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0. Introduction. Let G be a complex reductive algebraic group with Lie algebra
g and θ an involution of G as an algebraic group. We also denote by θ the induced
involution of g. Let g = t + p be the Cartan decomposition of g with respect to 0, Kθ

the subgroup of G consisting of elements g e G such that θ(g) = g and N(p) the nilpotent
sub variety of p. We call the pair (g, ϊ) the symmetric pair defined by (G, θ).

For the symmetric pairs, Sekiguchi [Sel] tried to construct an analogue of the
Brieskorn-Slodowy theory ([B], [SI]) which gives a correspondence between the simple
Lie algebras and the rational double points. In [Sel], he introduced the problem to
determine the generic singularities in N(p). To determine the generic singularities, we
need the classification of Λ^-orbits in N(p) and their closure relation. In the classical
cases, the classification of nilpotent orbits is given by means of αZ>-diagrams in [O2].
The first purpose of this paper is to determine the closure relation of Λ^-orbits in N(p)
for the classical symmetric pairs. This is completed in §2 by means of a certain ordering
of αft-diagrams.

For the classical Lie algebras, the nilpotent orbits are classified by Young diagrams,
and their closure relation is described by a certain ordering of Young diagrams. Then
Kraft and Procesi ([KP2], [KP3]) showed that the smooth equivalence class (cf. §3)
Sing(^, Θσ) of the closure Θη in Θσ, which corresponds to a degeneration σ < η of Young
diagrams, is determined only by reduced degeneration σ < ή, i.e., the degeneration which
we obtain from σ < η by erasing the common columns and rows from the left and the
upside.

The second purpose of this paper is to give an analogue of the result of Kraft and

Procesi for the classical symmetric pairs. The construction C(*'ω) <—Nη—>C(

η~
ε'~ω)

(cf. §3), which we need to prove the "cancelling columns", is also used to give a reduction
to determine the closure relation.

On the other hand, there exists a natural correspondence between symmetric pairs
and real Lie groups. Let (g, ϊ) be a symmetric pair defined by (G, θ) and let GR be the
corresponding real group with Lie algebra gR. Then it is known by Sekiguchi [Se2]
that there is a natural correspondence between the set of nilpotent A^-orbits in p and
that of nilpotent G^-orbits in gR. We call this correspondence Sekiguchi's bijection.
Then we are naturally led to the problem whether Sekiguchi's bijection preserves the
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closure relation.

The third purpose of this paper is to answer this problem affirmatively in the classical

cases.

What we call the classical symmetric pairs are the following:

(AI) (gI(A2, C), φ , O), (All) (gl(n, C), sp(/i, C)),

(AIΠ) (φn + n, C), gl(m, C) + gl(«, C)), (BDI) ( φ i + Λ, C), o(m, C) + φ , C)),

(Dili) (o(2/i, C), gl(«, C)), (CI) (sp(2n, C), gl(«, C)),

(CII) (sp(m + /ι, C), sp(m, C) + sp(n, C)).

For the symmetric pairs of types (AI) and (All), the closure relation is determined

and the analogue of the result of Kraft and Procesi is given in [Ol] . Moreover it is

easily verified that Sekiguchi's bijection preserves the closure relation. Therefore we

treat the symmetric pairs of types (AΠI), (BDI), (Dili), (CI) and (CII) in this paper.

The author expresses his heartfelt gratitude to Professors Ryoshi Hotta and Jiro

Sekiguchi for kind advice and encouragement.

1. Description of Sekiguchi's bijection. In this section, we give the description

of Sekiguchi's bijection in the classical cases.

(1.1) Sekiguchi's bijection. Let G be a complex reductive algebraic group with

Lie algebra g and θ an involution of the algebraic group G. We also denote by θ the

involution of g induced by θ: G^G. Put Kθ: = {geG;θ(g) = g}, t: = {Xe& Θ(X) = X}

and p: = {Xe& Θ(X)= -X}. Then we call the pair (g, ϊ) the symmetric pair defined by

(G, θ), Kθ the isotropy subgroup, and p the associated vector space.

Suppose that there exists a real form GR of G which we obtain by a complex

conjugation τ:G^>G (i.e., GR = {ge G; τ(g) = g}) such that 0 o τ = τ °0 and that the

restriction θ | GR is a Cartan involution of GR. We call the real form GR the real group

corresponding to the symmetric pair (g, I). As before we denote by τ the complex

conjugation of g induced by τ : G-+G and put g κ : = Lie GΛ = {ArGg; τ{X) = X}. Then Kθ

(resp. GR) acts on p (resp. gΛ) by the adjoint action. We denote by N(p) (resp. N(qR))

the set of all nilpotent elements in p (resp. gR) and by [Λf(p)]Kθ (resp. [N($Ry\GR) the set

of Λ:θ-orbits (resp. Gκ-orbits) in N(p) (resp. N(gj|)). Put I J f : = Ing J l and p Λ : =

Then gΛ = I Λ + p R is the Cartan decomposition of gR and g = (ϊR + yj — 1 pκ) + (yj — 1 tR +

pR) is that of g. Let φ be the Cartan involution of g corresponding to the above

decomposition. Then φ = τ°θ; in particular, φ commutes with θ.

A triple (ft, x, y) consisting of linearly independent elements of a Lie algebra

satisfying the relations [ft, x] = 2x, [h,y]= —2y, |>,y] = h is called an 5-triple. For a

symmetric pair (g, ϊ), an 5-triple (ft, x, y) in g is called a normal S-triple if ft E ϊ and

x, yep. Sekiguchi introduced the following notion.

DEFINITION (Sekiguchi [Se2]). A normal S-triple (ft, x, y) of a symmetric pair (g, I)

is called a strictly normal S-triple (with respect to φ) if φ(h)= —h and φ(x)= —y.
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REMARK 1. In the above setting, a normal S-triple (ft, x, y) is a strictly normal

S-triple if and only if τ(h)= —h (i.e., he^J — 1 tR) and τ(x)=y.

THEOREM 1 (Sekiguchi [Se2]). For any non-zero nilpotent Kθ-orbit Θθ

there exists a strictly normal S-triple (ft, x, y) such that xeΘθ. Such an (ft, x, y) is unique

up to conjugation by Kθ n GR. If we put

-J-1 h)β ,

then (ftΛ, xΛ, yR) is an S-triple in gR. Let ΘR be the GR-orbit generated by xR. Then the

map [N(V)]KΘ-+IN(QR)]GR, (9QV^ΘR is a bijection.

We call the above bijection Sekiguchi's bijection.

(1.2) Classical symmetric pairs. In this paper, we treat the classical symmetric

pairs (g, f) and the corresponding real group GR in Table I.

TABLE I

Type

(AIΠ)

(BDI)

(Dili)

(CII)

(CI)

(ε,ω)

0
( 1, 1)

( 1,-1)

( - 1 , i)

( - 1 , - 1 )

G

GUm + nX)
O{m + n,C)

0(2«, Q
Sp(m + n,C)

Sp(2n, Q

(gKifi + ii,

(o(m + «,

(o(2/i, C),
(δp(m + «,

(sp(2n, q

(9,f)

C),gI(m,C)4

Q, o(m, C) + i

9Ϊ(Λ, Q)
Q, sp(w, C)

, 9l(*, Q)

-gi(«,Q)

3(«, O)

+ 5p(A7, Q )

C/(m, Λ)

0(m, ή)

0*(2n)

Sp(m, ή)

Sp(2n,R)

We first give the description of these symmetric pairs. Let F b e a finite dimensional

vector space over C and s: K-> V a linear involution. We call such a vector space V a

vector space with an involution s. Moreover, if V is endowed with a non-degenerate

bilinear form ( , ) such that (w, i>) = φ , u) and (sw, ι;) = ω(w, si;) for all u,veV, we call V

an (ε, ω)-space, where ε = ± 1 and ω = + 1.

Let F be a vector space with an involution s and define an involution θ of GL(V)

by θ(g) = sgs(geGL(V)). Put

: = {t;e K; s r = n: = dimVb,

); Θ(X) = X} , p(V): = {Xeql(V); Θ(X)= -X} .

Then (gl(K),T(K)) is a symmetric pair isomorphic to (gI(m + «, C), gl(m, C) + gI(Az, C))

defined by (GL(F), 0), £ ( F ) the isotropy subgroup, and p(F) the associated vector space.

We call (gl(F), T(K)) a symmetric pair of type (AIΠ). We also call it the symmetric pair

defined by the vector space V with the involution s.

Next suppose that F i s an (ε, ω)-space. For XegftV), we denote by X*eqί(V) the

adjoint of X with respect to (,) . It is easy to see that θ(g*) = (θ(g))* for geGL(V). Then

we put G(V): = {geGL(V);g* = g-1}, g(K): = LieG(F) = {^G9I(F); X*= -X}9
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) = {Xe$(V);θ(X)=-X}. Then (g(K),ϊ(F)) is the symmetric pair
defined by (G(V), θ), K(V) the isotropy subgroup and p(V) the associated vector space.
Here we note that m = n if ω= — 1 and that m, n are even if (ε, ω) = (— 1, 1). The sym-
metric pair (g(K), t(V)) is isomorphic to the symmetric pair in Table I according
as (ε,ω) = (l, 1), (1, -1), ( - 1 , 1), ( - 1 , -1). We define the type of the symmetric
pairs (g(F), i(V)) to be the first column of Table I. We call (g(F), l(V)) the symmetric
pair defined by the (ε, ω)-space V.

(1.3) Realization of classical symmetric pairs and the corresponding real
groups. Here let us give the realization of the symmetric pairs and the real groups in
Table I in terms of matrix algebra as follows.

(AIΠ) Put V: = Cm+n and define a linear involution s by

where /„ is the identity matrix of size n. Define a hermitian form / o n V by

f(u,v):=tΰsv (u,veV),

where ΰ is the ordinary complex conjugation of u e V. Then / is positive definite on Va

and negative definite on Vb. Denote by (X)J the adjoint of Xegl(F) with respect to /
and put τ(g): = {(#)*} ~1 (g e GL(V)\ GR: = {ge GL(V); τ(g) = g}. Then GR = ί/(m, ή) is the
real Lie group corresponding to the symmetric pair (gI(K),T(F)) defined by the vector
space V with the involution s.

(BDI), (Dili), (CΠ), (CI) Put (ε, ω) = (± 1, ± 1) and V=Cm+n. We suppose that
m = n i fω= —1 and m, n are even if (ε, ω) = (— 1, 1). Put

o -/,
and define a bilinear form (,) on V by (M, t;) = 'uJv (u, v e V), where, for each (ε, ω), we
define the matrix J as follows:

(ε,ω) = ( 1, 1)

(β,ω) = ( 1,-1)

(β,ω) = ( - l , 1)

H
J=Im+n,

fθ /„

/ 0 Iml2

-4/2 0

o o /,Π /2
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0
(6,0)) = (- l , -1) ./=

Then Fis an (ε, ω)-space with respect to s and (,). We define an anti-linear map τ : F-> V
by τ(v) = yj ω sJϋ (v e V) (i.e., τ(αw + βv) = ατ(w) + βτ(v) (α, βeC,u,ve V)). Then we have
the following (cf. [BC]):

τ2(υ) = εωv , (τ(w), φ)) = (u, v) (w, DGK).

Define a complex conjugation τ of the group G(V) by τ(g) = τ°goτ~1 {geG(V))
and put G K = {^GG !(K); τ(g) = g}. Then GΛ is the real Lie group corresponding to the
symmetric pair (g(K), ϊ(F)) defined by the (ε, ω)-sρace V. Moreover GR is isomorphic to
the real group in Table I corresponding to each (ε, ώ) (cf. [BC]). For the simplicity of
expression, we attach (ε, ω) = 0 to the symmetric pair of type (AIΠ) and the
corresponding real group.

REMARK 2 (cf. [D]). (1) Suppose that τ 2 = - i d κ (i.e., ε ω = - l ) . Let H=
{oc+jβ; oc, βeC} (α/=yα) be the quaternion algebra with the conjugation (oc+jβ) =
α -jβ (α, β e C). Define the right action of H on V by v(oc +jβ) = VOL + τ(υ)β {veV,(x,βe C).
Then V is a right /^-vector space such that dimHF=(l/2)dimcK. Define /_ : Vx V^>
Hby

/_(«, ϋ):=-(«, φ))-(iι, φ (II, ve V).

Then we have the following:

/_ (ϋ, u) = - ε/_ (M, υ), /_ (up, I;^) =pf_ (u, v)q (u, veV,p,qeH).

By using /_, we can write GR as G R = {^GGL(F); f-(gu, gv) = f_(u, v) for all u.veV}.
(2) Suppose that τ2 — '\dv (i.e., εω=l). If we write KR: = {ι;e V; τ(v) = v}, VR is a

real vector space of dimension dimΛ VR = dimc F and GR is naturally identified as

GR~{geGL(VR); (gu, gv) = (u, v) for all w, veVR} .

RERMARK 3. In the cases (ε, ω) = (± 1, ±1), we have

(v, τ(v)) = tvJ.sJ ω sJϋ=ω^J ω vJJsv = εω^f ω vsv (υeV).

In particular, if ve Vau Vb\{0}, we have (v,

(1.4) Classification of nilpotent orbits of the symmetric pairs. Here we give the
classification of nilpotent Λ^-orbits in p.

