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0. Introduction. Let G be a complex reductive algebraic group with Lie algebra
g and 0 an involution of G as an algebraic group. We also denote by 6 the induced
involution of g. Let g=f+p be the Cartan decomposition of g with respect to 6, K,
the subgroup of G consisting of elements g € G such that 6(g)=g and N(p) the nilpotent
subvariety of p. We call the pair (g, f) the symmetric pair defined by (G, 6).

For the symmetric pairs, Sekiguchi [Sel] tried to construct an analogue of the
Brieskorn-Slodowy theory ([B], [SI]) which gives a correspondence between the simple
Lie algebras and the rational double points. In [Sel], he introduced the problem to
determine the generic singularities in N(p). To determine the generic singularities, we
need the classification of Kj-orbits in N(p) and their closure relation. In the classical
cases, the classification of nilpotent orbits is given by means of ab-diagrams in [02].
The first purpose of this paper is to determine the closure relation of Ky-orbits in N(p)
for the classical symmetric pairs. This is completed in §2 by means of a certain ordering
of ab-diagrams.

For the classical Lie algebras, the nilpotent orbits are classified by Young diagrams,
and their closure relation is described by a certain ordering of Young diagrams. Then
Kraft and Procesi ([KP2], [KP3]) showed that the smooth equivalence class (cf. §3)
Sing(®,, 0,) of the closure @, in ¢, which corresponds to a degeneration o <# of Young
diagrams, is determined only by reduced degeneration ¢ <7, i.e., the degeneration which
we obtain from ¢ <# by erasing the common columns and rows from the left and the
upside.

The second purpose of this paper is to give an analogue of the result of Kraft and
Procesi for the classical symmetric pairs. The construction Wep— N, LW

(cf. §3), which we need to prove the “cancelling columns”, is also used to give a reduction
to determine the closure relation.

On the other hand, there exists a natural correspondence between symmetric pairs
and real Lie groups. Let (g, f) be a symmetric pair defined by (G, 0) and let G be the
corresponding real group with Lie algebra gi. Then it is known by Sekiguchi [Se2]
that there is a natural correspondence between the set of nilpotent Ky-orbits in p and
that of nilpotent Gg-orbits in gg. We call this correspondence Sekiguchi’s bijection.
Then we are naturally led to the problem whether Sekiguchi’s bijection preserves the
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closure relation.

The third purpose of this paper is to answer this problem affirmatively in the classical
cases.

What we call the classical symmetric pairs are the following:

(AD)  (gl(n, C), o(n, C)), (AID) (gl(n, C), sp(n, C)),

(AIID) (gl(m+n, C), gl(m, C)+gl(n, C)), (BDI) (o(m+n, C), o(m, C)+0o(n, C)),
(DHI)  (o(2n, C), gl(n, C)), (CI) (sp(2n, C), gl(n, C)),

(CII)  (sp(m+n, C), sp(m, C)+sp(n, C)).

For the symmetric pairs of types (Al) and (AII), the closure relation is determined
and the analogue of the result of Kraft and Procesi is given in [O1]. Moreover it is
easily verified that Sekiguchi’s bijection preserves the closure relation. Therefore we
treat the symmetric pairs of types (AIII), (BDI), (DIII), (CI) and (CII) in this paper.

The author expresses his heartfelt gratitude to Professors Ryoshi Hotta and Jiro
Sekiguchi for kind advice and encouragement.

1. Description of Sekiguchi’s bijection. In this section, we give the description
of Sekiguchi’s bijection in the classical cases.

(1.1) Sekiguchi’s bijection. Let G be a complex reductive algebraic group with
Lie algebra g and 0 an involution of the algebraic group G. We also denote by 6 the
involution of g induced by 0: G—-G. Put K,:={geG; 0(g)=g}, I:={Xeg; 0X)=X}
and p:={Xeg; 0(X)= — X}. Then we call the pair (g, f) the symmetric pair defined by
(G, 0), K, the isotropy subgroup, and p the associated vector space.

Suppose that there exists a real form Gz of G which we obtain by a complex
conjugation t: G—»G (i.e., Gg={g€G; 1(g)=g}) such that fot=106 and that the
restriction 0|GR is a Cartan involution of Gg. We call the real form Gg the real group
corresponding to the symmetric pair (g, ). As before we denote by t the complex
conjugation of g induced by 7: G—G and put gg:=Lie Gg={Xeg; 1(X)=X}. Then K,
(resp. Gg) acts on p (resp. gg) by the adjoint action. We denote by N(p) (resp. N(ggr))
the set of all nilpotent elements in p (resp. gg) and by [N(p)]g, (resp. [N(gr)lc,) the set
of Kj-orbits (resp. Gg-orbits) in N(p) (resp. N(gg)). Put fg:=fngg and pg:=pnagg.
Then gg =g+ pg is the Cartan decomposition of gz and g=(fn+\/:T pn)+(\/:_1 e+
pgr) is that of g. Let ¢ be the Cartan involution of g corresponding to the above
decomposition. Then ¢ =710 6; in particular, ¢ commutes with 6.

A triple (h, x, y) consisting of linearly independent elements of a Lie algebra
satisfying the relations [A, x]=2x, [h, y]= —2y, [x, y]=h is called an S-triple. For a
symmetric pair (g, f), an S-triple (h, x, y) in g is called a normal S-triple if hef and
x, yep. Sekiguchi introduced the following notion.

DEerFINITION (Sekiguchi [Se2]). A normal S-triple (h, x, y) of a symmetric pair (g, f)
is called a strictly normal S-triple (with respect to @) if @(h)= —h and @(x)= —y.
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REMARK 1. In the above setting, a n_ormal S-triple (h, x, y) is a strictly normal
S-triple if and only if t(h)=—# (i.e., he\/— 1£g) and 7(x)=y.

THEOREM 1 (Sekiguchi [Se2]). For any non-zero nilpotent Ky-orbit Oge [N(p)lk,
there exists a strictly normal S-triple (h, x, y) such that x€ Oy. Such an (h, x, y) is unique
up to conjugation by KynGg. If we put

hpi=/ —1(x—y), xgi=(x+y+/ =102, ypi=(x+y——1h)2,
then (hg, Xg, Yg) is an S-triple in gg. Let Ogx be the Gg-orbit generated by xg. Then the
map [N(p)lx,~[N(8r)]s, Us> U is a bijection.

We call the above bijection Sekiguchi’s bijection.

(1.2) Classical symmetric pairs. In this paper, we treat the classical symmetric
pairs (g, ) and the corresponding real group Gg in Table 1.

TABLE 1
Type (e, @) G (19} Gg
(AIID) (%) GL(m+n, C) (gl(m+n, C), gl(m, C)+gl(n, C)) U(m, n)
(BDI) (L 1 O(m+n, C) (o(m+n, C), o(m, C)+o(n, C)) O(m, n)
@oIn | ¢ L =1 | 0@2nC) (0(2n, €), gl(n, C)) 0*(2n)
(CII) (-1, 1 Sp(m+n, C) (sp(m+n, C), sp(m, C)+sp(n, C)) Sp(m, n)
(CI) (_ 1’ - l) Sp(zn’ C) (5p(2na C)» gl(fl, C)) SP(2"s R)

We first give the description of these symmetric pairs. Let V be a finite dimensional
vector space over C and s: V-V a linear involution. We call such a vector space V a
vector space with an involution s. Moreover, if V is endowed with a non-degenerate
bilinear form (, ) such that (u, v)=¢(v, u) and (su, v) = w(y, sv) for all u,ve V, we call V
an (g, w)-space, where e=+1 and w= +1.

Let V' be a vector space with an involution s and define an involution 6 of GL(V)
by 0(g)=sgs (g€ GL(V)). Put

Vii={veV;sv=v}, V,:={veV,sv=—0v}, m:=dimV,, n:=dimV,,
R(V):={geGL(V), 0(g)=g} ~GL(V,) x GL(V})
V) ={Xegl(V); 0X)=X}, P(V):={Xegl(V);0(X)=—X}.

Then (al(V), ¥(V)) is a symmetric pair isomorphic to (gl(m+n, O), gl(m, C)+gl(n, C))
defined by (GL(V), 6), K(V) the isotropy subgroup, and (V) the associated vector space.
We call (gI(V), (V) a symmetric pair of type (AIII). We also call it the symmetric pair
defined by the vector space V with the involution s.

Next suppose that V' is an (¢, w)-space. For X egl(V), we denote by X*egl(V) the
adjoint of X with respect to (, ). It is easy to see that 6(g*)=(6(g))* for ge GL( V). Then
we put G(V):={geGL(V),g*=g~ '}, o(V):=LieG(V)={Xegl(V); X*=—X},
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K(V):=GWnK(V)={geG(V); 6(g)=g}, t(V):=LieK(V)={Xeg(V); 0(X)=X},
p(V):=a(V)np(V)={Xeg(V); 0(X)=—X}. Then (g(V), ¥(V)) is the symmetric pair
defined by (G(V), 6), K(V) the isotropy subgroup and p(¥) the associated vector space.
Here we note that m=n if o= —1 and that m, n are even if (¢, w)=(—1, 1). The sym-
metric pair (g(V), (V) is isomorphic to the symmetric pair in Table I according
as (g, w)=(1,1),(1, —1), (=1,1), (=1, —1). We define the type of the symmetric
pairs (g(¥), {(V)) to be the first column of Table 1. We call (g(V), (V) the symmetric
pair defined by the (e, w)-space V.

(1.3) Realization of classical symmetric pairs and the corresponding real
groups. Here let us give the realization of the symmetric pairs and the real groups in
Table I in terms of matrix algebra as follows.

(AIIT) Put V:=C™*" and define a linear involution s by

I, 0
s.=<0 I)eGL(V),

where I, is the identity matrix of size n. Define a hermitian form f on V by
f(u, v):="usv (w,veV),

where # is the ordinary complex conjugation of ue V. Then f is positive definite on V,
and negative definite on V. Denote by (X)} the adjoint of Xegl(V) with respect to f
and put 1(g):={(9)¥} "' (g€ GL(V)), Gr:={ge GL(V); 1(g)=g}. Then Gg= U(m, n) is the
real Lie group corresponding to the symmetric pair (gl(¥), I(V)) defined by the vector
space V with the involution s.

(BDI), (DIII), (CII), (CI) Put (¢, w)=(+1, +1) and ¥=C™"". We suppose that
m=n if o= —1 and m, n are even if (¢, w)=(—1, 1). Put

S=
n

and define a bilinear form (,) on V by (4, v)="uJv (u, ve V), where, for each (¢, w), we
define the matrix J as follows:

(e, w)=( 1, 1) J=1,.n,
0 I
L o)=( 1, -1 J=( "),
(&, ) =( ) <1n 0)
0 Im/Z
Coy=(—1, 1)  J=| tm2 0
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(e, w)=(—1, —1) J=<—OI,, g‘)

Then Vis an (¢, w)-space with respect to s and (, ). We define an anti-linearmapt: V-V
by r(v)=\/Zo-sJﬁ (veV) (i.e., t(ou+ Bv) =dt(u) + Pr(v) (o, B C, u, ve V)). Then we have
the following (cf. [BC]):

2w)=ewv, (@), )=w0v) (4,veV).

