v be transverse measures for the stable
foliation of a pseudo-Anosov mapping. Then there exists a positive number A such that
v=2A4u.

This is a particular case of Bowen-Marcus [BM], and a proof also appears in
[FLP, Exposé 12].

We proceed to prove Theorem 2.1. By Lemma 2.2, there exists a diffeomorphism
sof Ssuch that w;=s"1o@ 'ow,o@os, and from the argument of the proof of Lemma
2.2, the map s satisfies s(F35)=¢ 1(F%) and s(F4)=¢ 1(F4). This means that the
mapping ¢ o s sends the vertical and horizontal trajectories of the quadratic differential
&, to the vertical and horizontal trajectories of @,, respectively. Since uj and (¢ o 5)*(u%)
are both transverse measures of the foliation &, there exists a positive number A’ such
that u§=(1)"1(¢5)*(u3). In the same way we have a positive number A such that
wi=A)"Y@os)*(u%). In other words, for each regular point x of the quadratic
differential @, and natural parameters { around x and {’ around @ os(x) of @,, the
mapping ¢ os is represented as Re{+iIm{+ ARe (' +iA' Im{, namely, {+— (A + 1)/
D¢+ ((A—4)/2)T. Hence the complex dilatation of @os coincides with ((A—A")/(A+
IN)(P,/| @, |) almost everywhere on S;. It follows that every point T e/, is represented
by a Teichmiiller mapping with complex dilatation k&, /| @, | for some ke (—1, 1). This
means that the Teichmiiller line /, is contained in the Teichmiiller line /,. Hence the
line /, necessarily coincides with /. [ |

ReEMARK. In [FLP, Exposé 12], the singularities of foliations are supposed to be
those of v/z?~2dz2, p>3. But the same proof is valid for a pseudo-Anosov mapping,
as w, in the above proof of Theorem 2.1, whose transverse foliations are induced by
an integrable holomorphic differential on the Riemann surface S of finite analytic type.
To follow the proof of Lemma 2.3 in [FLP], one needs to see some (of course not all)
of the results in previous sections. But as for such a pseudo-Anosov mapping we can
make somewhat shorter course to get to Lemma 2.3. (For example, it is easy to show
that transverse foliations of such a mapping has no leaves of finite length.)

Using the above theorem we give a simple proof of the theorem by McCarthy [Mc].
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THEOREM 2.4. Lety, be a hyperbolic modular transformation and let y, be a modular
transformation such that y,{y,>y5; *=<{y,>, where {y,> denotes the cyclic subgroup of
the modular group generated by y,. Then y,0y,0y5 =y, or y,0y,°9; *=y{". In the
former case the modular transformation vy, is either an elliptic transformation which fixes
the invariant Teichmiiller line of y, pointwise, or a hyperbolic transformation such that
yT=9% for some integers m and k. In the latter case y, is an elliptic transformation such
that y3 fixes the invariant Teichmiiller line of y, pointwise.

PrOOF. The first statement is immediate since a(y,)=a(y,oy;°y; ") and a(y})=
l7la(yy). '

Assume that y, oy, =7, oy,. Let / denote the invariant Teichmiiller line of y,;. Then
by assumption the Teichmiiller line y,(/) is also invariant under y,. Since the invariant
line is unique, y,(/)=/. Let D be the Teichmiiller disc containing the Teichmiiller line
/, and let y: 4—D be a holomorphic isometry. Since y, and y, leave / invariant, the
mappings ¥ “ oy, oy and Y "oy, oy are Mbius transformations acting on 4 with an
invariant non-Euclidean geodesic line  ~!(/) and are commutative. Hence the Mobius
transformation y !0y, oy is either the identity or a hyperbolic transformation with
the same fixed points as those of  ~! oy, o . In the former case, it follows that y,| D =id.
In the latter case, there exist integers i and j such that ¥ "1oyi oy =y 1oy otfs, since
the modular group acts properly discontinuously on the Teichmiiller space. It follows
that y}|D=y}|D, hence % -y;/ is an elliptic modular transformation. Therefore there
exists an integer 4 such that (y} cy; ) =y%oy;h=id.