Let (gl(F), ΐ(K)) be the symmetric pair defined by a vector space Fwith an involution
s. For any nilpotent element Xep(V) = {Xe$l(V); XVa^ Vb9 XVb<=. Va}, we can take a
Jordan basis

a{9 l<i<ra,0<p< λt} u {X*bf, \<j<rb,0<q



166 T. OHTA

of V such that ate Va, bjβ Vb and Xλiat = 09 Xμjbj = 0. By letting a string

λ,

abab- (resp. baba-

correspond to {Xpai; 0<p<λ^ (resp. {Xqbp0<q<μj}), we get a diagram ηx which is

the sum of such strings. Here we always put the longer string above the shorter one.

Such a diagram is called an α6-diagram. It is easy to see that the 06-diagram ηx is

independent of the choice of a Jordan basis. Therefore we call ηx the αft-diagram of X.

For two nilpotent elements X and Y of p(V), we see that ηx = ηγ if and only if X and

Y are conjugate under K(V). Thus we have a one-to-one correspondence between the

set of nilpotent J?(F)-orbits in p(V) and the set D(m,ή) of ^-diagrams η such that

na(η) = dim Va = m and nh(η) = άrm Vb = n, where na(η) (resp. nh(η)) is the number of the

tf's (resp. the Z?'s) in η:

Next let us give the classification of nilpotent orbits of the symmetric pair (g( V), f( V)).

For a fixed (ε, ω) = ( ± l , ±1), let us call the ^-diagrams in Table II primitive

(ε, ω)-diagrams. We call an αft-diagram, which is a sum of primitive (ε, ω)-diagrams, an

(ε, ω)-diagram.

TABLE II

Type

(BDI)

(Dili)

(CΠ)

(CI)

(ε, ώ)

( 1, 1)

( 1,-1)

( - 1 , 1)

(-1,-1)

ab--

ba"

ba--

ab-

ab-

ba-

--ba,

•ba

--ba,

-ba

•ba,

•ba,

αό-diagrams

ba-

ob-

ab"

ba-

ba-

ab-

--ab,

-ab

-ab,

•ab

--ab,

-ab,

ba-

ab

ab-

ba-

ba-

ob-

ab -

ba-

-ba

-ab,

-ba

•ab,

-ba

-ab,

-ba

--ab,

We denote by Z)(ε'ω)(m, n) the set of (ε, ω)-diagrams η such that na(ή) = m and

nb(η) = n.

PROPOSITION 1 ([Ol, Proposition4], [O2, Proposition2]). Let Vbe an (ε, ω)-space

such that dim Va = m and dim Vb = n. We consider the symmetric pair (gI(F),ϊ(K)) of type

(AIΠ) and the ones (g(F), ϊ(F)) of types (BDI), (Dili), (CΠ) and (CI). Then we have the

following:

(1) Two elements X, Yep(V) are conjugate under K(V) if and only if they are con-
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jugate under K(V). In particular, we have a natural inclusion

ίN(v(V))-]K{V) * lN®(Vm*iV) * Dim, n).

(2) The image of the above inclusion is precisely D(ε'ω)(m, ή). Therefore we have
a natural bijection [N(p(V))]K(V)~D{ε>ωXm,n).

(1.5) Classification of nilpotent orbits of the real Lie algebras. We recall the
classification of nilpotent orbits of the real Lie algebras due to Bourgoyne and Cushman
[BC] and Djokovic [D].

For (ε, ω) = (± 1, ± 1) or 0 , let GR be the real reductive group in (1.3). We use the
notation of (1.3). Only in the remaining part of this section, let us also denote by /
the bilinear form (,) on V in the cases (ε, ώ) = (± 1, + 1) just as in the case (ε, ω) = 0 .
Since we do not consider the anti-linear map τ: V-+ V in the case (ε, ω) = 0 , we disregard
the conditions on τ: K-> V in our discussion below.

In the above setting, let Θ be a GΛ-orbit in the Lie algebra QR and xe Θ. Then there
exists a direct sum decomposition V= Vx © V2® ''' ® Vr (F^O) into complex
subspaces Vt with the following properties:

(1) Each Vt is x-stable and τ-stable.
(2) f(Vh Vj) = {0} if iΦj.
(3) Each Fj is indecomposable in the sense of (1) and (2).

Let A be the type of (x, V) and Δt that of (x\Vi, V^ (for the definition of types, see
[BC]). Then we have Δ=Δ1 + Δ2+ ' +Δr. Thus each type is a sum of indecomposable
types and, as shown in [BC], this decomposition is unique. Therefore the set [N(QRJ]G

of nilpotent GR-orbits is classified by sums of indecomposable nilpotent types.
For a nilpotent element xe§R, the indecomposable nilpotent type Δt of (x\Vi, Vt)

is one of the types in Table III.

TABLE III

feω)

0
( 1, 1)

( 1,-1)

(-1, 0
(-1,-1)

Δ

Δδ

k{0)

Λ(0,0)

^ao,o)
4(0, 0)

Indecomposable

(k: even),

(k: even),

(A:: even),

(A:: even),

nilpotent types

Λ(0, 0)

4Ko,o)
zJfc(O, 0)

^ao)

(*:
(k:
(k:

(k:

odd)
odd)
odd)
odd)

In Table III, δ=± and k>0 is an integer. The above types are defined as in [D]
as follows:

The case (ε, ω) = 0 . If dim Vι = k+l and there exists υe V{ such that

W-lfδf(Ό9x*Ό)>0,

then Δi is denoted by ^
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The case (ε, ω) = (l, 1). If d i m F — f c + l with k even and there exists

v e (Vi)τ : = {ve Vt; τ(v) = v} such that

(^Λ)kδf(v,xkv)>0,

then Δi is denoted by Δδ

k(ϋ). In this case, the signature δ equals + (resp. —) if and only

if the signature of the symmetric bilinear form f\iVi)τ is (k/2 + 1, k/2) (resp. (k/2, k/2 + 1)).

On the other hand, if dim FI=2(fc+ 1) with k odd, then Δ x is denoted by zlk(0, 0).

The case (ε, ω) = (l, — 1). If dim Vt = 2(k+ 1) with k odd and there exists ve V{ such

that

(yf^Λf " 1 <5/_ (v, -A) > 0 (cf. Remark 2),

then J ( is denoted by zl^(0, 0). On the other hand, if dim Vx = 2(k + 1) with k even, then

Δt is denoted by Δk(0, 0).

The case (ε, ω) = (— 1, 1). If dim Vi = 2(k-\-\) with A: even and there exists v e Vi such

that

then Δ( is denoted by Δδ

k(0, 0). If dim Ki = 2(fc+ 1) with k odd, then Δt is denoted by

4X0,0).
The case (ε, ω) = (— 1, - 1 ) . Suppose that dim Vt = k+ 1 with k odd, that K£ does

not have a non-trivial jc-stable decomposition, and that there exists veVi such that

Then Δ x is denoted by Zlf(O). On the other hand, if dim Vt = 2(k+ 1) with k even and

Vt is decomposed into two x-stable subspaces of dimension k+l, then Δ{ is denoted

by 21,(0,0).

(1.6) Description of Sekiguchi's bijection. Let V be a vector space with an

involution, or an (ε, ω)-space. We consider the symmetric pair (g, f) = ($I(K), I(F))

corresponding to (ε, ω) = 0 , or (g, ϊ) = (g(K), ϊ(F)) corresponding to (ε, ω) = ( ± 1, ± 1).

Let GR be the real group corresponding to (g, ϊ) as in (1.3).

PROPOSITION 2. Let Θθ be a nilpotent Kθ-orbit in p and ΘR the nilpotent GR-orbit

in gΛ which corresponds to Θθ by Sekiguchi's bijection. Let *\ = YJi=1 *]i be the ab-diagram

(resp. (ε, ω)-diagram) corresponding to Θθ, where r\i is an ab-diagram with a single row

{resp. primitive (ε, ω)-diagram) if (ε, ω) = 0 (resp. (ε, ω) = ( ± l , ±1)). Let ηt correspond

to the type Δ{ as in Table IV. Then the type Δ of ΘR is Δ = Δ1 + Δ2 + + Δr.
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TABLE IV

k+\

(ε, ω) = 0 baba,

k+1

ε, ω) = ( 1, 1) ab ba,

fc+1

ε, ω) = ( 1,-1) ba ba

ba ba,

(ε, ω) = (—1, 1) ab ba

ab ba,

k+l

(ε, ω) = (—1, — 1) ba I

A-{0)

k+1

k+l

ba ab

ba ab,

^-(0,0)

k+1

Ak(0, 0)

k+\

QQ ba

ba ab,

Λ(0,0)

k+l

ba ba

ab ab,

Ak(0, 0)

k+l

a ab.

4(0,0)

In order to prove Proposition 2, take a strictly normal 5-triple (ft, x, y) of (g, ϊ) with

respect to φ = τoθ such that xeθθ (cf. (1.1)). Let (AR, xR, yR) be the corresponding

5-triple in gR (cf. Theorem 1) and S the three-dimensional subalgebra isomorphic to

sl(2, C) spanned by the 5-triple (ft, x, y):

S: = Cft + Cc + Cv = CA

Then Proposition 2 is an immediate consequence of the followin two lemmas.

LEMMA 1. Take the vector space V, the involution s of V, the hermitian form f on

V and the complex conjugation τ ofGL(V) as in (1.3, (AIΠ)). We consider the symmetric

pair (gl( V), ϊ( V)) defined by the vector space V with the involution and the corresponding real

group GR = U(m, n). Then for the above three-dimensional subalgebra S, we have the

following:

(1) V has an f-orthogonal direct sum decomposition

V=Vx®V2® ' @Vr
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into s-stable irreducible S-submodules V{ such that each Vt does not have a non-trivial

xR-stable and f-orthogonal decomposition.

(2) Let ηt be the ab-diagram of the nilpotent element x\v. andAi the type of(xR\Vi, Vt).

Then ηt and At are contained in Table IV and the correspondence ηi^Ai is given in Table

IV.

LEMMA 2. Take the vector space V, the involution s of V, the bilinear form / = (,)

on V and the anti-linear map τ: V-> V as in (1.3, BDI~CI). We consider the symmetric

pair (g(K), l(V)) defined by the (ε,ω)-space V and the corresponding real group

^R = {9^G(V);τ(g) = τogoτ~i=g}. Then for the above three-dimensional subalgebra

S, we have the following:

(1) V has an f-orthogonal direct sum decomposition

V=Vί@V2φ'"®Vr

into s-stable and τ-stable S-submodules V{ such that each Vt does not have a non-trivial

xR-stable, τ-stable and f-orthogonal decomposition.

(2) Let r\ι be the ab-diagram of x\v. and At the type of(xR\Vi, Ff). Then ηt and A{

are contained in Table IV and the correspondence r\^A{ is given in Table IV.

(1.7) Proof of Lemma 1. In order to prove Lemma 1 and Lemm 2, we need the

following lemma.

LEMMA 3. Let S be a Lie algebra spanned by an S-triple (h, x, y). Let W be an

irreducible S-module of dimension k+\ {k>ϋ) and v a lowest weight vector of W. Put

z: = x+y + yj— \h. Then if we express zkv as a linear combination of the basis

{v, xv, x2v, , xkv} of W, the coefficient of υ equals k\( — y/—l)k.

PROOF. By the representation theory of sl2 (for example, [H, Lemma 7.2]), there

exists a basis {vo,vu —,vk} such that hυi = {k — 2ΐ)vi (0<i<k), yVi = (i+l)vi+1

(0<i<k—l), xvi = (k— /+l)ι;I _ 1 (1</<A;) and vk = v. If we express z by a matrix with

respect to the basis {v = vk, vk-ί, , υί9 v0}, we have

z —

\

2.

\ ' ' - k I — λk
At yj 1AC

Then it follows by induction that the coefficient of vk-j in zpv (0<j<p<k) equals

{p\{k-j)\{-yj~z\)p~i}l{(p-j)\(k-p)\}. In particular, the coefficient of v = vk in zkv

equals kl( — y/—l)k. q.e.d.

Now let us prove Lemma 1. Since — h = τ(h) = — (h)J by Remark 1, we have (h)J = h.
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Hence for λ-weight vectors ui9 Uj of weights i, j respectively, we have

(a) f(uhuj) = θ if iΦj.

Since yVa<^Vb and yVba Va, we can take a basis {v(i)}r

i=ί of Ker>> such that each v(i)

is an λ-weight vector contained in Vau Vb. Suppose that there exist i9j with iΦj such

that f(v(i\ vij))φ0. Then it follows from f(Va, Vb) = 0 and the above (a) that v{i) and vU)

have the same Λ-weight and are contained in Va or Vb simultaneously. If we put

JW v >

we have f(v(i\ vij)) = 0. By taking ΰ^ instead of vu\ we may assume that {v{i)}r

i=ι is

/-orthogonal. Let Vt be the irreducible 5-submodule generated by v{i). Then V= φr.= χ Vi

and it follows from y = τ{x) = —(x)J that the decomposition V= 0 r. = χ Γf is /-orthogonal.

Since each Kf is an irreducible module over S = ChR + CxR + CyR, V( does not have an

xR-stable non-trivial decomposition. Hence (1) follows.