Define a complex conjugation t of the group G(V) by 1(g)=t0g°1~ ! (e G(V))
and put Gg={geG(V); 1(g)=g}. Then G is the real Lie group corresponding to the
symmetric pair (g(V), ¥(V)) defined by the (¢, w)-space V. Moreover Gy is isomorphic to
the real group in Table I corresponding to each (g, w) (cf. [BC]). For the simplicity of
expression, we attach (¢, w)= to the symmetric pair of type (AIIl) and the
corresponding real group.

ReMARK 2 (cf. [D]). (1) Suppose that t*=—id, (i.é., ew=—1). Let H=
{a+jB; «, Be C} (aj=j&) be the quaternion algebra with the conjugation (a+jf)=
& —jp (a, B e C). Define the right action of H on V by v(a+jf)=va+1(v)B (ve V, a, e C).
Then V is a right H-vector space such that dimg V' =(1/2)dim.V. Define f_: Vx V—
H by

S, v):=—@, ) —wv)j (vel).
Then we have the following:

f——(vs u)= —8f_(u, U) > f—(uP» U(I)=P_f—(us D)q (u, VE V’p’ ‘IEH) .

By using f_, we can write Gg as Gg={ge GL(V); f_(gu, gv)= f_(u, v) for all u,ve V}.
(2) Suppose that t2=id, (i.e., eo=1). If we write Vg:={veV; t(v)=v}, Vx is a
real vector space of dimension dimg Vg =dim¢V and Gg is naturally identified as

Gr~{ge GL(Vy); (gu, gv)=(u, v) for all u,ve Vg} .
RERMARK 3. In the cases (¢, w)=(+1, +1), we have
(v, r(v))=‘vJ\/gsﬁ:w\/—c;'vJJsﬁ:sw o vsi weV).
In particular, if ve V,u V,\ {0}, we have (v, (1)) #0.

(1.4) Classification of nilpotent orbits of the symmetric pairs. Here we give the
classification of nilpotent Ky-orbits in p.

Let (gl(V), (V) be the symmetric pair defined by a vector space ¥ with an involution
s. For any nilpotent element Xep(V)={Xegl(V); XV,<V,, XV, V,}, we can take a
Jordan basis

{XPa; 1<i<r, 0<p<A}u{Xb; 1<j<r,, 0<qg<p;}
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of V such that a;e V,, b;e V, and X*a;=0, X*/b;=0. By letting a string

——t— ———— e,
abab ....... (resp' baba ....... )

correspond to {X?a; 0<p<A;} (resp. {X?b;; 0<g<p;}), we get a diagram 5y which is
the sum of such strings. Here we always put the longer string above the shorter one.
Such a diagram is called an ab-diagram. It is easy to see that the ab-diagram ny is
independent of the choice of a Jordan basis. Therefore we call 7 the ab-diagram of X.
For two nilpotent elements X and Y of p(V), we see that ny=ny if and only if X and
Y are conjugate under K(¥). Thus we have a one-to-one correspondence between the
set of nilpotent K(¥)-orbits in p(¥) and the set D(m, n) of ab-diagrams n such that
n,(n)=dim V,=m and ny(n)=dim V,=n, where n () (resp. ny(y)) is the number of the
a’s (resp. the b’s) in #:

[NG)] koy=D(m, n) .

Next let us give the classification of nilpotent orbits of the symmetric pair (g(V), ¥(V)).
For a fixed (¢, w)=(x1, £1), let us call the ab-diagrams in Table II primitive
(¢, w)-diagrams. We call an ab-diagram, which is a sum of primitive (g, w)-diagrams, an
(e, w)-diagram.

TaBLE 11

Type (e, ) ab-diagrams
(BDI) (G T ) ab: - -ba, ba----ab, ba----ba
ab- - -ab,
(DIII) ( 1,-=1) ba:---ba ab- - -ab ab----ba
ba: - - -ba, ab----ab, ba----ab,
(CID) (=1, D ab- - -ba ba:---ab ba:----ba
ab- - - -ba, ba: - - -ab, ab----ab,
(CI) (=1, =1 ba----ba, ab- - - -ab, ab----ba
ba- - -ab,

We denote by D®“Xm, n) the set of (g, w)-diagrams #n such that n,(n)=m and
ny(n)=n.

ProrosiTION 1 ([O1, Proposition 4], [O2, Proposition 2]). Let V be an (g, w)-space
such that dim V,=m and dim V,=n. We consider the symmetric pair (gi(V'), {(V)) of type
(AIII) and the ones (g(V), ¥(V)) of types (BDI), (DIII), (CII) and (CI). Then we have the
following:

(1) Two elements X, Y e p(V) are conjugate under K(V) if and only if they are con-
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Jugate under K(V). In particular, we have a natural inclusion

INC(V ko) 5 ING(V )] k) > Dlm, n) .

(2) The image of the above inclusion is precisely D®®Ym, n). Therefore we have
a natural bijection [N(p(V))Ixw)=~D®*X(m, n).

(1.5) Classification of nilpotent orbits of the real Lie algebras. We recall the
classification of nilpotent orbits of the real Lie algebras due to Bourgoyne and Cushman
[BC] and Djokovic [D].

For (¢, w)=(x1, 1) or I, let G be the real reductive group in (1.3). We use the
notation of (1.3). Only in the remaining part of this section, let us also denote by f
the bilinear form (, ) on V in the cases (¢, w)=(% 1, +1) just as in the case (¢, )= .
Since we do not consider the anti-linear map t: ¥'— ¥ in the case (¢, w) = &, we disregard
the conditions on 7: -V in our discussion below.

In the above setting, let ¢ be a Gg-orbit in the Lie algebra gz and xe @. Then there
exists a direct sum decomposition V=V, ®V,® - @V, (V;#0) into complex
subspaces V; with the following properties:

(1) Each V; is x-stable and z-stable.

@ SV V)=1{0} if i),

(3) Each V; is indecomposable in the sense of (1) and (2).

Let 4 be the type of (x, V) and 4, that of (x[yl_, V) (for the definition of types, see
[BC]). Then we have A=4,+ 4, + - - - + 4,. Thus each type is a sum of indecomposable
types and, as shown in [BC], this decomposition is unique. Therefore the set [N(gg)ls,
of nilpotent Gg-orbits is classified by sums of indecomposable nilpotent types.

For a nilpotent element x € gg, the indecomposable nilpotent type 4; of (x|,,‘,, V)
is one of the types in Table III.

TABLE III
(¢, w) Indecomposable nilpotent types
%) 43(0)
(1, 1 4%0)  (k:even), 4,0,0) (k:odd)
( ,-1 4,0,0) (k:even), 4%0,0) (k: odd)
(-1, 1) 4%0,0) (k:even), 4,40,0) (k:odd)
(-1, -1 4,(0,0) (k: even), 43(0) (k: odd)

In Table III, 6=+ and k>0 is an integer. The above types are defined as in [D]
as follows:
The case (¢, w)= . If dim V;=k+ 1 and there exists ve V; such that

/= DFf(v, xv)>0,
then 4, is denoted by 43(0).
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The case (¢, w)=(1,1). If dimV,=k+1 with k even and there exists
ve(V)) :={veV; 1(v)=v} such that

(/=D f (v, x*v)>0,

then 4, is denoted by 43(0). In this case, the signature & equals + (resp. —) if and only
if the signature of the symmetric bilinear form f |y is (k/2+ 1, k/2) (resp. (k/2, k/2+1)).
On the other hand, if dim V;=2(k+ 1) with k£ odd, then 4, is denoted by 4,(0, 0).

The case (g, w)=(1, —1). If dim V;=2(k+ 1) with k odd and there exists ve V; such
that

(/=111 (v, xv)>0 (cf. Remark 2),

then 4, is denoted by 420, 0). On the other hand, if dim V;=2(k+ 1) with k even, then
4; is denoted by 4,(0, 0).

The case (¢, w)=(—1, 1). If dim V;=2(k+ 1) with k even and there exists ve V; such
that

/=D f_(v, Xv)>0,
then 4; is denoted by 430, 0). If dim ¥;=2(k+ 1) with k odd, then 4; is denoted by
440, 0).
The case (¢, w)=(—1, —1). Suppose that dim V;=k+ 1 with k£ odd, that V; does
not have a non-trivial x-stable decomposition, and that there exists ve V; such that

(/=116 f (v, xv)>0.

Then 4; is denoted by 42(0). On the other hand, if dim V;=2(k+ 1) with k even and
V; is decomposed into two x-stable subspaces of dimension k+ 1, then 4; is denoted
by 4,(0, 0).

(1.6) Description of Sekiguchi’s bijection. Iet V be a vector space with an
involution, or an (g, w)-space. We consider the symmetric pair (g, f)=(gl(¥), (V)
corresponding to (¢, w)=J, or (g, f)=(a(V), {(V)) corresponding to (¢, w)=(+1, +1).
Let Gg be the real group corresponding to (g, f) as in (1.3).

PROPOSITION 2. Let (04 be a nilpotent Kg-orbit in p and O the nilpotent G g-orbit
in g which corresponds to O by Sekiguchi’s bijection. Let n=1Y;_, n; be the ab-diagram
(resp. (g, w)-diagram) corresponding to O,, where y; is an ab-diagram with a single row
(resp. primitive (g, w)-diagram) if (¢, )= (resp. (¢, w)=(+1, +1)). Let n; correspond
to the type A; as in Table IV. Then the type A of Ogis A=A4,+4,+ - +4,.
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TABLE IV
k+1 k+1
r—— —r—
e, w=2 baba, - abab,
4,(0) 4,0
k+1 k+1 k+1
A, —t—— t——
Ew=(C1, 1) ab----- ba, ba----- ab, ba----- ba
ab ..... ab’
4,(0) 4,(0) 4,(0,0)
k+1 k+1 k+1
——— ————— e
€ w)=( 1, 1) ba - ba ab- - ab ab- - ba
ba ..... ba’ ab ..... ab, ba ..... ab
40,0 4,(0,0) 4,(0,0)
k+1 k+1 k+1
e e, —_— —H
(e, w)=(—1, 1) ab----- ba ba----- ab ba----- ba
abe - ba, ba----- ab, ab--- - ab,
4,(0,0) 4,(0,0 4,0, 0)
k+1 k+1 k+1
—r —_——— ——
(e, w)=(—1, =1) ba----- ba, ab----- ab, ab----- ba
_ ba----- ab
4,(0) 4,(0) 4,(0,0)

In order to prove Proposition 2, take a strictly normal S-triple (h, x, y) of (g, f) with
respect to @ =106 such that xe @, (cf. (1.1)). Let (hg, xg, yg) be the corresponding
S-triple in gg (cf. Theorem 1) and S the three-dimensional subalgebra isomorphic to

sl(2, C) spanned by the S-triple (h, x, y):
S:=Ch+Cx+Cy=Chg+Cxg+Cyg .

Then Proposition 2 is an immediate consequence of the followin two lemmas.