Assume that y, 0y, =7, 07{ . Then, since the modular transformations y; ! and y,
have the same invariant line /, we can again consider the Mobius transformations
Yoy oy and Yt oy, 0. This time Y~ oy, oy is an elliptic Mobius transformation
of order 2 which permutes the fixed points of y ~! oy, . Hence we have y3|D=id.

||

3. Iteration of a parabolic or pseudo-hyperbolic transformation. In this section
we investigate non-periodic modular transformations induced by reducible self-map-
pings of S=U/G. We utilize the following two lemmas:

LemmA 3.1 (Maskit [M]). Let ¢ €0T(G) and assume that the Kleinian group G,
corresponding to ¢ contains accidental parabolic elements. Then there exist pairwise
non-commuting hyperbolic elements g, - - -, g, of G such that every accidental parabolic
element of G, is conjugate in G, to y,(g)" for some i=1, -, s and some integer m#0
and that the axes of g,, " " *, g, are mapped by the canonical projection to an admissible
system of curves {Cy, -, Cs} on S.

LemMMA 3.2 (Shiga [S]). Let f: S—S be a non-periodic reducible quasiconformal
selfmapping. Assume that the sequence {[ f13/(t)} converges to a boundary point ¢ € 0T(S)
for a sequence of integer {m;} and a point 1€ T(S). Then the group G, contains an
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accidental parabolic transformation.

Under the hypotheses of Lemma 3.2, Bers [ B3] showed that there exists a mapping
/' homotopic to f such that f({Cy, - -+, C})={C,, - - -, C,}, where {Cy, - -, C,} is the
system of curves accompanied to the limit point ¢ of {[f]’(r)} as in Lemma 3.1. A
similar argument yields the following theorem:

THEOREM 3.3.  Under the hypotheses of Lemma 3.2, assume that [ f], commutes
with a modular transformation [g],, induced by a quasiconformal homeomorphism g: S—S.
Then there exists a mapping g' in the same equivalence class as g such that the system of
curves {Cy, -+ +, C;}, accompanied to ¢ € 0T(G) as in Lemma 3.1, is invariant under g'.
Furthermore, let S, and S, be components of S—{C,, - - -, C;} with ¢'(S,)=S,, and let
G, and G, be the component subgroups of G, corresponding to S, and S,, respectively.
Then the groups G, and G, are quasiconformally equivalent. Here, a component subgroup
G, corresponding to S, is the group y, (the stabilizer in G of a component of n~'(S,)),
where m. U—S is the canonical projection.

The proof is parallel to Bers [B3].

Proor. The quasiconformal mappings g and f are lifted to quasiconformal
homeomorphisms @, and w, of U, respectively, conjugating G onto itself. Extend w,
and w, to quasiconformal homeomorphisms of € by symmetry w,(2)=w;(z). Assume
that the point 7 in Lemma 3.2 is represented by a quasiconformal mapping % as
t=[h: S§—S'], and lift 4 to a quasiconformal self-mapping w of U. Set

0y=w 00007, Wu=W,.,-m, and W,=W,. -m, m=1,2,--.

Here, the quasiconformal homeomorphisms W,.,-= and W, (-m of C are de-
fined by the formulae (1), (2) in §1. Then from the assumption [f]1,[9],[f1s ' =[9].
if follows that [W,]=[W,]e T(G), and that this point corresponds to the point

Lf1X(@) e T(S).
Set

Xp=Wpow, o Wyt, m=12---.

We now show that there exists a subsequence of {X,,} which converges to a quasi-
conformal homeomorphism of €. By the normalization of W,, the quasiconformal
mapping X, satisfies

Xu0)=Wyew(=), X (D)=W,c0(=2), X,(0)=W, 0(-30).

By the assumption lim[ f]%/(t) = ¢ the sequences {W,,,j | L} and {W,, | L} converge to
the univalent function W, locally uniformly on L. Hence we have

lim X,, (0)=W,ow(—i), lLmX, (1)=W,ca(—2i), lim X,,,j(ao)= W, o a(—3i).

These three points are distinct. Next we note that the maximal dilatations of {X,, }
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are uniformly bounded. Set
hp=W, o(wow;™ ', h,=W,o(wo(wy) ™! on U.
Then we have
Xp| Wo(U)=Hhpowe () ™owowFow tohyt=hjowow ow toh,*

Since the mappings 4, and #4,, are conformal, the maximal dilatation of X,,,| w,(U)
equals that of wo w, o w™ . Since the mapping W,,|L (= W,,| L) is conformal, the maximal
dilatation of X,,| W, (L) equals that of w,. The complement of W,(UuL) in C has
measure 0.