Put k+ 1 =dim Vt (k>0), v = v{i) and apply Lemma 3 to the irreducible S-module

Vi. Then by the remark (a) above, we have

f(v, (xR)v) f(v, y v^

Let us express υ as a sum of ΛΛ-weight vectors;

V = uo + Ul+ - + Uk w i th hRUj=—(k—2j)Uj.

Then (xRfv = (xR)ku0 and it follows from hR = τ(hR)= -(hR)} that f((xR)pu0, (xJquo) =

if p + qφk (/?, #>0). Therefore we have

f(υ, (xR)kv) = f(u0 + u1 + + uk, (xR)ku0)=f(u0, (χR)kuo) = 0

and hence

Here we note that/(w, w)>0 (resp. /(w, w)<0) if we FΛ\{0} (resp. we Vb\{0}). Then

we have the following:

k+l

veVa and k is even > c>0 and ηι = ab ba,

k+l

v e Va and k is odd »• c < 0 and r\i = ab αfe,
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fc+1
veVb and k is even >• c < 0 and r\i = ba

fc+1
veVb and A: is odd =—• c>0 and ηι = ba ba.

Hence (2) follows. Thus the proof of Lemma 1 is completed.

(1.8) Proof of Lemma 2. Let us give the proof of Lemma 2. In the setting of
Lemma 2, take an A-weight vector v such that υe(Keτy)n(VauVb). Let U be the
irreducible S-submodule generated by v and put dim£/=λ;+l (A;>0): U=Cv®
Cxv0 0 Cxkv, xk + 1v = 0. Since veVauVb, Uis s-stable. Here we note the following
facts:

(F1) Since τ(A) = — A, xjv and τ(xjv) are A-weight vectors with the opposite weights:
h(xjv)= ~{k-2j)xjv, hτ(xjv) = (k-2j)xjv.

(F2) For two A-weight vectors υhVjeV with weights / and j respectively, if

f(υh Vj)τtO, we have /= —j.
We first consider the following three cases:
(a) ω= 1 (i.e., f(Va9 Vb) = 0) and k + 1 is even.
(b) ω= - 1 (i.e., f(Va9 Va) = f(Vb, Vb) = 0) and A:+ 1 is odd.
(c) ε(-l)* + 1 = l.
Then it is easy to see that f(v, xkv) = 0 (cf. [O2, Proof of Proposition 2]). It follows

from (F2) that /({/, U) = 0. Moreover, since τ(A)=-A, τ(x)=y (cf. Remark 1) and
τos = soτ, τ(U) is also an ^-stable irreducible S-module. If U=τ(U), we must have
/(£/, τ(U)) = f(U, U) = 0; in particular f(v, τ(v)) = 0 which contradicts Remark 3. Hence
Unτ(U) = 0. Now we put Vx : = U®τ{U). We have f(x% τ(xqv)) = (- \)qf(yqxpv, φ)) .
Then it follows from (Fl), (F2) and f(v,τ(υ))Φ0 that f(xpv, τ(xpv)) φ 0 and
f(xpv, τ(xqv)) = 0 {pφq). Hence the restriction f\Vί is non-degenerate.

Let us show that Vx is indecomposable in the sense of Lemma 2, (1). Suppose that
Vί has an xΛ-stable, τ-stable and /-orthogonal direct sum decomposition V1 = U1®U2.
Since (xR)kV1 φθ, we may assume that there exists ueUί such that (xR)kuφ0.

First suppose that τ 2 = - i d F (i.e., εω= — 1). If there exists ceC such that
τ((xR)ku) = c(xR)ku, we have

cc(xR)ku = cτ((xR)ku) = τ(c(xR)ku) = τ\{xR)ku) = - (xR)ku

which is a contradiction. Hence τ((xR)ku) and (xR)ku are linearly independent. Then it
follows that the 2(k+ 1) elements

u, xRu, , (xR)ku, τ(w), τ(xRu), , τ((xΛ)
fcw)

of ί/i are linearly independent and hence U2 = 0.
Secondly suppose that τ2 = idF (i.e., εω=l). It follows from the assumptions (a),

(b) or (c) that ε(- l)k + 1 =ω(- \)k+1 = 1. Then we have
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(«, (xR)ku) = (- l ) f c / ( ( x Λ ) V u) = ε(- \)kf(u, (xR)ku)= -f(u, (xR)ku)
R)

)ku) =and hence /(w, (xR)ku) = O. Since / ^ is non-degenerate, there exists weU1 such that
f(w,(xR)ku) = (—\)kf((xR)kw,u)φ0. Thus (xR)

fcw and (xR)kw are linearly independent,
which implies that w, XJ,M, , (xR)ku, w, xRw, , (xR)fcw are linearly independent.
Hence we have U2 = 0 as before. Therefore V1 does not have a non-trivial xΛ-stable,
τ-stable and /-orthogonal decomposition.

Next we suppose that none of (a), (b) and (c) is satisfied. This can happen only
when (ε, ω) = (l, 1) and k+ 1 is odd or when (ε, ω) = (— 1, — 1) and k+ 1 is even. Then
τ(xkv)=ykτ(v) and v are Λ-weight vectors with the same weight and are contained in
Kerjn Va or Kerjμn Vb simultaneously. Suppose that CvφCτ(xkv). Define a positive
real number c by ykxkv = cv and put υ': =•>/ c v + τ(xkv). Then v' has the same property
as v. Moreover it is easily verified that xkv' = yf c τ(v'). Therefore we may assume that
Cv = Cτ(xkv) by taking υ' instead of v. Put V1 = U. Then V1 is an s-stable and τ-stable
irreducible S-submodule of V. Moreover since f(v, τ(v)) φ0 by Remark 3, f\Vχ is
non-degenerate. Since Vx is an irreducible S-submodule, Vγ does not have an xΛ-stable,
τ-stable and /-orthogonal decomposition.

If we take Vί as above, the orthogonal complement of Vί is also a τ-stable and
^-stable S'-submodule. By induction Lemma 2, (1) follows from this fact.

Let us show the statement (2) of Lemma 2 for the above Vί9 where Vί = U®τ(U)
or V1 = U.

First suppose that (ε, ω) = ( l , 1). Also suppose that fc = dim U—\ is odd. Then

Vχ = u@τ(U). veU, τ(xkv)eτ(U) are lowest weight vectors of Vt such that ve Va and

τ(xkυ)e Vb, or that ve Vb and τ(xkv)e Va. Hence

fc+1

η1= ba ba .
ab ab

On the other hand, since k is odd, we have Δ1=Δk(β, 0). Suppose that k is even. Then
Vγ = U and

k+\

ba (veVa)
ba ab (veVb).

Since τoj = ίo T , (Vrf is decomposed as (V1)
τ = (V1)

τf)Va®(V1)
τnVb with

Va = na(rlι) a n d άimR(V1)
τnVb = nb(η1). Since the restriction of / to {Y^)τnVa (resp.

(Vifn Vb) is positive definite (resp. negative definite), the signature of/|(Kl), is (k/2+ 1,
k/2) if ve Va and (k/2, k/2+ 1) if ve Vb. Therefore we obtain the correspondence
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k+l

ab ba

k+l

ba ab

Secondly, suppose that (ε, ω) = (l, —1). Then we always have Vι = U@τ{U) and

/(£/, U) = f(τ(U), τ(U)) = 0. Suppose that k is odd. Then υ and τ(xkv) are lowest weight

vectors of Vx contained in Va or Vb simultaneously. Hence we have

Jfc+1

ab-
ab-

•ab
•ab

ba ba
ba ba

By (Fl), (F2) and Lemma 3, we have the following:

(», (xR)kτ(v)) =

(V-1)*"'/-(v,

= |i-(y rT) l'/(^ Φ)),
ι{-f(v, τ(xk

Rv))-f(v, xk

Rv)j}

k\
- _ ( /-\Λk-1f(υ χkτ(υ\λ--—- Γ—\ fin

It follows from the definition of / = (,) in (1.3) that

2 (υeVa)

\2 (veVb),

where \v\ is the ordinary norm of K = C m + " . Hence we have

(V-i)

and obtain the correspondence

k\

k\

k+l

v\2 (veVb)

ab-
ab-

•ab'
•ab

ΠO, 0), ba ba-
ba ba

If k is even, we can easily verify that
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k+l

ηt=ab ba and A1=Ak(O, 0) .
ba ab

Thirdly, we suppose that (ε, ω) = (— 1, 1). In this case, we always have Vx = U® τ(U)

and/(£/, U) = f(τ(U), τ(U)) = 0. Suppose that k is even. Then we have

k+l

As before we have

and hence

ab ba
ab ba

ba ab
ba ab

^=_47^Φ)), / ( » , Φ » = { - M ;
 {veK)

2* t I v\2 (veVb)

k\
γ\v\2 (υeVa)

(veVb).

k+l

Therefore we obtain the correspondence

k+l ^ ^ ^

ab ba « • ̂ ( 0 , 0 ) , ba ab <—
ab ba ba ab

On the other hand if k is odd, then it is easily verified that

k+l

0, 0).

η1= ba ba and A1 = Ak(0, 0).

ab ab

Fourthly, suppose that (ε, ω) = (— 1, — 1). Also suppose that k is odd. Then we have

V1 = U and

k+l

ab ab (veVa)

ba ba (veVb).
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Since xk

Rvφ0 by Lemma 3, v, xRv, , xk

Rv form a basis of Vt. Choose ue^V^f such

that xk

Ruφ$ and put u = Yj

k

i = ocix
i

Rv (qeC, cQφϋ). Then we have the following:

= ( - l)*co/(x* i/, φ)) = ( - l)*co/(co*fo φ) ) = I c0 |
2/(t;, xk

Rτ(v)).

Moreover, we have

by (Fl), (F2) and Lemma 3. By the definition of/ = (,) in (1.3), we have

A2 (veVa)

A2 (veVb)

and hence

-\co\
2\v\2~ (veVJ

\co\2\v\2~ (veVb).

Therefore we obtain the correspondence

£+1 k+\

ab ab < > A^(0), ba ba <

If k is even, then Vί = Uφτ(U) and it is easily verified that

k+\

η1=ab ba and Ax =Δk(0, 0).
ba ab

Thus the proof of Lemma 2 is completed.

(1.9) Closure relation of nilpotent orbits in gR. We describe the closure relation

of nilpotent GΛ-orbits in gΛ due to Djokovic [D], who introduced the notion of

chromosomes which correspond to the nilpotent GR-orbits in gΛ. He defined an ordering

of chromosomes and described the closure relation of [N(QR)]GR by means of this

ordering. Let us define an ordering of αZ?-diagrams which is compatible with that of

chromosomes as follows:

DEFINITION, (i) For an αZ>-diagram η, we denote by η' the αft-diagram which we

obtain by erasing the first column from η. For an integer k > 1, we define the αft-diagram
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η(k) by ηik):=(ηik~1)Y inductively.

(ii) For two ^-diagrams η,σeD(m,n), we write η>σ if na(η(k))>na(σ(k)) and

nb(η{k))>nb(σ(k)) for all integer k> 1. We call such η>σ a, degeneration of αft-diagrams.

If ŷ, σeZ)(£'ω)(m, n), we call 77>σ an (ε, ω)-degeneration.

If we translate the main result of Djokovic [D] in terms of αft-diagrams, we obtain

the following:

THEOREM 2 (Djokovic [D, Theorem 6]). Let GR be one of the real classical Lie

groups which are constructed in (1.3) and are ίsomorphic to U(m,ή), O(m,n), O*(2n),

Sp(m, ή) and Sp(2n, R). For two nilpotent GR-orbits (0i)Λ, {(92)Re [M9Λ)]G*> w e denote by

γ\i (ί= 1, 2) the ab-diagram of the nilpotent Kθ-orbit (Θ^θ in p which corresponds to {(9^R

by SekίguchVs bijection. Then we have ( 0 I ) Λ < = ( 0 2 ) J I if and only ifηi<η2.

By this result, to prove that Sekiguchi's bijection preserves the closure relation, it

suffices to show

(^i)ecz(u?2)e holds if and only if ηί<η2 ,

which we prove in the next section.

2. Closure relation of nilpotent orbits of the classical symmetric pairs. In this

section, we determine the closure relation of nilpotent orbits in the classical symmetric

pairs in terms of ^-diagrams. As a result, we see that Sekiguchi's bijection preserves

the closure relation in our cases. In this section, we always consider the Zariski topology

unless we specify otherwise.

(2.1) The main theorem of this section is the following:

THEOREM 3. Let (g, I) be a symmetric pair of type (AIΠ), (BDI), (Dili), (CΠ) or

(CI). For two nilpotent Kθ-orbits Θ{ (i= 1, 2) in the associated vector space p, we denote

by γ\i the ab-diagrams corresponding to 0t. Then the Zariski closure Θ2 contains Θί if and

only ifη1<η2-

By Theorem 2 and Theorem 3, we obtain the following:

COROLLARY. For a symmetric pair (g, ϊ) in Theorem 3 and the corresponding real

reductive group GR, Sekiguchi's bijection preserves the closure relation.

We will prove the "only if" part of Theorem 3 in (2, 2) and the "if" part in (2.3)-

.(2.8).