LEMMA 1. Tuake the vector space V, the involution s of V, the hermitian form f on
V and the complex conjugation T of GL(V) as in (1.3, (Alll)). We consider the symmetric
pair (gI(V), ¥(V)) defined by the vector space V with the involution and the corresponding real
group Gg=U(m, n). Then for the above three-dimensional subalgebra S, we have the

Sfollowing:

(1) V has an f-orthogonal direct sum decomposition

V=V, ®V,® --- @V,
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into s-stable irreducible S-submodules V; such that each V; does not have a non-trivial
xg-stable and f-orthogonal decomposition.

(2)  Letn; be the ab-diagram of the nilpotent element x|, and A; the type of (xg|y, V7).
Then n; and A; are contained in Table IV and the correspondence n,«A; is given in Table
Iv.

LEMMA 2. Take the vector space V, the involution s of V, the bilinear form f=(,)
on V and the anti-linear map t: V-V as in (1.3, BDI~CI). We consider the symmetric
pair (g(V), ¥(V)) defined by the (e, w)-space V and the corresponding real group
Gr=1{9eG(V);tlg)=1°got ' =g}. Then for the above three-dimensional subalgebra
S, we have the following:

(1) V has an f-orthogonal direct sum decomposition

V=V,@V,® - @V,

into s-stable and t-stable S-submodules V; such that each V; does not have a non-trivial
Xxg-stable, t-stable and f-orthogonal decomposition.

(2) Let n; be the ab-diagram of xl,,,, and A; the type of (xRI,,i, V). Then n; and A,
are contained in Table IV and the correspondence n—A4; is given in Table 1V.

(1.7) Proof of Lemma 1. In order to prove Lemma 1 and Lemm 2, we need the
following lemma.

LEMMA 3. Let S be a Lie algebra spanned by an S-triple (h, x, y). Let W be an
irreducible S-module of dimension k+1 (k>0) and v a lowest weight vector of W. Put
z:=x+ y+\/ —1h. Then if we express zv as a linear combination of the basis
{v, xv, X%, - - -, Xv} of W, the coefficient of v equals k\(—/—1)".

Proor. By the representation theory of sl, (for example, [H, Lemma 7.2]), there
exists a basis {vg, vy, ", v} such that hv,=(k—2iv; (0<i<k), yv;=(i+1)v;,
O<i<k-—1), xv;=(k—i+1)v;_, (1<i<k) and v,=v. If we express z by a matrix with

respect to the basis {v=uv,, v,_,, - -, vy, vy}, We have
—J=Tk k 0
1 —J-1k=2) k-1 _
z= 2. - .. .
0 ""~._~.,_..\./——1(k—2) T

ek J-1k

Then it follows by induction that the coefficient of v,_; in z’v (0<j<p<k) equals
{p!(k—j)!(—\/:_l)p'j}/{(p——j)!(k—p)!}. In particular, the coefficient of v=uv, in z*v
equals k!(—/— 1)~ q.ed.

Now let us prove Lemma 1. Since —h=1(h)= —(h)} by Remark 1, we have (h)} = h.
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Hence for h-weight vectors u;, u; of weights i, j respectively, we have
(a) Sy, u)=0 if i#j.

Since yV,cV, and yV,<V,, we can take a basis {v®};_, of Ker y such that each v
is an h-weight vector contained in ¥,u V,. Suppose that there exist i, j with i#j such
that f(v”, v¥)#0. Then it follows from f(V,, V;)=0 and the above (a) that v” and v
have the same A-weight and are contained in V, or ¥, simultaneously. If we put

50— oS ©?, o) o
S, v9)

we have f(v?, 9?¥)=0. By taking 7 instead of v?, we may assume that {vP}i_, is
f-orthogonal. Let V; be the irreducible S-submodule generated by v®. Then V=@;_, V;
and it follows from y = 7(x) = —(x) } that the decomposition V= @]_, ¥;is f-orthogonal.
Since each V; is an irreducible module over S=Chg+ Cxg+ Cyg, V; does not have an
xg-stable non-trivial decomposition. Hence (1) follows.

Put k+1=dim ¥V; (k>0), v=v" and apply Lemma 3 to the irreducible S-module
V;. Then by the remark (a) above, we have

_ _ k
1o, (x..)*v)=f<v, Hov=d v) /=1 /0, 0) %0.

’

T
Let us express v as a sum of hg-weight vectors;
v=ug+u + -+, with  hgu;=—(k—2))u; .

Then (xg)‘v=(xg)“uo and it follows from hg=1(hg)= —(hg) ¥ that f((xg)’uo, (xg)'uo)=0
if p+q+#k (p, g=0). Therefore we have

S, (xp)v)= fluo +u; + - - - +uy, (xg)uug) =1 (o, (xg)u1o) =0
and hence

k)(— 1)
2k

(= = D¥f (o, (xn)u0) = S, v)=:c.

Here we note that f(w, w)>0 (resp. f(w, w)<0) if we V,\ {0} (resp. we V,\ {0}). Then
we have the following:

. ——h——
veV, and k iseven —— ¢>0 and n=gp----- ba,

veV, and k isodd —— ¢<0 and n;=gp----- ab,
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k+1
veV, and k iseven —— c<0 and #u;=pg----- ab,

k+1
veV, and k isodd —— ¢>0 and n,=pg----- ba.

Hence (2) follows. Thus the proof of Lemma 1 is completed.

(1.8) Proof of Lemma 2. Let us give the proof of Lemma 2. In the setting of
Lemma 2, take an h-weight vector v such that ve(Kery)n(V,uV,). Let U be the
irreducible S-submodule generated by v and put dimU=k+1 (k>0): U=Cv®
Cxv@® - @ Cx*v, ¥***'v=0. Since ve V,u V,, U is s-stable. Here we note the following
facts:

(F1) Since t(h)= —h, x'v and t(x’v) are h-weight vectors with the opposite weights:
h(x'v)= — (k —2j)x'v, ht(xiv)=(k—2j)x'v.

(F2) For two h-weight vectors v;, v;€ V' with weights i and j respectively, if
S(v;, v)#0, we have i= —j.

We first consider the following three cases:

(@ w=1 (.., f(V, V,)=0) and k+1 is even.

b)) w=-1(qae., f(V, V)=f(Vy V;)=0) and k+1 is odd.

() e—1y*1=1.

Then it is easy to see that f(v, x*v)=0 (cf. [02, Proof of Proposition 2]). It follows
from (F2) that f(U, U)=0. Moreover, since t(h)= —h, 1(x)=y (cf. Remark 1) and
tos=so1, ©(U) is also an s-stable irreducible S-module. If U=1(U), we must have
f(U, t(U))= f(U, U)=0; in particular f(v, 7(v))=0 which contradicts Remark 3. Hence
Unt(U)=0. Now we put V,:=U® 1(U). We have f(xPv, t(xW))=(— 1)2f(y%xPv, ©(v)).
Then it follows from (F1), (F2) and f(v, t(v))#0 that f(xPv, 7(x"v))#0 and
JS(xPv, 1(x%))=0 (p #q). Hence the restriction f|,, is non-degenerate.

Let us show that ¥, is indecomposable in the sense of Lemma 2, (1). Suppose that
V', has an xg-stable, 7-stable and f-orthogonal direct sum decomposition V;=U; ® U,.
Since (xg)*V; #0, we may assume that there exists u€ U, such that (xg)*u#0.

First suppose that t>= —id, (i.e., ew= —1). If there exists ceC such that
7((xg)*u) = c(xg)*u, we have

cl(xg)*u= cr((xg)*u) = t(c(xg) 1) = T*((xp) 1) = — (xp)*u
which is a contradiction. Hence t((xg)*u) and (xg)*u are linearly independent. Then it
follows that the 2(k+ 1) elements
Uy Xty (xg)*t, T(w), T(xgu), - - -, (xp)* )

of U, are linearly independent and hence U,=0.
Secondly suppose that t>=id, (i.e., ew=1). It follows from the assumptions (a),
(b) or (c) that &(—1)**1=w(—1)**1=1. Then we have
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S, (xp) W) =(—D*f((xp)*u, ) =2(— 1)* f(u, (xg)u) = — f(u, (xp)"u)

and hence f(u, (xg)*u)=0. Since f [U1 is non-degenerate, there exists we U, such that
fw, (xg)*u)=(—D*f((xg)*w, u) #0. Thus (xg)*u and (xg)*w are linearly independent,
which implies that u, xgu, - -, (xg)*u, w, xgw, - - -, (xg)*w are linearly independent.
Hence we have U,=0 as before. Therefore V'; does not have a non-trivial xg-stable,
t-stable and f-orthogonal decomposition.

Next we suppose that none of (a), (b) and (c) is satisfied. This can happen only
when (¢, w)=(1, 1) and k+1 is odd or when (¢, w)=(—1, —1) and k+1 is even. Then
7(x*v)=y*t(v) and v are h-weight vectors with the same weight and are contained in
KerynV, or KerynV, simultaneously. Suppose that Cv# Cr(x*v). Define a positive
real number ¢ by y*x*v=cv and put v’': =,/ ¢ v+(x*v). Then v’ has the same property
as v. Moreover it is easily verified that x"v’=\/7t(v’). Therefore we may assume that
Cv = Cr(x*v) by taking v’ instead of v. Put ¥, =U. Then V, is an s-stable and t-stable
irreducible S-submodule of V. Moreover since f(v, t(v))#0 by Remark 3, f |V‘ is
non-degenerate. Since V; is an irreducible S-submodule, ¥, does not have an xg-stable,
t-stable and f-orthogonal decomposition.

If we take V, as above, the orthogonal complement of ¥, is also a t-stable and
s-stable S-submodule. By induction Lemma 2, (1) follows from this fact.

} Let us show the statement (2) of Lemma 2 for the above V', where V;=U® 1(U)
or V,=U.

First suppose that (¢, w)=(1, 1). Also suppose that k=dim U—1 is odd. Then
V,=U®t(U). ve U, t(x*v)et(U) are lowest weight vectors of ¥, such that ve V, and
7(x*v) e V,, or that ve ¥, and t(x*v)e V,. Hence

k+1

On the other hand, since k is odd, we have 4, = 4,(0, 0). Suppose that k is even. Then
V,=U and

ni= {ab ----- ba veV,)
ba----- ab vely).

Since Tos=s01, (V;)° is decomposed as (V,)'=(V,)'nV,® (V) nV, with dimg(V,)"n
V,=n4ny) and dimg(V,)'n V,=ny(n,). Since the restriction of f to (V,)'nV, (resp.

(V1) n V) is positive definite (resp. negative definite), the signature of f |(,,1,r is (k/2+1,
k/2) if ve V, and (k/2, k/2+1) if ve V,. Therefore we obtain the correspondence
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—h— — 7
ab----- ba «—— A;(O), ba----- ab «—— Ak_(o)

Secondly, suppose that (g, w)=(1, —1). Then we always have V;=U@® t(U) and
f(U, U)= f(x(U), t1(U))=0. Suppose that k is odd. Then v and t(x*v) are lowest weight
vectors of V; contained in V, or ¥} simultaneously. Hence we have

k+1
r———h—
ab-- - b
ab - Zb (veV,)
Ny =
ba----- b
ba - bZ (veV).