From these facts we may assume, taking a subsequence if necessary, that the
sequence {X,,,j} converges to a quasiconformal homeomorphism X of € uniformly with
respect to the spherical metric. Therefore we have

XoW,=W,ow,
in L. By this formula

Xoy) e X =g, (wy0pcmr?)

for every element y of G. Hence the component subgroups G, and G, are
quasiconformally equivalent, and y,(y) is parabolic if and only if y,(w,cy-w;?') is
parabolic. It follows that the set of the homotopy class of {g(C,), - -, g(C,)} equals
that of {C,, - - -, C}. By a topological theorem due to Epstein [E], g is homotopic to
a mapping ¢’ with ¢'({Cy, -, C)={Cy, -+, C,}. m

The above theorem yields another method of giving necessary conditions for
non-hyperbolic modular transformations to be commutative (see [BLM]). First assume
that [ /], be a parabolic transformation induced by a self-mapping f: S—S. We may
assume that there exists an integer m such that f™ is a product of Dehn twists about
an admissible system of curves {Cy, -, C;} (cf. [S]). Evidently, such a system is
determined uniquely by [ /] up to homotopy. We say that this system is accompanied
to f'and denote the system by X ;. Hejhal [H] proved that for every sequence {[ /™]%}(t)
converging to a boundary point ¢ € 0T(S) the system of curves accompanied to ¢ as
in Lemma 3.1 coincides (up to homotopy) with the system X, Hence if a modular
transformation [g], induced by a self-mapping g: S—S commutes with [ /], then by
Theorem 3.3 we may assume that g is reduced by {C,, - - -, C,}. By the argument in
Bers [B2, §7], there exists an admissible system of curves {C,, - --, C,} containing
{Cy, - -+, C,} by which some mapping g’ homotopic to g is completely reduced. Assume
that [g] is also parabolic. Then there exists an integer k such that (g’)* is homotopic
to a product of Dehn twists about an admissible system of curves X, contained in
{Cy, "+, C} (cf. [S]). Thus we have:

CoRrROLLARY 3.4 (cf. [BLM]). If parabolic transformations [ f], and [g], are
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commutative, then for the admissible system of curves X and X, accompanied to f and
g, respectively, the union X0 X, is an admissible system.

In the general case, we show the following:

COROLLARY 3.5 (cf. [BLM]). Let f be a reducible homeomorphism. Assume that
the modular transformation [ f], commutes with a modular transformation [g],, induced
by a quasiconformal self-mapping g: S—S. Then there exist an admissible system of curves
X and quasiconformal self-mappings " and g’ homotopic to f and g, respectively, with the
following property: there exists an integer m such that (f'Y"(2)=2, (¢)"(2)=Z2, and for
each component S, of S— X the mappings ( f ’)'"|S , and (g’)’"| S, are irreducible or periodic
self-mappings whose isotopy classes are commutative (as investigated in the previous section).

PrROOF. We show the corollary by induction on k=3p—3+n, where (p, n) is the
type of S.

Assume that k=1. If both of f and g are periodic, nothing remains to be proved.
If fis non-periodic, take a sequence of positive integers {m;} such that the sequence
[f1%(r) converges to a boundary point ¢ for a point te T(S). There exists a simple
closed curve C accompanied to ¢ as in Lemma 3.1. By Theorem 3.3, there exist
quasiconformal mappings f* and g’ homotopic to f and g, respectively, with f(C)=C
and ¢g'(C)=C. Hence the assertion is immediate. When fis periodic and g is non-periodic,
the statement is shown in the same way.

Assume that k=3p—3+n>1. For the same reason as above, we may assume that
fis non-periodic. Again take a sequence of positive integers {m;} such that [f]3/(t)
converges to a boundary point ¢ € dT(S), and let I be the non-empty system of curves
accompanied to ¢ as in Lemma 3.1. We may assume that f(I')=1I" and g(I')=T". Let /
be a positive integer such that /! and g' preserve each component of S—1I'. Since the
statement of the corollary is true for f*|S’ and ¢'|S’ for each component S’ of S—T,
the statement of the corollary for the Riemann surface S of type (p, n) is now imme-
diate. [ ]

Note that we can show the following theorem by Birman, Lubotsky and McCarthy
[BLM] by the same argument as above: An abelian subgroup F of the modular subgroup
Mod(S) has a torsion free subgroup of finite index with rank <3p—3+n.
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