For a vector space V with an involution s and an αZ?-diagram η e D(dim Va, dim Vb),

we denote by Cη the nilpotent ^(K)-orbit in p(F) corresponding to η. On the other

hand, for an (ε, ω)-space V and an (ε, ω)-diagram η ED (ε>ω)(dim Va, dim Vb), we denote

by C(

η

ε'ω) the nilpotent ^(K)-orbit in p(F) corresponding to η. Then we have

C(

η

ε> ω) = Cηn p( V) by Proposition 1.
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(2.2) Proof of the "only if" part of Theorem 3. We need the following lemma
whose proof easily follows from the correspondence of nilpotent orbits and β^-diagrams.

LEMMA 4. For a nilpotent element Xep(V) with an ab-diagram η, we have the

following:

τk(X2ί\Va: Va^Va) = nM2i)), rk(X2i\Vb: Vb-+Vb) = nb(η<2i)),

where i is a positive integer.

Now let us prove the "only if" part of Theorem 3. First we consider the symmetric
pair (gI(K),T(F)) of type (AIΠ) defined by a vector space V with an involution s. For
two α6-diagrams η, σeZ)(dim Va, dim Vb), suppose that CσaCη. To prove σ<η, we
consider the following ^(F)-equivariant morphisms:

a,Vb), X\

•Homc(Fi; Va), X\

• Hom c (F a , Va), X\

φ2i : p(V) • Homc(Vb, Vb), X\

We take XeCψ YeCσ and denote by φ one of the above morphisms. Since φ is
£(F)-equivariant and YeCη = {Ad(K(V))X}, we have

φ( Y) G φ({Ad(K( V))X}) a φ{{Aά{K(V))X}) = K(V)φ(X) .

For example, if φ = φ%i~ί, we have

Therefore by Lemma 4, we have

By taking φ = φlι~1, φ2

a\ φ2i instead of φ21'1, we obtain σ<η.
The proof for the symmetric pair (g(K), l(V)) is similar.

(2.3) Proof of the "if" part of Theorem 3 for the symmetric pair of type
(AIII). Let σ<^ bea degeneration of ^-diagrams. We have to show that CσczCη.
Here we may assume that σ and η are adjacent, i.e., there exists no αft-diagram μ such
that σ<μ<η. To show Cσ^Cψ it is sufficient to construct a morphism z: C-+p(V),
t\-^z(t) such that z(0)e Cσ and z(ήeCη (t^O). First we construct a nilpotent element xσ

with the tfZ>-diagram σ as follows:

For the z-th row σ, of σ, let V{ be the complex vector space spanned by a basis
{a); \<j<na{σ^}u{b)\ \<j<nb{σ^} and put V=φr.= 1 Vh where r is the number of
rows in σ. Let Va (resp. Vb) be the subspace of V spanned by stf\ = {a] 1 < i< r, \<j<
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na(σi)} (resp. Λ: = {bj'9 \<i<r, \<j<nb{σ$}) and define the linear involution s of V

by s\Va = \άVa, s\Vb = — \άVb. Thus we obtain a vector space V with an involution s. For

two elements w, υ of the basis js/u J*, we define .Jf(t?<-κ)egI(K) by

0 (

Then the associated vector space p(V) is spanned by {X(b<-a\ X(a+-b);

For each σi9 we define the nilpotent element xt of p(K) by

2/7+1

L*-*I) (<Ti = ba- - ab) ,

where we put xf = 0 if σ t = α or at = b. Define a nilpotent element xσ of p(K) by xσ =

Σ i = i*ί T n e n c l e a r l y t n e ^-diagram of xσ is σ. Here we note the following lemma

whose proof easily follows from [D, (11.3), (11.4), (11.5)] in view of the correspon-

dence between mutations of chromsomes and degenerations of ^-diagrams.

LEMMA 5. For an adjacent degeneration σ<η of ab-diagrams, we denote by σ<ή

the degeneration of ab-diagrams which we obtain from σ<η by erasing all common rows.

Then up to the change of a and b, σ and ή are given as follows:

p+l

(i) σ = -ab , η =

•ba

(ϋ) ba

ab-

q-\
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P

ba

ba,

T.

ή-

OHTA

p + 2

L. .

DC

"ba

(iii) σ =

Suppose that σ = σI + σJ and put Vδ: = Vi®Vj, W:= φ i<k<r,k*uj Vk- τ h e n Vσ is

a vector space with an involution s\v_. Let Cδ and Cή be the nilpotent £(F^-orbits in

p(Vά) with αft-diagrams σ and ή, respectively. If we can prove CδaCή, it is easy to

verify that CσczCη. Therefore we may assume that σ = σ and η — ή.

First we cosider the case (i):

P P+l

σ= ab , η= ba (p>q>\).

ba — — ab

q q-\

We define a map z: C->p(K) by z{t) = xσ + tX{a2

nΛσ2)+-bι

nh{σi)). Then we have z(0)eCσ

and z(ήeCη (ίeCx). For example, suppose that p = 2p' is even and q = 2qf -hi is odd.

Then

is a basis of V and z(t)2p' + 1a{=z(t)2q'(ta2

1-a1

p,_q, + 1) = 0 for / e C x . This means that

z(ήeCη (teC*). In such a way, we can show that Cσ^Cη.

As for the case (ii) (resp. (iii)), we define a map z: C-+p(V) by

(resp.

By using this, we can show that CσaCη as before.

Therefore Theorem 3 is proved for the symmetric pairs of type (AIΠ).

(2.4) Reduction lemmas. Let σ<η be an (ε, ω)-degeneration. We have to show

that C j f ' ^ c C ^ l As before, we may assume that σ and η are adjacent, i.e., there exists

no (ε, ω)-diagram μ such that σ<μ<η. As the first reduction, we note the following

lemma whose proof easily follows from [D, Section 12] in view of the correspondence

between mutations of chromosomes and (ε, ω)-degenerations.

LEMMA 6. For an adjacent (ε, ω)-degeneration σ<η, we denote by σ<ή the

(ε, ω)-degeneration which we obtain from σ<η by erasing all common rows. Then up to

the change of a and b, σ and ή are as in Table V.

The second reduction lemma is the following:
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LEMMA 7. Let σ<η be an (ε, ω)-degeneration. Suppose that the first columns of

σ and η coincide. By erasing this common column from σ<η, we obtain a

(-ε, -ω)-degeneration σ'<ηf (cf (1.4), Table II). Then if C(ε'ω)c:C{ε>ω\ we have

We will prove Lemma 7 in (3.6) by using the classical invariant theory.

Now by Lemma 6, to prove C(

σ

ε'ω)cC(

η

ε'ω\ we may assume that σ<η is an

(ε, ω)-degeneration in Table V as in the case of the symmetric pair of type (AIII). Let

σ<η be an (ε, ω)-degeneration of type (i) in Table V (1 < / < 5 if (ε, ω)= ±(1, — 1) and

1 </< 10 if (ε, ω)= ± ( 1 , 1)). Then the ( —ε, — ω)-degeneration σ'<η' (which we obtain

from σ<η by erasing the common first column) has the same form just as the

( —ε, — ω)-degeneration of type (i). Therefore it is sufficient to prove

in the cases (ε, ω) = (l, —1) and (ε, ω) = (— 1, —1).

REMARK 4. To prove C(ε'ω) c C(

η

ε'ω) for the (ε, ω)-degenerations σ < η in Table

TABLE V

(Dili) (ε,ω) = ( 1,-1) (CII) (ε,ω) = (-l, 1)

(1)

-(2)

(3)

(4)

(5)

2/7-1

ab ba
ba ab
ab - ba
ba -ab

ba ba
ba ba
ab - ba
ba --ab

ab-
ab-
ba-
ba-

•ab

--•ab
-ba
ba

ba ba
ba ba
ba ba
ba ba

ab ba
ba ab
ba -ba
ba --ba

ba ba
ba ba
ab ba
ba ab

ab ba
ba ab
ab ba
ba ab

ba ba
ba ba
ba ba
ba ba

(1)

(2)

(3)

(4)

(5)

ab
ab-
ba-
ab-

-ba
ab

•ba
•ba

ba ab
ba ab
ab ba
ab - ba

ab ba
ab ba
ab ba
ab ba

2q+ 1

2/7+1

ba ab
b

a

a

b
:::

ba

ab

 (
^ , > D

ab ba

ab ba
ab ba
ba ba
ab • ab

ba ba
ab ab
ba- - -ba
ab - -ab

ab ba
ab ba
ab -ba
ab ba

(p>q>0)

(P>q>0)
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(CI) (β,ω) = (-l, -1) (BDI) (β,ω) = ( 1, 1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

2/7-1 2/7+1

ab-
ba-

ba
ab

2/7-1

2p

ba ba

ba ba

2p

ba ba
ab- ab

2p

ba ba
ab ab
ba -ba

2p

ba ba
ba -ba
ab -ab

2P

ba ba
ab ab
ba - -ba
ab ab

2q '

2p

ab ab
ab ab
ba ba
ba ba

2q '

ab ab
ba -ba

2q "

2p

ab ab
ba- ba
ba ba

2q '

2p

ab ab
ab ab
ba ba

2q

ab ab
ba -ba

ba ba
ba - ba

ba ba

ab - ab

ab ba
ba ab
ba ba

ba ba
ba -ab
ab ba

ba
ab-
ba- ab
ab --ba

ab
•ba

ab ba
ba ab
ab •-ba
ba ab

ba ba

ab ab

ba ba
ab ba
ba ab

ab ba
ba ab
ab ab

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

ba
ab-

ba
ab

2p

2/7+1

ab ba

ab- - -ba

ab ba
ba- • -ba

ab ba
ba ab
ab ba

ab ba
ab ba
ba ab

ab ba
ba ab
ab' 'ba
ba - ab

ba ab
ba ab
ab ba
ab ba

ba ab

ab ba

ba ab
ab ba
ab -ba

ba ab
ba ab
ab ba

2q+ 1

ba ab

ab ba

ab ba

ab ba

ab ba
ab' ab

ba ba
ab ab
ab' - ba

ab ba
ah- ab
ba- - ba

ab ab
ba ba
ab ab
ba ba

ba
ab-
ba- -ba
ab -ab

ba
-ab

ab ba
ba - ab

ab ba
ba ba
ab - ab

ba ba
ab ab
ba ab

(P>q>0)

(p>q>0)

(p>q>0)

(p>q>0)
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V, we may assume that q is sufficiently large by Lemma 7.

(2.5) Construction of xσ. In view of (2.4), we only consider the cases

(ε, ω) = (l, - 1) or ( - 1 , -1) in (2.5)-(2.8).

In this subsection, starting from an (ε, ω)-diagram σ, we will construct an (ε, ω)-

space V and a nilpotent element xσep(V) with the (ε, ω)-diagram σ.

Let σ = Σri=i σi b e a n (ε> ω)-diagram which is a sum of primitive (ε, ω)-diagrams

σf . According as (ε, ω) = (l, — 1) or (— 1, — 1), we define an (ε, ω)-space V as follows:

First suppose that (ε, ω) = (l, — 1). Then σt has one of the following forms:

2pt 2pi 2Pi-\

(i) σf = ba ba (ii) σt= ab ab (iii) σt= ab ba .
ba - ba ab ab ba -ab

According to the types (i)—(iii) of σί5 let V{ be a vector space spanned by the following

basis:

(iii) {a\\b\\ •• , ^ _ 1 , < } u { ^ , < _ 1 , ••-,nlΛ*ί"}-

Put F : = © ' = χ Kf, si: = {a)\ a)~} and @: = {i}+, *}"}. Let Fα (resp. Kb) be the subspace

of V spanned by srf (resp. J*) and s the linear involution of V such that j | K β = idΓ β and

s\Vb=— idKb. We define an involution i i—>tJ of the set J / U ^ by α^i-^όj", όj " i—•
β Γ ? ^Γ }~^'aij~aij~ *~*b1/. We define a non-degenerate symmetric bilinear form ( ,) on V

by

, , Π (» = «)
[0

Then K is a (1, — l)-space with respect to .s and (,).

Secondly, suppose that (ε, ω) = (— 1, — 1). Then σt has one of the following forms:

2Pi 2Pi 2/7,-1

(i) σ.= ba- ba (ii) σt= ab -ah (iii) σt= ab - -ba .
ba ab

According to the types of σi9 let Vt be a complex vector space spanned by the following

basis:

(i) {b[, a\, ' '9b
l

Pi9 a^} (ii) {a\, b[, • , < , A^}

Put F : = © ; = χ F t , ^ : = {a), a)\ a)} and J 1 : = {6j, 6}+, *}'}. Define Fα, F b and j : F-> F

as before. We define an involution v\-^v of ja/uJ* by ΛJ h->ij,i_i.+ 1,ftjι-^αj>i_J.+ 1,
α Γ ^ *Γ ' *Γ l~)> α Γ ' *Γ h ^ α Γ ' α Γ h^> *Γ a n c^ define a non-degenerate skew-symmetric
bilinear form ( , ) on F by



184 T. OHTA

1 (veΛ)

Then the adjoint X(v<^u)* oϊX(v<r-u) (cf. (2.3)) is given as follows (see [O2, Lemma

if (ε,ω) = ( l , - 1 ) ,

10]):

-X(ΰ<-v) (uesf,ve@ or

We note that p(V) is spanned by

if (β,ω)=(-l,

or

For each primitive (ε, ω)-diagram σh we define a nilpotent element xt of p(V) as in Table

VI.