By (F1), (F2) and Lemma 3, we have the following:
/G, (xx)*r<v))=f(v, r(%(—\/—_l )"v)) =§(¢—'1>kf(v, 7(v) ,
(/= D, (xp)*0) = (/= 1) H{ — f (v, xko) — f (o, xho)j}
= — (/7 o, X = 55 /1 70 00

It follows from the definition of f=(,) in (1.3) that

=/ —1v]* (veVy,)
V—lvl? (veVy),

where |v| is the ordinary norm of V'=C™"". Hence we have

S, 1(v)= {

!
Ko wew

W=D e xh)=

2—,; lo]* (veVy)
and obtain the correspondence
k+1 k+1
A ey r——
ab----- ab—— 4,(0,0), ba----- ba+—— 4.(0,0).
ab ..... ab ba ..... ba

If k is even, we can easily verify that
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——————
ny=ab----- ba and 4,=4,(0,0).
ba----- ab

Thirdly, we suppose that (¢, w)=(—1, 1). In this case, we always have V, = U ® 1(U)
and f(U, U)= f(1(U), ©1(U))=0. Suppose that k is even. Then we have

k+1
AN
b ey,
n=
ba: 4 vewy).

As before we have

k!l —— —|v]? (veV,
W=D xh)= — L T ), S, r(v»={ Ivl” eV
2 [v]* (vely)
and hence
k!
?lvl2 (veV,)
=D f-(v, xkv)= Iy
_2—,;“)'2 (veV)
Therefore we obtain the correspondence
k+1 k+1
—h— A ——
ab----- ba —— 4;(0,0), ba----- ab «—— A.(0,0).
ab ..... ba ba ..... (lb

On the other hand if k is odd, then it is easily verified that
k+1
ny= ba----: ba and A4,=4,0,0).

Fourthly, suppose that (g, w)=(—1, —1). Also suppose that k is odd. Then we have
V,=U and
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Since xkv#0 by Lemma 3, v, xgv, * - -, xkv form a basis of ¥;. Choose ue(V,)* such
that xku#0 and put u=Y"*_ cxkv (c;e C, ¢, #0). Then we have the following:

flu, xju)= f(u, xgr(w) = f(u, < Y cxigt >>=Eof(u, xgT(v))
= (=120 f(xgu, ©(v))= (= 1)*Co fcox g0, T(¥)) = ¢o > (v, x}T(v)) -

Moreover, we have

_ k!
/=D, X'éu),=7lco 1’V =1/, ©(v))
by (F1), (F2) and Lemma 3. By the definition of f=(,) in (1.3), we have

J—=1|v]* @eV)

f(v,f(v))={
=/ =1 (veV,)

and hence

k!
—'Co|2|l’|2?“ (ve V)
(/= D*f(u, xgu)=
2k
Therefore we obtain the correspondence

k+1 k+1

If k is even, then V;=U® t(U) and it is easily verified that
k+1

n,=ab----- ba and 4,=4,0,0).
ba ..... ab

Thus the proof of Lemma 2 is completed.

(1.9) Closure relation of nilpotent orbits in gg. We describe the closure relation
of nilpotent Gg-orbits in g due to Djokovic [D], who introduced the notion of
chromosomes which correspond to the nilpotent Gg-orbits in gg. He defined an ordering
of chromosomes and described the closure relation of [N(gg)]ls, by means of this
ordering. Let us define an ordering of ab-diagrams which is compatible with that of
chromosomes as follows:

DEerFINITION. (i) For an ab-diagram 5, we denote by #' the ab-diagram which we
obtain by erasing the first column from #. For an integer k£ > 1, we define the ab-diagram
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n® by n®:=(xn%*"1Y)" inductively.

(ii) For two ab-diagrams #, 6€D(m, n), we write n>o if n,(n®)>n,(c®) and
ny(n®) > ny(6™®) for all integer k> 1. We call such n>0¢ a degeneration of ab-diagrams.
If 4, 6 € D®“Xm, n), we call n>¢ an (e, w)-degeneration.

If we translate the main result of Djokovi¢ [D] in terms of ab-diagrams, we obtain
the following:

THEOREM 2 (Djokovi¢ [D, Theorem 6]). Let Gg be one of the real classical Lie
groups which are constructed in (1.3) and are isomorphic to U(m, n), O(m, n), O*(2n),
Sp(m, n) and Sp(2n, R). For two nilpotent Gg-orbits (0,)g, (0,)g€ [N(gg)]c, We denote by
n; (i=1, 2) the ab-diagram of the nilpotent Ky-orbit (0,)y in p which corresponds to (O;)g
by Sekiguchi’s bijection. Then we have (0,)g =(0,)g if and only if n, <n,.

By this result, to prove that Sekiguchi’s bijection preserves the closure relation, it
suffices to show

(01)p<(0,)y holds if and only if #n,<#,,

which we prove in the next section.

2. Closure relation of nilpotent orbits of the classical symmetric pairs. In this
section, we determine the closure relation of nilpotent orbits in the classical symmetric
pairs in terms of ab-diagrams. As a result, we see that Sekiguchi’s bijection preserves
the closure relation in our cases. In this section, we always consider the Zariski topology
unless we specify otherwise.

(2.1) The main theorem of this section is the following:

THEOREM 3. Let (g, f) be a symmetric pair of type (AIll), (BDI), (DIII), (CII) or
(CI). For two nilpotent Ky-orbits O; (i=1, 2) in the associated vector space p, we denote
by n; the ab-diagrams corresponding to O,. Then the Zariski closure O, contains O, if and
only if n,<n,.

By Theorem 2 and Theorem 3, we obtain the following:

COROLLARY. For a symmetric pair (g, ) in Theorem 3 and the corresponding real
reductive group Gg, Sekiguchi’s bijection preserves the closure relation.

" We will prove the “only if”” part of Theorem 3 in (2, 2) and the “if”” part in (2.3)-
(2.8).

- For a vector space V' with an involution s and an ab-diagram 5 € D(dim V,, dim V),
we denote by C, the nilpotent K(V)-orbit in p(¥) corresponding to 5. On the other
hand, for an (e, w)-space V and an (g, w)-diagram n e D*®“(dim V,, dim V,), we denote
by C®® the nilpotent K(V)-orbit in p(V) corresponding to 5. Then we have
C&®=C,np(V) by Proposition 1.
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(2.2) Proof of the “only if” part of Theorem 3. We need the following lemma
whose proof easily follows from the correspondence of nilpotent orbits and ab-diagrams.

LEMMA 4. For a nilpotent element Xep(V) with an ab-diagram n, we have the
Sfollowing:

k(X Ve V=m0, k(X2 Vo V) =nn ™ 0),
rk(XZiIV,, VoY) =”a(’1(2i)) s rk(XZiIV., e Vb)=nb(’1(2i)) s
where i is a positive integer.

Now let us prove the “only if” part of Theorem 3. First we consider the symmetric
pair (gl(V), T(V)) of type (AIII) defined by a vector space ¥ with an involution s. For
two ab-diagrams 7, 6 € D(dim V,, dim V), suppose that C,=C,. To prove o<n, we
consider the following K(V)-equivariant morphisms:

031 p(V)——Homd(V,, Vi), X X¥71,,
Q2 p(V)— Home(V,, V), X X371y,
0¥ :p(V)— Homd(V,, V), X+——X%|,.,
0¥ p(V)— Home(V,, Vi), X +— X%, .

We take XeC,, YeC, and denote by ¢ one of the above morphisms. Since ¢ is
K(V)-equivariant and Ye C,={Ad(K(V))X}, we have

o(Y)e o({AdR(V)X}) = p({AdK(V)X}) = K(V)o(X) .

For example, if o=¢?2'~!, we have

(Ptfi— (Y)=(y*! IVa: V= Ve {E(V)(Xzi—l |V,,)} .
Therefore by Lemma 4, we have

nb(o-(Zi— 1)) — rk( y2i-1 lVa) < rk(Xzi— 1

V,,) = ”b(”lm_ V).
2i—1 2i-1

By taking ¢ =271, 2, @2 instead of @2~ !, we obtain o <7.
The proof for the symmetric pair (g(V), ¥(V)) is similar.

(2.3) Proof of the “if” part of Theorem 3 for the symmetric pair of type
(AIll). Let o<n be a degeneration of ab-diagrams. We have to show that C,c C,,.
Here we may assume that ¢ and 5 are adjacent, i.e., there exists no ab-diagram u such
that ¢ <p<n. To show C,=C,, it is sufficient to construct a morphism z: C—p(V),
t+— z(t) such that z(0)e C, and z(r)e C, (t#0). First we construct a nilpotent element x,
with the ab-diagram o as follows:

For the i-th row o; of o, let V; be the complex vector space spanned by a basis
{ai;1<j<n o)} u{bi; 1<j<ny o)} and put V=@@_, V,, where r is the number of
rows in a. Let V, (resp. V) be the subspace of V spanned by «/:={a}; 1<i<r, 1<j<
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no))} (resp. #:={b%;1<i<r,1<j<myo;)}) and define the linear involution s of V’
by s|y,=idy, s|y, = —idy,. Thus we obtain a vector space V" with an involution s. For
two elements u, v of the basis o/ U4, we define X(v—u)egl(V) by

v (u'=u

Hlooup'= {0 (W el UB\{u)) .

Then the associated vector space (V) is spanned by {X(b«<a), X(a«b); ac A, be B}.
For each o;, we define the nilpotent element x; of p(V) by
2p
———
( X(apeby)+ X(byeay )+ + X(by—ai)+ X(@ b)) (o;=ba-ba)
2p
——t—
X(bye—ap)+X(ay—b,_\)+ + +X(ayb})+ X(bi<a}) (s,=ab---ab)
2p+1
fr——
X(ab, <bh)+X(bl—al)+ - -+ X(ah b))+ X(bi—d}) (5;=ab- - ba)
2p+1
e
L X(b}, y—ay)+ X(a,«bh)+ -+ X(by—al)+ X(a\ b)) (o0;=ba---ab),

where we put x;=0 if 6;,=a or o,=b. Define a nilpotent element x, of p(¥) by x,=
Y i_, x;. Then clearly the ab-diagram of x, is g. Here we note the following lemma
whose proof easily follows from [D, (11.3), (11.4), (11.5)] in view of the correspon-
dence between mutations of chromsomes and degenerations of ab-diagrams.

LEMMA 5. For an adjacent degeneration o < of ab-diagrams, we denote by ¢ <ij
the degeneration of ab-diagrams which we obtain from ¢ <n by erasing all common rows.
Then up to the change of a and b, 6 and 1] are given as follows:

V4 p+1
(l) 6-= ........ ab , ﬁz ........ ba (p2q>l)
ba --ab
e —
q q—1
)4 p+1
——— —— e
(ll) g=ba - , ﬁ:ab ........ (quZl).
ab.. . ba
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p p+2
r——— ————— A,
(lll) 5’= ........ ba s ’7= ......... ba (p2q22,p—q:even).
..... ba ba
—
q q—2

Suppose that 6=0;+0; and put V;:=V,®@V;, W:=@® | _, ., y»i; Vi Then Vs is
a vector space with an involution s|,,&. Let C; and Cj be the nilpotent K(V;)-orbits in
p(V;s) with ab-diagrams & and 7, respectively. If we can prove C;=Cj, it is easy to
verify that C,< C,. Therefore we may assume that 6=¢ and n=1.