TABLE VI

(ε, ω)

( . . - . ,

(-1.-D

(ii) A^j,χ)+;

(iii) Afaj,* <-6 {,*_!)-

(i) Xia'^b^ + X

(ii) ^ ^ f l ^ + JT

(iii) Xia'+ir-bZ-J-

+ X(b[-<-a\ni

x i

ΐ(b\~<r-al2)+ - +X(bι~ «-α'~) + J!

ϊ(aipi<-bi*i-ι)+ - - • +X{ai2 ^fr^ + λ

{blpi*~api-i)~^~ ' ' ' + X(b2*—Q\)-\-X(G

{aι

pi<r-bι

p._ j ) + + X(a2*—b\)-\-X(b

-X{bι

p.-!«— api_ j) + Al(fl2 ^~^i )"l"^(

ί^α*! <— Z?2 ) + " " ' + X(blp.-11*— βp.-1)-

^ ^

w*\)

ι-jr«_1<-ί.j,;)

Put xσ = J] j = x xt . Then clearly xσ is a nilpotent element of p( V) and the (ε, ω)-diagram

of xσ is σ.

(2.6) Here we give the proof of Cfω) a Cfω) for the (ε, ω)-degeneration

(1-5, (ε, ω) = (l, -1)) and (1, 7, 8, 9, 10, (ε, ω) = ( - l , -1)).

As we have seen in (2.4), to complete the proof of Theorem 3, it is sufficient to

prove Cfω)^C^ω) for the (ε, ω)-degenerations σ<η in Table V ((ε, ω) = (l, - 1 ) ,

(—1, —1)). What we would like to construct is a morphism z: C^p(V) such that

z(0)eC(

σ

ε>ω) and z{t)eC^ω) (teCx). Let σ<η be an (ε, ω)-degeneration in Table V
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((ε, ω) = (l,—1) or (—1, —1)) and xσep(V) the nilpotent element constructed in (2.5).

We first consider the (ε, ω)-degenerations (l)-(5), (ε, ω) = (l, - 1 ) and (1), (7), (8), (9),

(10), (ε, ω ) = ( — 1 , —1) in Table V. In these cases, the construction of z\ C->p(V) is

rather easily seen as follows:

We define z(t) (teC) as in Table VII, where the number (i) corresponds to that in

Table V.

TABLE VII

(1)

(2)

(3)

(4)

(5)

(1)

(7)

(8)

(9)

(10)

(ε,ω) = ( 1 , - 1 )

z(t) = xσ + t{X(bΓ ^al+)-X(by +-aΓ)}

z(t) = xσ + t{X{b\- ^al+)-X(by <-aΓ)}

z{t) = xσ + t{X(a\* +-b\+)-X(a\- ^b\~)}

z{t) = xσ + t{X(a{-^by)-X(ay^bΓ)}

z(t) = xσ + t{X{b\-\-ay)-X(b\-^a\+)}

(β,ω) = ( - l , - 1 )

z(t) = xσ + t{X(b\- ̂ ay) + X(by ^a{+)}

z(ή = xσ + t{X(a3

q^bl) + X(a{^bϊ)} + t{X(a*q^bl) + (a\*-bΐ)}

+ ̂ t{X(al^bl) + X{a\^b\)}+^t{X(aq

x^bl) + X(a\^bty

z(t) = xσ + t{X(a2

q^bl) + X(a\^b\)}

z(t) = xσ + t{X(al^bl) + X{a\^b^} + t{X(al^bl) + X(a\^b\)}

z{t) = xσ + t{X(al^bl) + X{a\^b\)}+^^Λt{X(al^bl) + X(a\^b\)}

Then it is easy to see that z(t)ep(V) by (2.5) and z(0)eC(*'ω). To prove z(t)eC(

η

ε'ω)

{ίeCx), we may assume that q is sufficiently large by Remark 4. Then we can verify

z(t)eC^ω) (teCx) as follows:
For example let σ<η be the ( - 1, — l)-degeneration (7) in Table V. Then

acts on V in the following manner:

a\-

a\-

>b\-

<)} = 0

Here the non-zero elements in the above sequences form a basis of V. Hence the

α6-diagram of z(t) (ί^O) is η. The other cases can be shown similarly.

(2.7) In (2.7) and (2.8), we prove C^ω)a~cf^ for the remaining ( - 1 , -1)-

degenerations. Let us begin with the (— 1, — l)-degeneration (6):
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In 2/1+1

ba ba ba ab
ab ab ab ba .

σ = ba- -ba <rJ = ba -ab
ab- -ab ab - -ba

2m 2m — 1

We consider the following element Z of p(V):

If we express Z in terms of a matrix with respect to the basis {b[, a\, b\, a2,

al a2, b2, • • -,a2, b2, b3, a3, • • , b3

m, a3

m, a\, b\, • • , at b*m} of V, we have

Z =

A

o y

o y

^ 0 V

P
0

B

o y

0 H'

q
0

s

0

c

0 V

r \
0

t

0

n

0
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where we put

/O aλ 0 α2 0 α π _! 0 an \

1 0
1 SΊ

0 :"

0 0

1 0 /

i! 0

0

0

bn-1

0

\ 1 0 /

/̂ »

/ O cx 0 c 2 O c m _ i 0 c m

1 0

1. cm-i

o

0 0

l

1 O

» = (pu0,p2, O, •••,/?„, 0),

r = (^i?0, r2, 0, • ,rm, 0),

/O

1

D =

0 rf2 O

0

0

1

0

d,

1 0 /

',qm-l9O,qJ 9

0, s2, 0, , j m , 0),

ί = (0, ί l5 0, /2, , / m _ l 9 0, O , « = (W l, 0, u29 0, , um, 0),

and denote »' = (!;,, i?f_l5 * ,f2, î i) for a vector v = (vi,v2, - ,vl^i,vi)eCl. Let us

consider the condition that Z is nilpotent and the Young diagram of Z is (2n + 1, In + 1,

Let Γ be a variable and Mj(C[Γ]) the ring of Ix /-matrices with coefficients in

C [ Γ ] . For two matrices X(T\ r(jΓ)eMj(C[:Γ|), we write X{T)~ Y{T) if there are two

invertible matrices M^Γ), M^eMlClTJ) such that X(T) = Mί(T)Y(T)M2(T). We

denote by It the identity matrix of degree /. Then we have by computation

Z-TL 4(m + ri)

where

M(T) =

AT) ΛiCΠ ΛiίΓ) /41(Γ) \

2lU) B\l) JllK1) JArlK1)

fsiiT) f32(T) C(T) /43(Γ)
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1=1 1 =

/ n—m n—m+1 \

i h Λ _ V n n _ Y n n r2\T2(m-l)
+ lZ"n-m+l L, alan-m-l+l L PlPn-m-l + 2 ~ r 1 J l

m-2 / n-i-1 n-i m-i

+ ; Σ (2«,,-i- ^Σ Wn-i-l-Σ PlPn-i-l+l- Σ ^m-i-i+1

m — i — 1

(
π m + l

Z=l /
m-2 / n-i-1 m-i

Σ 2i.-r Σ W.-H-ΣV.-HI1- Σ V.-M p ' -
i=0 \ Z=l /

m - i - 1

( , - " Σ
i = 0 \ 1=1

(
i = m-l\ 1=1

m-2 / π-/-1 m-i-1 m-i-1

+ Σ \Pn-i- Σ PA-I-I- Σ ίA -i-ί- Σ /-,^-i-, r 2 i + 1

i = 0 \ 1=1 1=1 1=1 /

m—1/ m — ΐ — 1 m — i

= Σ (9—«- Σ qfim-ι-ι- Σ '
i = 0 \ / = 1 Z=l

m-1 / m-i-1

)= Σ (rm-i- Σ rA-
i = 0 \ 1=1

m — 2 / m — i — 1 m — i — 1

)=Sιτ^-^ Σ (sm-t- Σ V . - H - Σ
i = 0 \ 1=1 1=1

m-1 / m-i-1 \

=Σ (tm-t- Σ /Λ,-ί-ι r 2 t ,
i = 0 \ ϊ = l /
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m - l

Σ
i = 0

= Σ «»-ι- Σ

In order that the relation M(T)^dmg(T2m~\ T2m~\ T2n + \ T2n + 1) holds, we
must have

(1)

(2)

(3)

(4)

(5)

n — m

m-n+Λ-1

- Σ
1=1

βπ-m+l- Σ βA-m+l-ί- Σ PlPn-m + 2-l-rl = 09
1=1 1=1

k-l k m-n+k

'-<5*,«K- Σ ¥ * - / - Σ PιPk-ι + i- Σ rirm-n+k-n

qm^n+k-ι = 0 (n-m + 2<k<ή)

fc—1 m — n + fc m — n + fc— 1

-δ*,»)**- Σ *A-/- Σ ^ « - Λ + * - ι + i - Σ v m - Λ
/ = 1 Z = l / = 1

*-«-Σ
fc-1

m-π + lc-

A - Σ PιPk-ι- Σ
1=1 1=1

ft-Σ?A-rΣ'A-m=(

- n + / c - l

Σ
1=1

(n — m + 2<k<ή)

(7)

(8)

(9)

(10)

fk- Σ rA

k-l

k-l

k-l

1=1

-ι = 0

k-l

- , - Σ

-, = »

(2<k<m).
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Suppose that the above equalities (l)-(10) hold and that u1φQφs1. Then we can

compute the following:

M(T) =
0

f21(T) 0

f21(T) B(T) SίT
2m-

0 ^ Γ 2 " - 1 -T2m uj"2™

\rιT
2m~1 0 uγT

2m-1 -T2m

/ 2m-γ 0

0 uJ^-^-T2^1

0 r.T2™-'

0 sj^ju,

0

0

0

0

where

If we write

fc-1

( uxT
2m~ι

0

0

0

. rr'Ίm— 1 rτ~ι2m „ rr2m — 1 r\

Γ 2m .. πn2m— 1 r\ c

 rr'2τn —

0 r^2™-1 A(T) f21(T)

hT2m-l Q /2 1(Γ) B(T) J

0 0

r1T
2m/uί ^ Γ 2 " 1 " 1

Λ{T) f21{T)

(T) — sίriT
2m~1/u1 B(T)

0

0

0 0 0
2 " 1 " 1 0 0

0 gt(T) g3(T)

0 g2(T) gA(T)

) = s1u1A(T)-r1f21(T)T9

: = 2bk-
fc-i

then we have
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In order that the relation

( g3(T)\ ίT2n+i 0

)) \ 0 Γ2"+ 1

holds, we must have the following:

(11) / >

t + 1 = « ? P i « = * Λ + i - Σ V » + I - I = « I ( Λ - * Σ
1=1 \ 1=1

(11') Wi/)

n-m + i - r 1 ^ 1 =

(12) B^Ίb^-u*

(13) 5 t + 1 = « ? ϋ k * = * 2
1=1

n-m-1 \

(15) s1u1=-r1Pι = -rp1

(16) r 1 P λ + 1 = ^ 1 M 1 ^ f e < = >

/ k-i

= j 1 M 1 ( 2 f l k - X
V Z = l 1 = 1

/ k-ί

(17) s1u1Pk = r1Bk<=> sίuApk-' Σ Vk-ί = r i 2 ^ ~ Σ bA-ι) {\<k<n-m)
\ ι=i V /

( n-m

Pn-m+1- Σ
ί = l

Then from (4), (7), (9) and (10), we have d1=d2= ' * * =dm = r2= * =rm = t1 =

• =tm = u2= - - =wm = 0. Now we put u1 = t,p1= —t9 sί=r1=j— 1 tn~m+1 for

/ e C x and define b, by (12); b^-t2/!. Then (15) and (17, Jk=l) hold. Define

cl9c29-"9cm by (3) and qx by (6,fc=l); c1 = /2/2, q ^ r ^ ^ j - 1 / π " m + 2 . Define

A2, " Ά - m b y ( 1 3 ) ; Bk=~t2k {\<k<n-m). Then (14) holds. Define />2,/>3, '•',

/?M_m + 1 by (11); P^-t2^1 (l^k<n-m+l). Then (ll')<*>(18) and (17) hold, since

W Λ _ m + 1 - r Λ = / ( - / 2 w - 2 - + 1 ) - ( - / ^ - - + ^) = 0 and ί 1 « 1 P t - r 1 2 ? k = J l ( « 1 P k - Λ k ) =

- m ) . Define al9-',an-m by (16). We define
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*2> * * ',sm9q29 ',qm and 6 n _ m + 1 , , bn by (8), (6, 2<k<m) and (2), respectively.

Finally, we definepn-m + 2, '' ',Pn and an-m + 1, , αn by (5) and (1), respectively. Then

ai9 bh ch dh ph rh si9 th ut are all polynomials in t. We denote by z(ή the element Z which

is parametrized by t as above. Then since

dmg(T2m-\T2m-\T2n+\T 2 n + 1 (teCx),z(ή-TIMm+n)

z(ή is nilpotent and the Young diagram of z(t) is (2n+1, 2« + 1 , 2m— 1, 2m— 1). But

since η is the unique (—1, — l)-diagram whose Young diagram is ( 2 « + l , 2 « + l ,

2m—1,2m—1) (cf. Proposition 1), we must have z(ί)eC^" 1 > " 1 ) if teC*. Moreover,

since z(0) = xσeC(

σ~
u~1\ we have Cj Γ ~ 1 ' " 1 )

for the (— 1, — l)-degeneration (6).

C\ *' υ which is what we had to show

(2.8) We can also prove Cfω) c Cfω) for the ( - 1 , - l)-degenerations (2), (3), (4)

and (5) just like for the (— 1, - l)-degeneration (6).

For each (— 1, — 1 )-degeneration (2), (3), (4) or (5), we consider the element Zep(V)

which has the following matrix expression with respect to the following basis of V:

In 2n + 2

(2)

basis:

σ = ba ba < η = ba ba

ba- - -ba ba- ba

2m 2m-2

Z=

/

\
0

A

v

0

c

\

J

2/2

σ = ba ba < η = ba ba

ab-- -ab ab- ab

2m 2m-2

basis: {b\, a\, , b\, a\, a2

u b
2

u '-,al, bi}
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Z =

/

\
0

A

y

r

0

D

\

1
In 2n+\

(4)

ba ba ba ab

σ—ab ab < η = ab ba

ba -ba ba- -ba

2m 2m — 2

basis: {b\,a\, - ,b\,a\,a\,b\, •• ,a\,b\,b\,

I

z= 0

0

A

'P'

V

P
0

B

o v

q
0

s

0

c

2n

I
2n + 2

ba ba

σ= ba' ' 'ba

ab- - -ab

2m

basis: {b\,a\,

ba ba

_ bam * ab

ab - ba

2m-\

', bl, al, a\, b\,

z=

A

o v

0 V
\

0

c

r \

0

n

0

D
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Here the matrices A, B, C, D and the vectors p, q, r, s, u are those in (2.7).
In the case (2), we can construct a morphism z: C^>p(V) such that z(t) is nilpotent,

that z(0) = xσeCi

σ~
1'~1\ and that the Young diagram of z(ί) {teCx) is (2w + 2, 2m-2)

by considering the condition for

2{m + n-\)

Z - 7 7 2 ( m + 2 ) ~diag(l, ••••-, I', Γ 2 - - 2 , Γ 2 "- 2 )

as in the case (6). Since the (— 1, — l)-diagrams with the Young diagram (2w + 2, 2m — 2)
are

= ba ba, η

ab ab

2m-2

2
= ab---

ba---

2m-

••ab,

ba

2

η
3
 — ab ab

ab-- ab

2m-2

we have {z(ί) ίe C ^ c C j - ^ - ^ u C ^ ^ - ^ u C ^ ^ - ^ u C j ; 1 * - 1 ^ But since {z(0;ίeCκ}
is connected and these ΛT(F)-orbits have the same dimension (cf. (3.7), Remark 7),
{z(ή;teCx} must be contained in one of the above J^(K)-orbits. If {z{t)\teCx}a
C{~u " υ (/= 1, 2 or 3), we must have Cj r~

1'~1)c=C^~1'"1) and hence σ<ηt by the "only
if" part of Theorem 3. This contradicts the definition of the ordering < of (ε, ω)-

~u~1)
and hence we havediagrams. Therefore {z(t);teCx}czCi

η

As for the (—1, — l)-degenerations (4) and (5), we can prove C^~ 1 '~ 1 ) c=C^~ 1 '~ 1 )

similarly.
Now we consider the remaining (—1, — l)-degeneration (3). By letting b( =

^i=Pi = ̂ i = si = ti = ui = O in the case (6), we get

/ ^2(if

Z-TI 2(m + n)

0 \

Λ{T)
D(T)

where

w - l

A(T)=-T2n +
n-i-1

- 2J *
1 = 1

m-1

i = 0

~ Σ ^n-i-l- Σ rlrm-i-l
1=1 1=1

r2i

m-1

ί = 0

m-i-1

1=1
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1 = 1

In order that the relation

Λ{T) / 4 1 (r;

KfAl{T) D(T)

holds, we must have

(20) ( 2 - ^ K - Σ α A _ , - " f rιrm_n+k_ι+ί (n-m + 2<k<ή)
1=1 1=1

(21) (2-δkJdk~ Σ d,dk-, = 0 (2<k<m)

1=1

k-l

(22) rk- Σ ndk-ι = 0 (2<k<m).
1=1

Suppose that the above equalities (20)-(22) hold and that d1φ0φr1. Then we get

)άiag{d1T
2m-2,d1A(T)-T(riT2m-1 + TA(T))) •

f41(T) D(T)J SV x

If we wri te Ak: =2αk—Yj

k

ιZlαιαk_ι (l<k<n—m+l), w e h a v e

) - T ( r j 2 1 2 2

Therefore in order that the relation

A(T) h,{T)\

/(Γ) D(T)J

holds, it is sufficient to hold the following equalities:

k / k-l

(24) Ak + 1-dίAk = 0^=^2ak + 1-Σaιak+1.ι = dΛ2ak-Σ^k-ι) {\<k<n-m)
1=1 \ 1=1

1=1

N o w we p u t d1 = t2,α1 = -t2l2,r1=yJ-ltn~m + 1 for teC a n d define α2, -•-,

tfπ_m+1 by (24); Ak=-t2k (\<k<n-m+\). Then the equalities (23) and (25) hold.
Define d2, , dm, r2, , rm and αn_m + 2, , αn by (21), (22) and (20), respectively.
We denote by z(t) the element Z which is parametrized by t as above. Then z(ή is
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nilpotent and the Young diagram of z(t) is (2« + 2, 2m — 2) if te Cx. As before, we have

{z(0 /e C x } c CJ-^ " 1 } or {zί/J / e C ^ c C ^ 1 ' - ^ where

= ab ab .

To prove {z(ή;teCx}^C<

η~
u~1\ it is sufficient to show that z(ή2n + 1b{^0. We

consider the action of z(t) on the basis:

Therefore we have

{,bl •••,bί

n},
k=ί

where C{vu , i J is the C-span of vectors vu , vte V. Since the coefficient of

inz(ή2n + 1b\ is

we have z(ή2n+1b\^O. Hence we conclude C(

σ

 lf υ ciC£ l f υ .

Thus the proof of Theorem 3 is completed.

(2.9) Connection with Sekiguchi's Problem. Let g a complex simple Lie algebra

and G the adjoint group of g. Let 0 be an involution of the algebraic group G. We

consider the symmetric pair (g, I) defined by (G, 0). Let iV(p)reg (resp. N(p)pr, resp. Mp)sing)

be the smooth part (resp. the principal Λ^-orbit, resp. the singular locus) of N(p). Let

N(p)'sing be the union of open ^-orbits in N(p)sinr Let χ: p^m/W~ Cι be the invariant

morphism, where α is a Cartan subspace of p, W= NG(a)/ZG(a) is the Weyl group of the

pair (g, I) and /=dim α (cf. [Sel]). We also consider the open subvariety
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Then the following problems and conjecture were posed by Sekiguchi ([Sel]).

PROBLEM I. Determine the ^-orbits in N(p).

PROBLEM II. Determine the closure relation of Λ^-orbits in N(p).

PROBLEM III. Determine the union N(p)'sing of open ^-orbits in N(p) s i n g.

PROBLEM IV. Determine the smooth equivalence classes Sing(7V(p), KΘX) (cf. (3.1))

foτXeN(pysing.

CONJECTURE I. N(p)1 contains N(p)s ing

For the symmetric pairs (sl(«, C), φ , C)), (sl(«, C), sp(«, C)), (sl(ra + «, C), sl(m,

C) + sl(«, C)), these problems are already solved in [Sel]. So let us consider the problems

and the conjecture for the remaining classical symmetric pairs (υ(ra + «, C),

r>(m, C) + φ , O ) , (o(2/i, C), flI(Λ, C)), (sp(/w + n, C), sp(/w, C) + sp(/i, C)), (βp(2/i, C),

gί(«, O) .

Problems I and II are almost solved by Proposition 1 and Theorem 3. Only the

group Ad(K(V)) in (1.2) and the above Kθ (which act on p and have the same identity

component) are a little bit different.

Let us consider Problems III and IV. Let V be an (ε, ω)-space such that dim Va = m

and dim Vb = n. Note that m = n if ω = — 1. Recall that the symmetric pair (g(F), l(V))

defined by the (ε, ω)-space V is given as follows:

1))

(Q(V),
O ) ((ε,ω) = ( - l , 1))

(sp(2n, C), βI(/i, C)) ((ε, ω) = ( - 1, - 1 ) ) .

To consider problems III and IV, we can take a sufficiently large group which acts

on p = p(V) and contains Kθ. If m = n, it is easily verified that there exists an element

gceG(V) such that gcVa= Vb9 gcVb= Va and Ad(gc)eKθ. Moreover such an element gc

is unique up to the conjugation by K(V). If we put K(V)': = (K(V) u {gc}}, then it turns

out that Kθc: Ad(K(VY). Ad(gc) acts on [N(p)~\KiV)~Diε ω)(n, n) by the change of a and b.

On the other hand if mφn, then ^ θ c A d ( ^ ( F ) ) . Now we put

R jAd{K{V))
θ' {Ad(K(VY) (/ι, = /i).

Then Kθ acts on p and contains Kθ. From now on, we consider Λ^-orbits instead of

Λ^-orbits.

In Table VIII, we summarize the Λ^-orbits contained in N(p)pr, N(p)reg\N(p)pr,

N(p)f

sing and Sing(7V(p), Θt) for the ^-orbits ^ c=iV(p);ing ( ι = l or i = 2). The ^-orbits

contained in N(p)pτ (resp. Λ^(p)reg\7V(p)pr, resp. N(p)'sing) are given in the first (resp.
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TABLE VIII

(υ(2m, C), σ(m, Q + υ(m, C)) (m > 4)

2m-3

2m+l

k

t " N

' ab ba
a

a

(υ(2m + A:, C), Ό(m + k

0 (1)

(2)

C) + t)

k

j
* + l

1

(m,Q) (k>2)

2m-1

' ab ba
aba

a

2m-1

ba ab
a

a

xm+y2 = O

J C Ϊ + J c ! + ••+*•*+! = 0

2m+l

ab - ba

(o(2m+l,C), o(m+l

0

, C) + o(m,

(1)

(2)

c»
2m-1

ab - ba x2m+y2 = 0

2m-1

J i --α6 xy = 0

2m

ab ab ,
ab ab '~

(o(2«, C), gl(«, C)) (/

0

? = 2m)

(1)

(2)

2 m - 1

ab - ba
ba ab
a
b

2m-2

ab ab
ab ab
ab
ab

xy = 0

xm + ulvl+u2v2 = 0

(Ό(2Π, C),

2m+l

ab
ba

ba
ab
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2m

ab

ba

ab ι

ba
1
"

(sp(4m, C), sp(2m,

0

C) + sp(2m, Q)

ab

ab
1

b

b

2m-1

• ba I

•••ba '~
xy + zw = O

(sp(4m + 2, C), sp(2m + 2, C) + sp(2m, (

2m-1

ab ba

ab ba

2m

ab ab

ba ba

a

a

2m-1

(1) 'ab ba

ab ba

ab

ba

2m-1

,y\ ba ab

ba ab

a

a

a

a

x
m
 4- u

λ
v j + u

2
v

2
 = 0

4

ί=l

, C), , C) + sp(2m, C))

2m+l

2A:-

ab
ab

•ba
•ba

2 m - 1

xm+yz

2k+ 2

Σ «

2n

ab- --ah /~

(sp(2«, C ) , gl(/i, C))

0 (1)

(2)

2«-2

ab ab , χ»+y
2
 = 0

ab

2n-2

ab ab, x" + JC^2 = 0

ba '~

second, resp. third) column and Sing(7V(p), Θt) are given in the fourth column. For an

α&-diagram η such that na(η) = nb(η), 77/~ corresponds to the Λ^-orbit which contains the

^(F)-orbit with the ^-diagram η. Table VIII is obtained by Proposition 1, Theorem
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3 and [Sel, Theorem 4 and Table IV]. We mention that Conjecture I is true in our
cases. We should note that the singularity in N(p) at XeN(p)'sing is smoothly equivalent
to the simple singularity in the sense of ArnoΓd [A] in every case.

3. Singularities in the closure of nilpotent orbits.

(3.1) Smooth equivalence classes.

DEFINITION ([KP3]). Consider two varieties X, Y and let xeX, yeY. The
singularity of X at x is said to be smoothly equivalent to the singularity of Y at y if

there exists a variety Z, a point zeZ and two morphism Y< Z • X such that

φ(z) = x, ψ(z)=y and φ, φ are smooth at z. This clearly defines an equivalence relation

among pointed varieties (X, x). We denote by Sing^, x) the equivalence class to which

(X, x) belongs.

Suppose that an algebraic group G acts on a variety X. Then Sing(Jf, x) = Sing^, xf)
if x and x' belong to the same orbit Θ. In this case, we denote the equivalence class
also by Sing(X, Θ).

REMARK 5. Let (X, x) and (F, y) be pointed varieties over C. Suppose that
ά\mxX=ά\myY+r for some integer r>0. Then Sing^, x) = Sing(Y, y) if and only if
some neighbourhoods (in the classical topology) of xeX and (y,0)eYxC are
analytically isomorphic. Therefore various geometric properties of X at x depend only
on the equivalence class Sing(Z, x) (cf. [KP3, 12.2]).

The following theorem is the main result of this section.