First we cosider the case (i):

4 p+1
——hee— D ——————E—
="+ " """ ab , = ba (p2q>1)
..... ba --ab
—
q q—1

We define a map z: C—p(V) by z(t)=x,+1X(a?l 4, bn, ) Then we have z(0)e C,
and z(7)e C, (1€ C*). For example, suppose that p=2p’ is even and ¢=2¢"+1 is odd.
Then

{z()*a]; 0<k<2p'}u{z()tat—ap _411); 0<k<2g'—1}

is a basis of ¥ and z(1)*”'*'a}=z(t)**(ta}—al _, ,,)=0 for te C*. This means that
z2(t)e C, (te C™). In such a way, we can show that C,c C‘,,.
As for the case (ii) (resp. (iii)), we define a map z: C—p(V) by

2(t)=x,+tX(bi—a3) (resp. x,+1X(b2 . —an o) -

np(a2)

By using this, we can show that C, < C‘,, as before.
Therefore Theorem 3 is proved for the symmetric pairs of type (AILI).

(2.4) Reduction lemmas. Let 0 <# be an (g, w)-degeneration. We have to show
that Cﬁf"‘”cc—ﬁf’m. As before, we may assume that ¢ and # are adjacent, i.e., there exists
no (g, w)-diagram u such that ¢ <p<n. As the first reduction, we note the following
lemma whose proof easily follows from [D, Section 12] in view of the correspondence
between mutations of chromosomes and (g, w)-degenerations.

LeMMA 6. For an adjacent (e, w)-degeneration o<m, we denote by G<i the
(¢, w)-degeneration which we obtain from o <n by erasing all common rows. Then up to
the change of a and b, G and 7 are as in Table V.

The second reduction lemma is the following:
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LEMMA 7. Let a<n be an (g, w)-degeneration. Suppose that the first columns of
o and n coincide. By erasing this common column from a<mn, we obtain a
(—e&, —w)-degeneration ¢'<n’ (cf. (1.4), Table ). Then if C&”=C®?, we have
Cha e,

We will prove Lemma 7 in (3.6) by using the classical invariant theory.

Now by Lemma 6, to prove C¥?cC®®, we may assume that o<z is an
(¢, w)-degeneration in Table V as in the case of the symmetric pair of type (AIII). Let
o<1 be an (¢, w)-degeneration of type (i) in Table V (1 <i<5 if (g, w)= +(1, —1) and
1<i<10 if (e, w)= +(1, 1)). Then the (—¢, —w)-degeneration ¢’ <#n’ (which we obtain
from o<#n by erasing the common first column) has the same form just as the
(—&, —w)-degeneration of type (i). Therefore it is sufficient to prove C&® < C®®
in the cases (¢, w)=(1, —1) and (¢, w)=(—1, —1).

REMARK 4. To prove C&?<=C®® for the (¢, w)-degenerations o <n in Table

TABLE V
(DI @ w)=( 1, -1 CI) e o)=(—1, 1)
c n c n
2p—1 2p 2p 2p+1
Zb ..... bg ag ..... ag bz ..... bz %a ..... HE
M | 20 | B b=zl | ) | el | el (p2g2D)
ba---ab ba:--ba ab: - -ab ab- - -ba
—— —— [ESE—) N
2q—1 292 2q 2q—1
2p 2p+1 2p+1 2p+2
rga ..... lb,a Zb ..... bg ;Z ..... Za bZ ..... bg‘
@ | D el (ezez) | @ | 80Pt L R (p=ez)
ba: - -ba ab- - -ab ab- - -ba
N——— e — N —
292 2q 2q—1
2 2 2p+1
Za ..... lb,a bg ..... bg all; ..... Zaﬁ
® A (p>qzl) | () | Giieab | gbe b (psg20)
ba---ab ab- - -ba ab---ab
No——’ R s —_——
2q—1 2q+1 2q
2p 2p 2p+1
b gb ..... bz 'Za ..... all; bg ..... bla)
@ | goriab | ba P (p2gzl) | @ | bggab ) ghab (pg>0)
ba- - -ba ba---ab ab- - -ba ab---ab
—— Nt ——— ——
2q 2g—1 2q+1 2q
2 2p+2 2p+1 2p+3
Za ..... ll;a Za ..... ga ag ..... 2(1 ‘Tg ..... Za
O) | paipd” | B (pzazl) | O | B | B (p=a=D)
ba---ba ba- - -ba ab- - -ba ab- - -ba
—— ———— ———— N ——
2q 2g—-2 2g+1 2q—1
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CnH (s, w)=(—1,-1)

(BDI) (e, 0)=( 1, 1)

49 n o n
2p—1 2p 2p 2p+1
b ba b T U b ba- - b =g>1
W | gba | gbab pgny |y | beniibe | baeecab (p=g2])
—— —— —_— ——
2p—1 2p—2 2p 2p—1
2p 2p+2 2p+1 2p+3
..... A b.....bﬁ ’ e ’ b >g>1
) lgg“'baba bg' - -ba a (p=gq=1) ) Z[I;...baba Zg“'ba a (pzq21)
e . — ——— —_— —_—
2q 2q—2 2g+1 2q—1
2p 2p+2 2p+1 2p+3
@ | bt |t pzexn | @) | b | @b (p2ax)
—— N— N — N—
2q 2q—2 2g+1 2q—1
2p 2p+1 2p+1 2p+2
ba- - ba | ab----- ba ‘abe - ba ba- -+ ba
4 ab----- ab ba - ab (quZl) 4 ba----- b ab----- ab >g>1
( ) ba...ba ba...ba ( ) ag...baa ab...ba (p q )
N —’ —_— — —_—
2q 2g—2 2g+1 2q—1
2p 2p+2 2p+1 2p+3
(5) 'll;a...l.).ba 'ga....l.,ba ( by (5) ral[;"'l;'ba‘ ag....l;ba ( 0
a... a a.-aa 2 2 a DECEE a a ...a Z Z
ab- - -ab ab: - -ba p=4 ba---ab ba- - -ba p=4
N——— — N — N———
2q 2g—1 2g+1 2q
2p 2p+1 2p+1 2p+2
Zg ..... bg bg ..... gb gb ..... bg gb ..... gb‘
© | ba - ba ba --ab . (p2g=D) | ©) | ob s gt (p2g20)
ab- - -ab ab- - -ba ba---ab ba- - -ba
[—— N ! N —— [ —
2q 2g—1 2q+1 2q
2p 2p+1 2p+1 2p+2
a[[; ..... ag 'Zb ..... b[‘; rll;a ..... % bg ..... bg
M Za“'baa aguobaa (pzq21) @) ag“'baa ga"'baa (p=q=0)
ba: - -ba ba: - -ab ab- - -ba ab- - -ab
N——— N————t e N———
2q 2q—1 2g+1 2q
2p 2p+2 2p+1 2p+3
... B D e b b )
® | L | pzezn | @ | MU | B o2z
— —— —— —
2q 2g—2 29+1 2q—1
2p 2p+2 2p+1 2p+3
o Zb...l.,.a; ';g...l.,.ba‘ ( ) o bz...l.).ab‘ rgb...l.).ba (r2a50)
a.'. a a ... a 2 2 a ... a a... a p_ >
ba---ba | ba---ab p=4 ab---ba | ab---ab 1
e —— —— —— [—
2q 2q—1 2q+1 2q
2p 2p+1 2p+1 2p+2
10 aII; ..... aII; gb ..... bg‘ ( ) 10 ga ..... all;‘ ;g ..... bg‘ (r2g31)
ab----- ai a- - a Z Z a- - a ab: - a > Z
ba- - -ba ab---ab p=4 ab- - -ba ba---ab p=1
Ny e — N——— ——
2q 2g—2 2g+1 2q—1
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V, we may assume that g is sufficiently large by Lemma 7.

(2.5) Construction of x,. In view of (2.4), we only consider the cases
(e, w)=(, —1) or (—1, —1) in (2.5)+2.8).

In this subsection, starting from an (g, w)-diagram o, we will construct an (g, )-
space V and a nilpotent element x, € p(V) with the (¢, w)-diagram o.

Let 6=);_, 0; be an (e, w)-diagram which is a sum of primitive (¢, )-diagrams
o;. According as (¢, w)=(1, —1) or (—1, — 1), we define an (¢, w)-space V as follows:

First suppose that (¢, w)=(1, —1). Then o, has one of the following forms:

2p; 2p; 2p;—1
e, ————HA— A ey,
(i) o;=ba --ba (iil) o;,=ab---ab (iii) o;= ab---ba.
ba- - -ba ab- - -ab ba---ab

According to the types (i)-(iii) of o;, let V; be a vector space spanned by the following
basis:

@) By ay, by, ap fulby,ap, oo by al )

() {ai’,by, -, ap, by u{ay,, by, oo el by}

(i) {a",bY, ---,b;j_l,a;j}u{b;;,a;;_l, S al, bl
Put V:=@|_, V., o :={a}",ai }and B:={b}", b\ }. Let V, (resp. V,) be the subspace
of V spanned by &/ (resp. %) and s the linear involution of ¥ such that s|, ,=id,_ and
s|y, = —idy,. We define an involution v of the set S/ U% by ai" b, bi
ai’, bt +—al ai —bi". We define a non-degenerate symmetric bilinear form (,) on V

by
{l (v=1)
(u, )= _
0 (e UB\{i}).

Then V is a (1, — 1)-space with respect to s and (, ).
Secondly, suppose that (¢, w)=(—1, —1). Then o, has one of the following forms:

2p; 2p; 2pi—1
(i) o,=ba---ba (i) o,=ab---ab (ii) o;,= ab---ba.
ba---ab

According to the types of g;, let V; be a complex vector space spanned by the following
basis:
() {biat, - bhoapy ) {al, b, b, bh)
(i) {ai, by, -, b;.,i_l‘, a;,l,.} u{b,,, a1, e ay B by }.
Put V:=@|_, V;, o#:={a},ai",ai }and B:={b, b'", bi"}. Define V,, V,and s: V>V
as before. We define an inyolution v v of AUB by aji=b,, iy, bi—a, i1,
al" b, b > al’ bl > al T, al > bY" and define a non-degenerate skew-symmetric

bilinear form (,) on ¥ by
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(0,5)={_: :Zi;?, u,v)=0 (vesd UB\{i}).

Then the adjoint X(v—u)* of X (v<u) (cf. (2.3)) is given as follows (see [O2, Lemma
10]):

Xveuw)*=X(u0) if (e, w)=(1, —1),
X@a«v) (u,vesd or u,veh)

if (s, w)=(—1, —1).
—X(@?) (ueA,veB or ueP,veH)

Xve—u)*= {
We note that p(V) is spanned by

{X(veu)— X(v—u)*; (v,u)ed xB or (v,ueBxAL}.

For each primitive (g, w)-diagram ¢;, we define a nilpotent element x; of p(V’) as in Table
VL

TABLE VI

(e, w) a; X;

(1,-1 @) X(ai,:*—-b:,:)+X(b:,: <—a:,:_1)+ o X (Y —al)+ X(ah bl
—{X(@i «b)+ X(bY «ay)+ -+ X(bE, - —ab)+ X(ab, < bE)}

(i) XL —al)+ X(ab, «bi_ )+ + X(@y by )+ X(bY «al’)
—{X(b} —a)+X(@\ «by)+ - +X(ah,_, <bh)+ X(ah, «b})}

(i) X(@ —bi )+ Xy eabi_ )+ -+ X(@h b))+ XY —al’)

—{X(bY ay)+X@y «by)+ Xy - 1= ap- 1)+ X(ay, - < by,)}

(=L =1 | @ X(ap < by)+ X(by —aj,_ 1)+ - - - + X(bya})+ X(a} b))
(ii) X(bi —al)+X(al,«bi _ )+ -+ X(ah<b)+ X(b) —a})
(iii) Xay, «bh_ )+ X(bh_ —ah_ )+ Xy «bi)+ X(b —al’)

+X(b -al)+X@ b))+ + X (bl )+ X@h b

Putx,=Y"_, x;. Thenclearly x, is a nilpotent element of p(¥) and the (¢, w)-diagram
of x, is o.

(2.6) Here we give the proof of C&®cC®® for the (¢, w)-degeneration
(1-5, (¢, w)=(1, —1)) and (1, 7, 8, 9, 10, (¢, w)=(—1, —1)).

As we have seen in (2.4), to complete the proof of Theorem 3, it is sufficient to
prove C&*'=C&® for the (e, w)-degenerations o<# in Table V (&, w)=(1, —1),
(—1, —1)). What we would like to construct is a morphism z: C—p(V) such that
2(0)e CP* and z(1)e CE® (te C*). Let o<n be an (¢, w)-degeneration in Table V
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(e, w)=(1,—1) or (=1, —1)) and x,ep(V) the nilpotent element constructed in (2.5).
We first consider the (g, w)-degenerations (1)—(5), (¢, w)=(1, —1) and (1), (7), (8), (9),
(10), (¢, w)=(—1, —1) in Table V. In these cases, the construction of z: C—p(V) is

rather easily seen as follows:
We define z(¢) (te C) as in Table VII, where the number (i) corresponds to that in

Table V.

TasLE VII

(e, w)=( 1,-1)
M 2(t)=x,+{X(b} a; )~ X(b, «—ai")}
@ 2()=x,+H{X(b} «a,")—X(b, <ai")}
3) (t)=x,+1{X(a}’ <b}")— X} «b}")}
@) At)=x,+t{X(a} «bl")—X(a} «b}")}
©) 2(t)=x,+{X(b} «<a;")—X(b} «a}’)}

(e, @)=(—1, -1)
(1) A)=x,+{X(b} —al’)+X(b} —al")}
@) 2()=x,+{X(al<bl)+ X(a} b3} + {X(a}—bl)+(a} ~b?})}

+/—1{X(a} b))+ X(a} b} +/ —1t{X(a}b2)+ X(a?b?})}

8) A)=x,+H{X(a2bl)+ Xa}<b})}
) 2(t)=x,+{X(aj<by)+ X(ai b} +1{X(a3<b;) + X(ai b))}
(10) 2(t)=x,+t{X(a} < bl)+ X(a} b} +/—1t{X(a3 b2+ X(a}b3})}

Then it is easy to see that z(t)e p(V) by (2.5) and z(0)e C&®). To prove z(t)e C
(te C™), we may assume that g is sufficiently large by Remark 4. Then we can verify
2(t)e CH (te C*) as follows:

For example let o <7 be the (— 1, — 1)-degeneration (7) in Table V. Then z(t) (1 #0)
acts on V in the following manner:

ai—bi—-- ~‘—>a;—>b;—>t(a3 +a5)-0,

bi-ai+tal+y —1lah)— - —ad+ual+/—1ad)-ubl+/—1b})—- -

>1(b)+/ —1bY)—1{tla}+a})+(/—1)Ha} +a})} =0,

ai—b3—--—-a}-0,

by qe1—UbI+bY—>ay_ i —Hai+ad)—> - —by—1b]+by)

—t(a}+a))—tal+a})=0.
Here the non-zero elements in the above sequences form a basis of V. Hence the
ab-diagram of z(t) (t #£0) is n. The other cases can be shown similarly.

(2.7) In (2.7) and (2.8), we prove C&”=C%* for the remaining (—1, —1)-
degenerations. Let us begin with the (— 1, — 1)-degeneration (6):
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2n 2n+1
ba ..... ba ba ..... ab
ab ..... ab ab ..... ba
= ba---ba "= ba---ab
ab---ab ab- - -ba
2m 2m—1

We consider the following element Z of p(V):

Z:=x,+a,{X(bi<a)+ X(by—ay)} +a{X(bi-az)+ X(b,-<a)}+
+a,,_1{X(bi<—a,}_1)+X(b§<—a,})}+a,,X(b}<—a,})+b1{X(af<—bf)
+X(az b))} +by{X(@i b))+ X(a_ b} + - - +b,_{X(@i<bs_))
+X(a3 b} +b,X(atb3)+ ¢ {X(biai)+ X(by—az)}
+o{X(bI=a3)+ X(by -1 —ap)}+ -+ 1 {X(bI—an_ )+ X(b3ay)}
+cpX(bag) +di {X(a} b))+ X(apnby)} +dy{X(a]<b3)
+X(am-1=bp)}+ - +dy{X(ateby )+ X(@5 b)) +d,X(at<by)
+p{X(bi—ad)+ X(b7—a)} +p{X(biad)+ X(b;-—ay)}+
+P{ X1 —a)+X(biay)} +q,{X(bia))+ X(byay)}
+q{X(bi—ad)+X(bo-1<a)}+ - +qu{X(biaz)+ X(bi<a,)}
+ri{X(br1—at)+ X(bra,)} +r{X(bi—a3)+ X(bp_—a)}+ -+
+rp{X(bi—ag) + X(bt-ay)} +s,{X(alb})+ X(anb))}
+8:{X(at b+ Xan_ 1 <bD}+ - +su{X(aib3) + X(ai b}
+1{X(ai b+ X(an b))} + ,{X(a}<b3)+ X(ap -, <bD)} + -
+in{X(aiby)+ X(ai b} +u {X(b]—a})+ X(br—az)}
+{XbTa + Xbh- —a) + -+ {XGYal) + X))

If we express Z in terms of a matrix with respect to the basis {b}, al, b3, a3, - -

1,1 2 B2 ... 2 p2 B3 o3 ... p3 3 4 LA ... 4 14
bl,a,, at, bi, ,ah, bk, b3, a3, ,by,al, at, bi, , am, b} of V, we have

P q r
4 0 0 0
0 ' B K] t
p 0 0

Z= ,
0 ¢ |0 ' C "
0

0O |0 | 0 D



CLASSICAL SYMMETRIC PAIRS 187

where we put

0 al 0 az"'o a,—1 O an 0 bl O bz"'O bn—l 0 bn
1 0 1 0
1 a,_4 1 b,—1
' 0 : 0 :
A= © |, B= ‘
a, b,
0 0 0 0
1 a, 1 b,
10 10
0 Cl 0 02"'0 Cm—l O Cm 0 dl 0 dz"'o dm—l 0 dm
1 1 0
1 Cm—-1 1 A1
0 : ’ 0 :
] N D= :
¢ €2 d,
0 0 0 . 0
1 ¢ 1 d,
10 10
P=(P1, ngz, 0, ", Pn 0), q=(0’ 91, 0, 92, "7 qm—1,07 qm)’
r=(r15 0; r2’09 s Ty O), s=(sl90’S2’ O, o ',Sm,O),
t=(0’ tl’ 07 t2’ Y tm—l’ 0’ tm) ’ u=(u1, 0: uZ, 0, Y uma O) s

and denote v'=(v, v,_,, ", Uy, v;) for a vector v=(vy,v,, ", v,_, v)eC’. Let us
consider the condition that Z is nilpotent and the Young diagram of Z'is 2n+1, 2n+1,
2m—1,2m—1).

Let T be a variable and M (C[T]) the ring of /x /-matrices with coefficients in
C[T]. For two matrices X(T), Y(T)e M(C[T]), we write X(T)~ Y(T) if there are two
invertible matrices M,(T), M,(T)e M(C[T]) such that X(T)=M(T)Y(T)M(T). We
denote by I, the identity matrix of degree /. Then we have by computation

Linin- 0

where

AT)  fu(T) f3(T) fau(T)
Sau(T) B(T)  f3:AT) fax(T)
(1) f3T) C(T) fas(T) |~
Ja(T) fao(T) fus(T)  D(T)

M(T)=
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n—1 n—i—1 n—1
A(T)= —-T*+ Z <2an—i_ l; azan—i-z—I;PIP,.-.'—Hl)TZi

i=m

n— n—-m+1

m
Z Qg —m-1+1—
1=1 =1

+<2an—m+l— plpn—m—l+2_r%>T2(m_1)

n—i—1 n—i m—i
- 2 (T Z PiPn-i-1+1— Z "rm—i-1+1
=1 =1

1 =1

m—2
+ Z <2a,,
i=0
m—i—1 )
- Z qzqm—i—1>T21—a,.,
=1
n—1 n—i—1 .
B(T)=—T2"+ Z (an—i— Z blbn—i—l>T2l
i=m 1=1

+<2bn—m+l_ ) blbn—m—l+1_s%) T*m=b
=1

m—i m—i—1

m-—2 n—i—1
+ <2bn—i_ Y b= Y e~ 2 tltm—i—l>T2i_bn9
i=0 1=1

1=1 1=1

m—1 m—i—1 m—i
C(N)=-T""+ ) <20m—i_ Y Clmoioi— D Uithm—i—1s 1>T2i—cm >
i=0

1=1 =1

m—1 m—i—1
D(T)=—T?"+ Zo <2dm—i“ IZ dldm—i—l>T2i—dm’
i= =1

n—1 n—i—1 '
fu(D= % (p,,_i— p,b,,_,-_,>T2“f1

i=m-—1 1=

m—2 n—
+ (pn—i—

i=0 1=1

[N

i—1

=1

m—i—1 m—i—1
2i+1
Piby—ioi— Z DSm—i—1— Z Flm—i—1 | T
=1

m—1 m—i—1 m—i
f31(T)= ._Zo<qm—i_ DCm—i—1— Z ’t“m—i—z+1>T2'a

=1 1=1

m—1 m—i—1
fu(D= X (rm—,-— Y r,a’,,,_,-_,>T2'+1 ,

i=0 =1

m—2 m—i—1 m—i—1
f32(T)=s1T2’”_1+ Zo<sm—i_ Z SiCm—i—1— Z fz“m—i—z>T2'+1,
i= I=1 =1

m—1 m—i—1
faAT)= 3. <tm—i_ > ’ldm—i-z>T2',

i=0 =1
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m—1 m—i—1
RGED) (um—i_ IZ “tdm—i—z>T2'“.
i=0 =1
In order that the relation M(T)~diag(T?™" !, T?m~ !, T2"*! T2"*+1) holds, we
must have
h—m n—m+1

2 __
2a, piy— Z Gy -—my1-1— Z PPp-m+2-1—r1=0,
I=1 =1

m—n+k

k=1 k
(1) (2— 0y n)a— Z Qg — Z PiPx-1+1— Z Pl —n4k—14+1
=1 1=1 I=1

m—n+k—1
— 2 4lm-nsk-1=0 (n—m+2<k<n)
=1

2bn—m+l— Z blbn—m+1—l—s%=0
=1
(2

m-—n+k m—n+k—1

k=1
(2_6k,n)bk_l_zlblbk—l— Z SSm—n+k—1+1—" Z btm—n+k-1=0

I=1 =1
(n—m+2<k<n)

k=1 k
(3) Q= mci— X CiCr— 2, Uptt—141=0 (I<k<m)
1=1 1=1

k=1
@ Q=4nd— Y dd=0 (1<k<m)
=1

~1 m—n+k—1 m—n+k—1

PiDx-1— Z DSm-n+k-1— g1 S——r )
1 =1 1=1

k
©) Pr— 1

(n—m+2<k<n)

k=1 k
(6) ‘Ik—‘IZ:1 qlck-:—l_zl rig_1+1=0 (1<k<m)
k=1

@) n— 2 nd,=0  (2<k<m)

=1

k-1 k-1
(3 sk—lZ S:ck-z—lz - =0 (2<k<m)
=1 =1

k=1
&) ti— 2 =0 (1<k<m)
=1

k-1
10)  we— Y wd,=0 (<k<m).