THEOREM 4. Let σ<η be a degeneration of ab-diagrams. Suppose that the first k
rows and the first I columns ofη and σ coincide. Denote by ή and σ the ab-diagrams which
we obtain by erasing these coincident rows and columns ofη and σ, respectively. Then we
have the following:

(1) σ<ήand Sing(C,, Cσ) = Sing(C,-, Cδ).
(2) Furthermore, suppose that σ and η are (ε, ω)-diagrams and that the sum of the

coincident k rows forms an (ε, ω)-diagram. Then σ<ή is an (ε',ω'):=(—l)ι(ε,ω)-
degeneration and

Sing(C(

η

ε>ω\ C£' ω ) ) f

This is an analogue of the results of Kraft and Procesi [KP2, Proposition 3.1] and
[KP3, Proposition 12.3]. We will treat separately the two steps "cancelling columns"
and "cancelling rows".

(3.2) Construction of morphisms p and ft. Let V and U be vector spaces with
involutions sv and sv, respectively. Put
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na. = dimVa, nb: = dimVb, ma: = dimUa, mb: = dimUb,

L+{U, V): = {AeHomc{U, V);svAsv = A} ,

L~(V, U): = {BeHomc(V, U);suBsv=-B} ,

L(V, U):=L+{U, V)xL~{V, U).

Then K{V) x K{U) acts on L(K, U) by

(g, h){A, B) = {gAh~\ hBg~') {(g, h)eK{V) x K(U), (A, B)eL(V, U)).

We define two morphisms

B) = AB, π(A,B) = BA.

Then p (resp. π) is clearly K(F)-equivariant (resp. K(U)-equivariant).

DEFINITION ([KP1]). Let X be an aίiine variety with an action of a reductive

algebraic group G and Y an affine variety. A morphism φ: X-+ Y is called a quotient

map under G if, via φ, the coordinate ring of Y is identified with the ring of G-invariant

functions on X.

REMARK 6. If φ : ^-> Γ is a quotient map under G and Xί is a G-invariant closed

subset of X, then φiXJ is closed in F (cf. [MF, Chap. 1, §2]).

PROPOSITION 3. In the above setting, suppose that min{«fl, nb] >max{mα, mb}. Then

(1) π is surjective and

lmβ={Xep(V);τk(X\Va: Va-*Vb)£mb9τk(X\Vh: Vb^Va)<ma} .

(2) π: L(V, U)-+p(U) and p: L(K, C/)-^Im p are quotient maps under £(K) and

K(U), respectively.

Proposition 3, (1) easily follows from elementary computation of matrices. (2)

follows from Theorem 5, (1) below.

THEOREM 5 (Weyl, [W]). Let Mat(m, ri) {resp. Sym(«), resp. Skew(«)) be the set

of all m x n-matrices {resp. n x n-symmetrίc matrices, resp. n x n-skew-symmetric matrices)

over C. Let Jm be a non-degenerate m x m-skew-symmetric matrix and Sp{m, C) the

symplectic group defined by Jm.

(1) GL{m, C) acts on Mat(/, m) x Mat(m, n) by g{A, B) = {Ag~ί, gB). Then the image

of the comorphism of the morphism

Mat(/, m) x Mat(m, ή) > Mat(/, n), {A, B) \ > AB

coincides with the ring of GL{m, C)-ίnvariant polynomials on Mat(/, m) x Mat(m, ή).

(2) O(m, C) and Sp{m, C) act on Mat(ra, ή) by left multiplication. Then the image

of the comorphism of the morphism
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Mat(ra, ή) • Sym(«), A I • ιAA

(resp. Mat(ra, ή) • Skew(«), A I • lAJmA)

coincides with the ring of O(m, C) (resp. Sp(m, C))-invariant polynomials on Mat(ra, ή).

(3.4) Proof of "cancelling columns" of Theorem 4, (1). Let V be a vector space

with an involution sv and Dep(V) a nilpotent element with an αft-diagram

η: Cη = Ad(K(V))D. Put U: = ImDaV. Since svD=-Dsv, sv stabilizes U. Hence

su:=sv\u defines an involution of U and U is a vector space with an involution. In this

situation, we consider the morphisms in (3.3): p{V)< p L(V, U) π >p(U). Then we

easily see the following:

LEMMA 8. Let I: UQ: VeHomc(U, V) be the inclusion and D0: = [D: K-*£/]e

Hom c (F, U). Then we have:

(1) (/, D0)eL(V, U), β(I, D0) = D, π(/, DO) = ID\O: U-+IΓ\.

(2) The ab-diagram of D\vep{U) is η' (cf (1.9)).

REMARK 7. For an ^-diagram η, we have

min{«α(>/), nb(η)}>max{nJίη')9 nb{ηf)} .

This is easily verified by considering the case that η has only one row.

As before, we put dimKα = «α, ά\mVb = nb, dim Ua = ma, dim Ub = mb. Then by

Lemma 8, (2) and Remark 7, V and U satisfy the assumption in Proposition 3. Now we

put

L+(ί/, V)f: = {AeL+(U, F);rk A = ma + mb (i.e., A : ί/-> K is injective)} ,

L'(V, U)': = {BeL-(V, U);rkB = ma + mb (i.e., 5 : V-+Uis surjective)} ,

L': = L+(U,V)'xL-(V,U)'c£(V,U)9

Then we have the following:

LEMMA 9. (1) π\ι>: L'-»p(£/) w smooth.

(2) ^ ( L ^ p f F ) ' tfm/ /Λ̂  mα/7 p | ^ : L'->p(K)' is locally trivial in the classical

topology with typical fibre K(U).

Since the proof of Lemma 9 is similar to that of [KP2, Lemma 5.2], we omit it.

LEMMA 10. Let Cσ<=p(V) be a nilpotent orbit with an ab-diagram σ such that σ<η

and that the first columns ofη and σ coincide. Then we have

(1) p~ι(Cσ) is a single orbit under K(V) x K(U) contained in L'.

(2) π(β-\Cσ)) = Cσl

(3) Put Nη: = π~\Cη). Then β(Nη) = Cη.
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(4) β(L'nNη) = v(VynCη.

PROOF. (1) Take Xe Cσ. Since the first columns of η and σ coincide, we have

vk(X\Va: Va^Vb) = nb(σ') = nb(η') = rk(D\Va: Va-+Vb) = άim Ub = mb ,

vk{X\Vb: Vb^Va) = na(σf) = na(ηf) = rk(D\Vb: Vb^Va) = dim Ua = ma

(cf. Lemma 4). Hence Xep(V)' = p{L'). For any (P, Q)eL(V, U) such that

p(P,Q) = PQ = X, since rk(PQ) = rk(X) = ma + mb, we have (P,Q)eV and hence

p~1(Cσ)c=L/. Therefore we have

Since {p\ι) \X) is a single K(U)-orbit by Lemma 9, (2), p~ 1(Cσ) is a single orbit under

K(V)xK(U).
(2) Take (P,Q)ep-1(Cσ). Since rk(Pβ) = /fiβ + /n6, we see that P\Ua: Ua-+Va,

P\ub'- Ub-^Vb

 a r e injective and Q\Va: Va^Ub, Q\Vb: Vb-^Ua are surjective. Since

p(Λ Q) = PQ is nilpotent, π(P, Q) = QP is also nilpotent. Let us denote by v the ab-

diagram of QPe Cvap(U). For an even integer Λ>0, let us compare the ranks of the

following two maps:

2h

Since Q: Va-+Ub is surjective and P: Ua->Va is injective, we have na((σ')(h~1)) =

na(σ^) = τk((PQ)h\Va: Va^Va) = vk{{QPf-%h: Ub^Ua) = na(v*-»)(cf. Lemma4). Simi-

larly, we have nb((σ')(h~ 1]) = nb(v{h~1]) and the same equalities hold for any odd integers

Λ>0. Therefore we have v = σr, i.e., π(P, Q)eCσ, and hence π(ρ~1(Cσ)) = Cσ>.

(3) Since p(I, Do)e Cη and π(/, Do)e Cη, by Lemma 8, we have Cηcp(π~ \Cη.))c

ρ(Nη). Since Nη is a ^(C/)-stable closed subset of L(V, U) and p is a quotient map

under K(U\ β(Nη) is closed. Hence Cηaβ(Nη).

Conversely, take Γ = ( Λ Q)eNη. Since π(F) = β P G Q , p(F) = PQ is also nilpotent.

Let μ (resp. v) be the αZ>-diagram of p(Y) (resp. π(r)). Then Cv^π(Nη) = Cη> and hence

v<^' . For any even integer h>0, we have

= rk({PQ)h\Va: Va-+ Va) = r k ί F α - ? - . £/, J ^ ^ _ t/ β _I^ γ\

<rk((QP)h-%b: Ub-+Ua) = na(v(h

Similarly, we have nb(μ(h))<nb(η(h)) and the same inequalities hold for any odd integer

h>0. Therefore μ<η and p ( r ) e C μ c C , . Hence p(Nη)czCη.
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(4) Since p(V)' = β(L% we have p(L'nNη)czp(V)'nCη.

Conversely, take a £(K)-orbit Cμczp(V)rnCη and XeCμ (μ<η). Since nb(μ') =

τk(X\Va) = mb = nb(ηf) and na(μ') = rk(X\Vb) = ma = na(η'), the first cloumns of η and μ

coincide. Therefore π(p~1(Cμ)) = Cμ^Cηf by (2) and p~ι{Cμ)ciNnr\Lf by (1). Thus

Cμcp(NηnZ/) and hence p(F)' n ς c p ( L ' nNη). q.e.d.

Now let us give the proof of "cancelling columns" of Theorem 4, (1). For a

degeneration σ < η of flό-diagrams with a coincident first column, we have constructed

the morphisms

p=^ Pr -jTf πr p=y / ~ ~\ ~ ~ | \

Cη < Nη > Cn. (π r: = π | ^ , ρr: = p | ^ )

such that πΓ(pr"
1(Cσ)) = Cσ'. Therefore it is sufficient to show that πr and p r are smooth

at a point F E / V H O

Since π: L(F, ί/)-^p(C/) is smooth at YeL (cf. Lemma 9, (1)) and

is a fibre product, π r : 7V^^p(ί/) is also smooth at Y.

On the other hand, since p|/>: L^p(K) ' is locally trivial with typical fibre K(U)

(cf. Lemma 9, (2)) and L' nNη is a £(t/)-invariant closed subset of Z/,

P r I r n V z: / n7V^p(L'n^) = p(K)'nC;/ (cf. Lemma 10, (4))

is also locally trivial and hence pr\ Nη^Cη is smooth at Y. Therefore the "cancelling

columns" of Theorem 4, (1) is proved.

(3.5) Construction of morphisms p and π. Let V (resp. U) be an (εκ, ωκ)-space

(resp. (ε^, ω^-space) with an involution sv (resp. sv) and a bilinear form (, ) v (resp.

( , y . p u t

, U), L'(V9 U): = {XeL(V, U)\svXsv=-X)

and define the adjoint X* eL(U, V) of XeL(V, U) by

(ueU,veV).

Then K(U)xK(V) acts on L"(F, C/) by (g,h)X=gXh~1 {XeL~{V, U), (g,h)eK(U)x

K(V)). For an element Y of gί(F), we also consider the adjoint Γ*egI(F) defined in

(1.2). Then we easily see the following:

LEMMA 11. (1) s$

(2) For an element XeL{V, U), we have (X*)* = evevX. In particular, (XX*)* =

ευεvXX* and (X*X)* = εuεvX*X.

(3) For an element XeL~(V, U), we have suXX*su = ωuωvXX* and svX* Xsv =
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ωuωvX*X.

From now on, we suppose that (εκ, ωv) = (ε, ω), (εu,ωu) = ( — ε,-ω) and put
«α: = dim Va, nb: = dim Vb9 ma: = dim Ua, mb: = dim Ub. By Lemma 11, we can define two
morphisms

Moreover, p (resp. π) is ^(F)-equivariant (resp. K(U)-equivariant).

PROPOSITION 4. Suppose that min{na, nb}>max{ma, mb}. Then π is a surjective
quotient map under K(V). On the other hand,

Im p = {Xe p(V) rk(*|FJ <mh, τk(X\Vb) <ma}

and p: L~(V, U)—>Im p is a quotient map under K(U).

PROOF. The statements with respect to the images of π and p follow from
elementary computation of matrices, π and p are quotient maps in view of Theorem 5.

q.e.d.

(3.6) Proof of "cancelling columns" of Theorem 4, (2). Let V be an (ε, ω)-space
with an involution sv and a bilinear form (, ) v . Let Dep(V) be a nilpotent element with
an (ε, ω)-diagram η: D e C(

η

ε'ω) a p( V). Put U: = Im D a V. Then sv stabilizes U as before
and so we can define an involution sv of U by su:=sv\u. Let us consider a bilinear
form I w, v \: =(w, Dv)v (w, i eKjon V. Since

\u,v\ = (D*u,v)v = (-Du,v)v= —ε(v,Du)v= —ε(v,Du)v= — ε| v9 u\ (u,ve V)

and the radical of | , | is precisely KerZ), | , | induces a non-degenerate — ε-form (, ) v

on ί/=Im/)=F/Ker/):

M, DV)V = (w, Dι?)F (u, veV).

Then we can easily verify that

(svDu, Dv)υ = - ω{Du, sυDυ)υ (u9 veV).

Hence U is a ( — ε, — ω)-space with respect to sv and (, )ι/.
In this situation, we consider the morphisms p and π in (3.5). Let/: £/c; VeL(U, V)

be the inclusion and Z)o : = [Z>: F->£/]eL(F, ί/). Then we have the following:

LEMMA 12. (1) (D0)* = I.