1=1
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Suppose that the above equalities (1)—(10) hold and that u, #0+#s,. Then we can
compute the following:

AT)  fu(]) 0 rsz"‘"1 ulTZ"“1 _T%m r1T2m—l 0

M(T)= fo(T)  B(T) s,T™! 0 —T*m y, 71 0 s, T>m1
0 57?0 =Ty THT 0 T AT foulT)
r T 1 0 u,T*m-t —2m s, T?m1 0 1(T)  B(T)
u, 7! 0 0 0
N 0 u, T?m~ 112+, riT?™u, s, T?m1
0 r T30 A(T) JS2(T)
0 s, T?"uy Sor(T)=sr T*" " Yu,  B(T)
u, T2m1 0 0 0
0 5, T?m 1 0 0
0 Sfo(T) (T? ‘“1)f21 (T))sy +uyr 7" 1 u  A(T)—r f,(T)T/s,
0 B(T) (T?*~ud)B(D)fsy +5,T*" s fo,(T) =5y, T*" "1 —r B(T)T]s,
u, T°m ! 0 0 0
- 0 s, T?m1 0 0
0 0 g:1(T) ga(T)
0 0 92(T) g4(T)

where
gl(T)=(T2—ul)f21(T)+r151”1T2m ', 93(T)=s,u, A(T)—r f,(DT,
gz(T)=(T2—uf)B(T)+sz2"', 94(T)=~91“1f21(T)“rlB(T)_S%rl "=t

If we write

k-1 k=1
Pyi=p— Z bp-y (1<k<n—m+1), B.:=2b,— ), bb,_, (1<k<n—m),

=1
Ay =2a,— Zalak: zplpk—l+1 (1<k<n—m),
=1

then we have

gi(T)=P,T*"*  +(Py—uiP)T? '+ (P 1 — Ui Py ) TP}
—u Uy Py sy —1y8)T?™ 1,

go(T)=—T*""+ (B +ud)T*"+ (B, —uiB)T?" "2+ - - - +(B,_py— u} By s )T 72
+si—ud)T",

gs(T)= —(syuy +r, P)T? +(s,u1 Ay —r P)T? " 2+ - - +(squ1 Ay m—T1 P 1) T?™,
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go(N)=r T** 4 (squ, Py —r B)T* 1+ - (s, Py py— 11 By ) T*™ 1
+51Uy Py 1 —Sr) T2
In order tﬁat the relation
(gl(T) ga(T)) N (TZ"“ 0 )
92(T) g4T) 0 Tt

holds, we must have the following:

-1

k K
(11 Pk+1=u%Pk‘:’Pk+1-lzlblpk+1—l=u%<pk_'lz blPk—l) (1<k<n—m)

=1
(A1) Py i1 —r15:=0<=rs;=u(Pp_ms1— Z bipu—mr1-1)
=1
(12) B,=2b,=—u?
k k-1
(13) By, =u’B, <> 2b,,,— Z b,bk+1_,=uf<2bk—— Z b,bk_,> (1<k<n—m-—1)
1=1 =1

n-m—1
(14) sfzuan—m:u%<2bn—m_— Z blbn——m~l>
I1=1

(15) sy =-—rPy=—rp,

k
(16)  riPyyi=s5u Ay <= r1<pk+1—lz bth+1~1>
=1

~

k=1 k
=Slu1(2ak—lz aa;,— Z Ptl’k—z+1> (I1<k<n—m
=1 =1

k—

) 1 k-1
(17)  syuy P=r,B, ‘=’S1”1(Pk"lz bth~1>=r1(2bk—’Z blbk—l> (I1<k<n—m)
=1 =1

(18) w Py_pyi1=81r1 <= “1<Pn—m+1“ Z ban—m+1—1>=Slr1 .
=1

Then from (4), (7), (9) and (10), we have d,=d,="--=d,=r,=" " =r,=t;=
c=ty=uy=--=u,=0. Now we put u;=t,p;=—15=r=/—1""" for
teC* and define b, by (12); b, = —1*/2. Then (15) and (17, k=1) hold. Define
€1,C2 " "5 Cy by (3) and g, by (6, k=1); ¢, =132, g, =ryu;=,/—1¢""™*2 Define
by, by by (13); By=—1t* (1<k<n—m). Then (14) holds. Define p,,ps, """,
Pu-m+1 by (11); Py=—1?*"1 (1<k<n—m+1). Then (11')<«>(18) and (17) hold, since
UrPy iy =18 = (=127 (=207 D) =0 and s,y Pe—ry By=5,(u; Py~ B) =
s{t(—t* " —(—1t?Y} =0 (1<k<n—m). Define a,, -, a,_,, by (16). We define
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825 s Smeq2s s Gm and b,_ 1y, 0, b, By (8), (6, 2<k<m) and (2), respectively.
Finally, we define p, 45, """, pnand a,_ .+ 1, = * @, by (5) and (1), respectively. Then
a;, b, ¢;, d;, pi, 1y, Si, 1, u; are all polynomials in 2. We denote by z(¢) the element Z which
is parametrized by t as above. Then since
4m+n—1)
h——

Z(t)—TI4(m+n) ~ diag(Tz"'_l, sz_l, T2"+1, T2n+l , 1, R 1) (tECX) ,

z() is nilpotent and the Young diagram of z(t) is 2n+1,2n+1,2m—1, 2m—1). But
since # is the unique (—1, —1)-diagram whose Young diagram is (2n+1,2n+1,
2m—1,2m—1) (cf. Proposition 1), we must have z(t)e C{" = if te C*. Moreover,
since z(0)=x,e CS"" ™Y, we have C{™ "D C{™ 7D which is what we had to show
for the (—1, — 1)-degeneration (6).

(2.8) We can also prove Cﬁf""’c@ for the (— 1, — 1)-degenerations (2), (3), (4)
and (5) just like for the (—1, — 1)-degeneration (6).

Foreach (—1, —1)-degeneration (2), (3), (4) or (5), we consider the element Z € p(V)
which has the following matrix expression with respect to the following basis of V:

2n 2n+2
—— ———
2) o=ba - ba <n=ba - ba
ba- - -ba ba- - -ba
() ——
2m 2m—2

1ae 1 1 ... 1 1 2 2 ... 2 2
basis: {bi, al, ,br,al, b3, al, ,bh,ak}

q
4 0
Z=
0 ‘q C
2n 2n+2
o= ba----- ba <n=ba---- ba
3) ab- - -ab ab---ab
N — —
2m 2m—2

Tq- 1 1 1 1 2 2 2 2
basis: {bi,ai, -, b, a,,al, bi, -, ak, bk}
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y r
0
Z=
0 ' D
2n 2n+1
———— ——t——
ba ..... ba ba ..... ab
@) o=ab----- ab <n=ab----- ba
ba- - -ba ba- - -ba
2m 2m—2
basis: {bl,al, -, b} at,al, b, -+, al b2 b3, a, -, bl a)}
p q
A 0 0
s
i '
Z=| 0 p B 0

2n 2n+2
A e, e A,
ba ..... ba ba ..... ba
) o= ba::ba <y =ba-ab
ab---ab ab- - -ba
2m 2m—1
basis: {b},a}l, -, bk, as, b3 al, -, b} ak, a3, b3, - al, b3}
q ¥
41 9 0
z=| 0 ¢| C 0
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Here the matrices 4, B, C, D and the vectors p, ¢, r, s, u are those in (2.7).

In the case (2), we can construct a morphism z: C—p(¥) such that z(¢) is nilpotent,
that z(0)=x,e C{"* 1, and that the Young diagram of z(t) (te C*) is 2n+2, 2m—2)
by considering the condition for '

2(m+n—1)
. e,
Z— TIZ(m+2)~d1ag(la """ , 1, T2m"2 TZ"-Z)

as in the case (6). Since the (— 1, — 1)-diagrams with the Young diagram (2n+2, 2m—2)
are

2n+2 2n+2 2n+2
f——h— e e, —h———
nn,= ba---- ba, n,= ab----- ab, ny= ab----- ab,
ab---ab ba- - -ba ab---ab
—_— —_— [
2m—2 2m—2 2m—2

wehave {z(t); 1€ C*} = C{" "Dyl "Du i " Du b~ 1. Butsince {z(1); 1 C* }
is connected and these K(F)-orbits have the same dimension (cf. (3.7), Remark 7),
{z(f); 1€ C*} must be contained in one of the above K(V)-orbits. If {z(f);1e C*} <
C{-t "V (i=1,2 or 3), we must have C{" " "Y'= C{" 1 and hence o <#; by the “only
if” part of Theorem 3. This contradicts the definition of the ordering < of (¢, w)-
diagrams. Therefore {z(t);1e C*}=C{™* " and hence we have C{"" Ve Ci7h 71,

As for the (—1, —1)-degenerations (4) and (5), we can prove C;" " "D Ci™b 7D
similarly.