(2) | ^ ^

Let us put

V, U);rk Y=ma
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Then we have the following:

LEMMA 13. (1) π\L.: L'-+p(U) is smooth.

(2) p(L') = p(V)f and ρ~\p{Y)) is a single orbit under K(U). Moreover

p\L>: L'^>p(Vy is locally trivial in the classical topology with typical fibre K(U).

PROOF. The smoothness of π\L.: L'->p(U)' (i.e., the surjectivity of (dπ)γ: L~(V9 U)

->p(C/), Ph+ PY* + YP* for any Ye L') and the fact p{L') = p(V)' follow from elementary

computation of matrices.

Let us prove the local triviality of ρ\L,. The group K(V) = GL(Va) x GL(Vb) acts on

L~(V, U) (resp. p(V)) on the right by (Y,g)>-+Yg (resp. (X,g)\-+g*Xg). Clearly,

p: L~(V, U)->p(V) is K(F)-equivariant with respect to these actions. Moreover, we can

verify that L and p(V)' are single orbits under K(V) and hence p\L.: L'-*p(V)r is locally

trivial.

Take YeU and ZeL~(V, U) so that p(Y) = p(Z) (i.e., r * 7 = Z * Z ) . Since Y is

surjective and Y* is injective, rk(Z*Z) = rk(Y*Y) = ma + mb. Hence Z is surjective and

Z* is injective: ZeL'. Therefore Ker F=Ker(7*F) = Ker(Z*Z) = KerZ and hence we

can take an element heK(U) = GL(Ua)xGL(Ub) in such a way that Y=hZ. Then

Z*Z= Y*Y=Z*h*hZ. Since Z* is injective and Z is surjective, we have h*h= 1, i.e.,

heK(U). q.e.d.

LEMMA 14. Le/ C{*'ω)ap(V) be a nίlpotent orbit with an (ε, ω)-diagram σ such that

σ<η. Suppose that the first columns ofη and σ coincide. Then we have the following:

(1) p~\Cfω)) is a single K(U) x K(V)-orbit contained in L'.

(2) φ- 1(C? t m ))) = C^e>"ω)-
(3) H J )
(4)

By using Lemma 13 and Lemma 14, one can easily deduce the proof of the

"cancelling columns" of Theorem 4, (2) from that of Theorem 4, (1) in (3.4). The proofs

of Lemma 14, (1), (2) are similar to those of Lemma 10, (1) (2). We can also prove (3)

and (4) similarly, if we assume Theorem 3. But since we have not proved Lemma 7

which we need to prove Theorem 3 yet, let us give the proof of Lemma 7 here.

Put N\ = ρ~\Cfω)). Since p is continuous, we have ρ(N)ap(N). On the other

hand, since N is a K(U)-invariant closed subset of L~(F, U) and p is a quotient map

under K(U), p(N) is closed (cf. Remark 6) and hence p(N) = p(N) = C(

η

ε>ω). Similarly, we

have π(N) = π(N) = C(

η7
ε'~ω) by using Lemma 14, (2). Let σ be an (ε, ω)-diagram in

Lemma 7. Since p(N) = Ci*>ω)^Ci

σ

ε>ω) by assumption, there exists YeN such that

p(Y)e Cfω\ Again by Lemma 14, (2), we have π(Y)e C(

σ7
ε> "ω> n π(ΛΓ)c=C^ε'-ω). Hence

C ( 7 ε , - ω ) c C ( Γ £ ) - ω ) τ h u s L e m m a 7 i s proved.

(3.7) Proof of "cancelling rows" of Theorem 4, (1). To prove the remaining

part of theorem 4, we need the following concept. Let Kbe a vector space with a linear
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action of an algebraic group G and X a closed G-invariant subvariety of V. Let N be
a subspace of V complementary to the tangent space Tx(Gx) <= V for a point xeX. Put
S:=(N+x)nX. Then the map GxS-^X, (g,s)\-+gs is smooth at (e, x) and hence

) = Sing(S, x). S is called a cross section of X at a point xeX.

REMARK 8. In the above setting, if Λfis irreducible or equidimensional, then we
have dimxS=codim(jr, Gx) (cf. [KP3, 12.4]).

Let us give some remarks on the connection of ̂ -diagrams and Young diagrams.

REMARK 9. (1) For an αft-diagram v, let us denote by Y(y) the Young diagram
which we obtain by replacing a and b by the block •• Then for a nilpotet element
xvep(V) with an <z6-diagram v, Aά(GL(V))xx is just the nilpotent orbit in gl(F)
corresponding to the Young diagram Y(v).

(2) If v <μ is a degeneration of ̂ -diagrams, then.clearly we have Y(v) < Y(μ) (for
the definition of the ordering of Young diagrams, see [KP1]).

(3) Let (g, I) be a symmetric pair defined by (G, θ) and x an element of the
associated vector space p. Then we have

dim I* — dim px = dim I — dim p

by [KR, Proposition 5], where ϊ* and px are the centralizers of x in ϊ and p, respectively.
It follows from the above equality that άimAά(G)x = 2άimAά(Kθ)x. In particular, in
the setting of (1), we have dim Aά(GL(V))xv = 2 dim Cv.

Now let us give the proof of the "cancelling rows" of Theorem 4, (1). Let V be
a vector space with an involution s and Cη (resp. Cσ) be a nilpotent ^(F)-orbit in p(V)
with an αό-diagram η (resp. σ) such that σ<η. Moreover, we suppose that the first k
rows of η and σ coincide. Let v be the ̂ -diagram which consists of the coincident k
rows and ή (resp. σ) the αό-diagram which we obtain by erasing v from η (resp. σ):
η = v + ή, σ = v + σ. Let us denote by σt the /-th row of σ: v = ][^= 1σ i, ° = Σk<iσi' F°Γ

xσ€Cff, we can take an xσ-stable and s-stable direct sum decomposition V= φ = 1 Vσ.
such that the αft-diagram of xσ\vσ.€p(Vσ) i s σi> where r is the number of rows of σ.
Put Kv: = 0 * = 1 Kσ. and F d : = 0 j = f c + 1 Fσ i. Then Kv and F^ are also vector spaces
with involutions s\Vv and s\v_, respectively. Moreover, xσ is decomposed as xσ =
(xv,xδ)ep(Vv)®p(Vδ) with x v eC v and xδeCδ. Take xήeCnap(Vδ) and put

Let us construct four cross sections of the closures of the orbits of xη at xσ. First
we put

Y: = {Aep(V);AVv^Vδ,AVδ^Vv},

Then we have the following:

Θ Y,
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, |χ, *] = Y,

[xσ, p(Vv)®p(Va)lCl(Vv)@1(Vδ), [xσ, Γ\c=X.

Take subspaces Nu N2, N3, N4 of gl(F) such that

TT , Y=ίxσ, X]®N3 ,

δ) = [X, p(Kv)φp(^)]®N2, X= [*„, Y]@N4

': = N1®N2, NQ ^N^N^ N'0: =

S :=(N+xσ)r\{Ad(GL(V)xη}, S': = (N'+xσ)n {Ad(GL(Kv)x GL(Vd))xη},

So : = (N0+χσ) n {Ad(K( V))xη}, S'0:=(N'0+xσ)n {Ad(K( Vψ) x K( Vd))xη).

Then S (resp. S', resp. So, resp. 5"0) is a cross section of the closure of the orbit
under GL{V) (resp. GL(Vv)xGL{Vd), resp. K(V), resp. K(Vv)xK(Vs)) of x, at xσ. By
Remark 8, we have

=codim({Ad(GL( V))xη}, Ad(GL( V))xσ),

'=codim({ Ad(GL( Fv) x Gl\ Vδ))xη}, Ad(GL( Vv) x GI\ Vs))xσ)

= codim({Ad(GL( ̂ ))x,-}, Ad(GL( V6))xδ).

Then by [KP2, Proposition 3.1], we have diϊΆXαS=dm\xβ'. By the normality of the
closures of G£(K)-orbits in gl(K) ([KP1]), {Ad{GL{V))xη} is normal at xσ. But since
Sing(S, xσ)=Sing({Ad(GL( F))xJ, x j , 51 is normal at xσ (cf. Remark 5). Since S' is a
closed subset of S, S' and 51 coincide in a suitable neighbourhood of xσ. By the closure
relation of nilpotent GL{V)-oτbits in gl(K) (cf. [KP1]), we have

S' n p( F) = (N'o + xσ) n [(p( Vv) n {Ad(GL( Fv))xv}) x (p( Vδ) n

μιeD(<Y(v)) I \μ2eD(<y(//))

where we write D(< Y(v))^^eD(nα{v\ nb(v)) 7(^0< F(v)}. To show that S'o = (N'o +
xσ) n (Cv x Q) and So coincide in a suitable neighbourhood of xσ, we need the following
lemma:

LEMMA 15. In the above setting, (N'o + xσ)n(Cv x Cη) is open in S'np(V)nCη =

PROOF. Put W: = {(l)μieD^Y(v))Cμi)x()Jμ2eD^YmCμJ} nC,. We consider the
projection
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Since W1czp(Vx) is a finite union of the closures of K( Kv)-orbits and Cv is an irreducible

component of Wx of the maximum dimension (cf. Remark 9, (3)), Cv is open in W1.

q.e.d.

By Lemma 15, there exists a neighbourhood U of xσ in S such that S'o n JJ— S' n Cη n

£/. Then we have SnCηnU^SonU=>S'onU=S'nCηr\U. Since S and Sf coincide in

a suitable neighbourhood of xσ, So and Sf

0 also coincide in a suitable neighbourhood

of xσ, So and S"o also coincide in a suitable neighbourhood of xσ. Therefore we have

Sing(C,, Cσ) = Sing(S0, xσ) = Sing(S'o, xσ) = Sing(Cv x Cή9 (xv, xδ)).

Since Cv is smooth at xv, we have

Sing(C,, Cσ) = Sing(Cή, xd) = Sing(Cή, Cδ).

Thus the proof of Theorem 4, (1) is completed.

(3.8) Proof of the "cancelling rows" of Theorem 4, (2). For an (ε, ω)-space V

with an involution s and a bilinear form (,), we put

Then we have

Now let us prove the "cancelling rows" of Theorem 4, (2). Let F b e an (ε, ω)-space

and Cfω) (resp. C^ ω ) ) be a nilpotent A:(F)-orbit in p(F) with an (ε, ω)-diagram η (resp.

σ) such that σ<η. Moreover, we suppose that the first k rows of η and σ coincide and

that the sum v of the coincident k rows is also an (ε, ω)-diagram. Let us denote by σ < ή

the (ε, ω)-degeneration which we obtain by erasing v from σ<η: η = v + ή, σ = v + σ. Let

us decompose σ as 0" = Σ ' = i σ i s o t n a t v = = Σ ! C = i σ/ a n c * ^ = ΣΓ=fc+i σi> w n e r e σ i ( l <ί^r')
are primitive (ε, ω)-diagrams.

Take xσ e C{*'ω). Then by the proof of [O2, Proposition 2], we can take an xσ-stable,

s-stable and (, )-orthogonal direct sum decomposition V= φr

i= χ Vσ. (therefore each Vσ.

is also an (ε, ω)-space with respect to the restrictions of s and (,)) such that the

(ε, ω)-diagram of xσ\VσeV{Vσ) is σt. Put Vx: = ®k

iίί Vσi and Vά: = φr^k. + ί Vσr Then

Vv and Vδ are also (ε, ω)-sρaces and xσ is decomposed as xσ = (xv, xδ)ep(Vv)(Bp(Vδ)

with JCV e C(

v

ε'ω) and xδ e Cfω\ We denote by Xγ (resp. Yl9 resp. X2, resp. Y2) the subspace

of l(V) (resp. p(K), resp. q + (F), resp. q~(F)) consisting of endmorphisms A such that

AVvcz Vδ, AVδa Vv. Then we have the following:

= l(Vv)@i(Vδ)@X1 ,
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) = p(Vx)®p(Vδ)®(Y1®Y2),

Take subspaces Nf, N^9 Nf, Nϊ such that

and put N0: =

Then we have

Take XfjeCfω^p(Vδ) and put x , : =

r) n {Ad(K( V))xη} , S'o:= (N'o + xσ)

SZ - =(NZ + * σ )n {Ad(K(V))xη} , S0

+':=(JV0

+' + ̂

Then *S0 (resp. S'θ9 resp. 5*0, resp. S Q ' ) is a cross section of Cη (resp. CxxCδ, resp.

C<,ε'ω), resp. C(

v

ε'ω) x C(^'ω)) at xσ.

Here we note that So and iSΌ are constructed in the same manner as those in (3.7).

Therefore So and S'o coincide in a suitable neighbourhood of xσ. By Theorem 3, we have

and hence Sonp(V)^>So ^>S£f = S'onp(V). Therefore SQ and SQ' also coincide in a

suitable neighbourhood of xσ. Hence we have

Sing(C<ε'ω), C^ ω ) ) = Sing(50

+, xσ) = Sing(Sσ

+\ xσ)

^ω>, (χv, xδ)) = Sing(Cf<°\

where the last equality follows from the smoothness of C(

v

ε'ω) at xv. Therefore the proof

of Theorem 4 is completed.
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