Now we consider the remaining (—1, —1)-degeneration (3). By letting b;,=
¢;=p;=q;=s;=t;=u;=0 in the case (6), we get

12(m+n—1)

Z- T12(m+n) ~

AT)  fuuT)
Jau(T)  D(T)

where

n—1 n—i—1 m—1
A(T)= —T*+ Z <2an—i" Z alan—i—l>T2i+ Z {(2_5i,0)an-—i
i=m I=1 i=0

n—i—1 m-—i
2i
- Z alan—i—l_zrlrm—i—l+1 T,
=1 =1

m—1 m—i—1
D(T)=’T2m+ Z {(2_5i,0)dm-i_ Z dldm—i—l} TZi,
i=0 I=1



CLASSICAL SYMMETRIC PAIRS 195

m—1 m—i—1
Ja(T)= ‘Zo (’m—i_ > rzdm—i—z>T2'+1 )

1=1
In order that the relation
A T
< (T) f41( )>~diag(T2'”_2, T2n+ 2)
fai(T) D(T)

holds, we must have

m—n+k

k=1
(20) Q=bint— Y @l 1— Y Fmopsk-141 (n—m+2<k<n)
=1 =1

k-1
@) Q=4ud~ ) ddi=0  (2<k<m)
=1

k—1
22 n— Y rnd,=0 (Q2<k<m).
1=1
Suppose that the above equalities (20)-(22) hold and that d; #0+#r,. Then we get
A(T T
( (1) fal )>~diag(d1 T2"=2 d, A(T)—T(r2T* '+ TA(T))).
Ja(T)  D(T)
If we write A4,: =2a,‘—z;‘=_11 aa,_, (1<k<n—m+1), we have
dAT) =TT '+ TAT)=T>"*2—(A, +d )T +(d1 A, — A)T*" 2 + - -
+(d1An—m— An~m+ 1)T2m+(An—m+ 1 _r%)sz_z .
Therefore in order that the relation
AT T
( ( ) f41( )>~diag(T2"“2, T2n+2)
Ja(T)  D(T)

holds, it is sufficient to hold the following equalities:

(23) A1+d1=0¢=>2al+d1=0

k k—1
(4) Ay —di4=0 <= 2a,,— ), alak+1—l=d1<2ak- > alak—l> (1<k<n—m)
=1 =1

(25) Aypir—ri=0<=2a, p,,— Y Wby sy =T].
=1
Now we put dy=1%a;,=—1%/2,r;=,/—1¢""™"*! for teC and define a,, - -,
Gy_m+1 by (24); Ay=—1t* (1<k<n—m+1). Then the equalities (23) and (25) hold.
Define d,, - -+, d,, ry, -, ry and a,_ 42, ***, a, by (21), (22) and (20), respectively.
We denote by z(¢) the element Z which is parametrized by ¢ as above. Then z(7) is
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nilpotent and the Young diagram of z(z) is 2n+2, 2m—2) if te C*. As before, we have
{z(1);1e C*}=C BV or {z(1);1e C*} = C{ 1 ™V, where

2n+2

2m—2

To prove {z(1);te C*}=C{™ =1, it is sufficient to show that z(1)>"*'h] #0. We
consider the action of z(z) on the basis:

2(b}=al (1<i<n), z(thal =abi+bl,, (1<i<n—1),
2fal=abt+a,_ b3+ +abr+rp3+r,_ b3+ +rbk,
)bt =da?+a? , (1<i<m—1),
2bi=d,a%+d,_,a3+ - +d,a?.

Therefore we have
2" 2blebl+C{bl, b3, -, bl_},

2)* " 'bieay+Clal, a}, -+, a, 1},
m
Z(t)"bie Y, ki B2+ C{bL, bY, -+, b},
k=1

21" i er,(diat+ad)+rn_i(dal+ad)+ - +ry(d, -0t +a})
+r\d,at+d,_a3+ - +dal)+Clal,a}, -, a,},

where C{v,, - - -, v} is the C-span of vectors v, - - -, v,€ V. Since the coefficient of a2
in z(5)*"*1b} is

r,+rdy=rd, +r1d1=2\/-—_1t"_"'+3;£() ,

we have z(7)*"* b} #0. Hence we conclude C{ "D Climh 71,
Thus the proof of Theorem 3 is completed.

(2.9) Connection with Sekiguchi’s Problem. Let g a complex simple Lie algebra
and G the adjoint group of g. Let 6 be an involution of the algebraic group G. We
consider the symmetric pair (g, f) defined by (G, 0). Let N(p),eq (resp. N(p)p,, 1€SP. N(P)sing)
be the smooth part (resp. the principal K,-orbit, resp. the singular locus) of N(p). Let
N(p)iing be the union of open Ky-orbits in N(p)y,e. Let x: p—a/W~C" be the invariant
morphism, where a is a Cartan subspace of p, W= Ng(a)/Zs(a) is the Weyl group of the
pair (g, f) and /=dim a (cf. [Sel]). We also consider the open subvariety

N(p);={XeN(p);rk(dy)x>1—1} .
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Then the following problems and conjecture were posed by Sekiguchi ([Sel]).
PrOBLEM I. Determine the K,-orbits in N(p).
PrOBLEM II. Determine the closure relation of Kg-orbits in N(p).

ProBLEM III. Determine the union N(p)g,, of open Kg-orbits in N(p)sin-

PrOBLEM IV. Determine the smooth equivalence classes Sing(N(p), K,X) (cf. (3.1))
for X' € N(p)sing-

CoNJECTURE 1. N(p); contains N(p)ging-

For the symmetric pairs (sl(n, C), o(n, C)), (sl(n, C), sp(n, C)), (si(m+n, C), sl(m,
C)+sl(n, C)), these problems are already solved in [Sel]. So let us consider the problems
and the conjecture for the remaining classical symmetric pairs (o(m+n, C),
o(m, C)+o(n, C)), (v(2n, C), gl(n, C)), (sp(m+n, C), sp(m, C)+sp(n, C)), (sp(2n, C),
gl(n, C)).

Problems I and II are almost solved by Proposition 1 and Theorem 3. Only the
group Ad(K(¥)) in (1.2) and the above K, (which act on p and have the same identity
component) are a little bit different.

Let us consider Problems III and IV. Let V' be an (g, w)-space such that dim V,=m
and dim V,=n. Note that m=n if o= —1. Recall that the symmetric pair (g(V), ¥(}))
defined by the (e, w)-space V is given as follows:

(o(m+n, C), o(m, C)+o(n, C)) (e 0)=( 1, 1)

(o(21, C), gl(n, C) (@ o) =( 1, —1)

V)=
GILIN=1 (pmtn, ©), spim, ©)+5p(n, ©) (e, ) =(~1, 1)
(sp(2n, C), gl(n, C) (6, @) =(—1, —1)).

To consider problems III and IV, we can take a sufficiently large group which acts
on p=p(V) and contains K,. If m=n, it is easily verified that there exists an element
g.€ G(V) such that g V,=V,, g.V,=V, and Ad(g,) € K,. Moreover such an element g,
is unique up to the conjugation by K(¥). If we put K(V)":=<K(V)u{g.}), then it turns
out that K, Ad(K(V)'). Ad(g,) acts on [N(p)]gw,~ D “X(n, n) by the change of a and b.
On the other hand if m#n, then K, Ad(K(V)). Now we put

s {Ad(K(V)) (m+#n)
Ad(K(V)) (m=n).

0

Then K, acts on p and contains K,. From now on, we consider K,-orbits instead of
K,-orbits.

In Table VIII, we summarize the K,-orbits contained in NE)prs NP)reg \N(P)pr>
N(p)ing and Sing(N(p), 0;) for the Kg-orbits O; = N(p)aing (i=1 or i=2). The K,-orbits
contained in N(p),, (resp. N(P)reg \N(P)yrs T€SP. N(P)iing) are given in the first (resp.
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TABLE VIII

(v(2m, C), o(m

, O)+o(m, C)) (m=4)

2m—1
ab- - -ba [~

%}

2m—3
pr—h——
ab---ba
bab

|~

X"+ xy?=0

(v(2m+k, C), o(m+k, C)+o(m, C)) (k=2)

2m+1
ab- - -ba

1%

2m—1
rm———
1) ab- - -ba
k aba
a
2m—1
——t—

@) ba---ab
k+144

a

x"+y?=0

xi+xi+ o +xi, =0

2m+1, C), o(m+ 1

» €)+o(m, €)

2m+1
ab---ba

&

2m—1
——
)] ab- - -ba

2) ba---ab

x4+ y?=0

xy=0

(©(2n, C), gl(n, C)) (n=2m)

2m

ab---ab [~
ab---ab

%)

2m—1

(1) ab- - -ba
ba- - -ab

2m—2

2) ab- - -ab
ab---ab
ab
ab

xy=0

X" Uy +uv,=0

(0(2n, C), gl(n, C)) (n=2m+1)

2m+1

ab- - -ba [~
ba:--ab

2m
e
ab---ab I~
ab---ab
a
b

2m—1

ba- - -ab
ab
ab

ab- - -ba [~

X"+ uvy +uv,=0
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(sp(4m, C), sp(2m, C)+3p(2m, C))

2m 2m—1
Wb -ab Wb ba
ab---ab | _ ab---ba | _ F2w=0
ba: - -ba / Z ab---ba / e
b
b
(sp(dm+2, C), sp(2m+2, C)+sp(2m, C))
2m—1 2m 2m—1
——r— ———\ ——
ab- - -ba ab---ab ) ab- - -ba X"+ uy vy +uy0,=0
ab---ba ba - -ba ab---ba
a ab
a ba
2m—1
———
ba---ab
@) ba---ab 4
a Y up;=0
a i=1
a
a
(sp(dm+ 2k, C), sp(2m+ 2k, C)+sp(2m, C))
2m+1 2m 2m—1
e ——t—— —r—
ab- - -ba ba- - -ba (b -ba
ab- - -ba ab---ab ab- - -ba
2k< a 2k+24 a 1) 2 aba x"+yz+uv=0
: aba
a a :
a
2m—1
’/——'—
ba: - -ab
ba---ab 2k+2
) 2k+43a Y uw=0
. i=1
La
(sp(2n, C), gl(n, C))
2n 2n—2
—— —_——
ab---ab |~ o (1) ab---ab [~ X +y2=0
ab
2n—2
——
) ab---ab [~ X"+ xy?=0
ba

second, resp. third) column and Sing(N(p), ¢;) are given in the fourth column. For an
ab-diagram 7 such that n,(n) =n,(n), n/ ~ corresponds to the K,-orbit which contains the
K(V)-orbit with the ab-diagram 5. Table VIII is obtained by Proposition 1, Theorem
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3 and [Sel, Theorem 4 and Table IV]. We mention that Conjecture I is true in our
cases. We should note that the singularity in N(p) at X € N(p)y;,, is smoothly equivalent
to the simple singularity in the sense of Arnol’d [A] in every case.

3. Singularities in the closure of nilpotent orbits.
(3.1) Smooth equivalence classes.

DerNITION ([KP3]). Consider two varieties X, Y and let xeX, yeY. The
singularity of X at x is said to be smoothly equivalent to the singularity of Y at y if

there exists a variety Z, a point ze Z and two morphism Y Y Z %, X such that
o(2)=x, Y(z)=y and ¢, ¥ are smooth at z. This clearly defines an equivalence relation
among pointed varieties (X, x). We denote by Sing(X, x) the equivalence class to which
(X, x) belongs.

Suppose that an algebraic group G acts on a variety X. Then Sing(X, x)= Sing(X, x’)
if x and x’ belong to the same orbit @. In this case, we denote the equivalence class
also by Sing(X, 0).

REMARK 5. Let (X, x) and (Y, y) be pointed varieties over C. Suppose that
dim X=dim,Y+r for some integer r>0. Then Sing(X, x)=Sing(Y, y) if and only if
some neighbourhoods (in the classical topology) of xeX and (y,0)e YxC" are
analytically isomorphic. Therefore various geometric properties of X at x depend only
on the equivalence class Sing(X, x) (cf. [KP3, 12.2]).

The following theorem is the main result of this section.

THEOREM 4. Let 0 <1 be a degeneration of ab-diagrams. Suppose that the first k
rows and the first | columns of 1 and o coincide. Denote by 1 and G the ab-diagrams which
we obtain by erasing these coincident rows and columns of n and o, respectively. Then we
have the following:

(1) &< and Sing(C,, C,)=Sing(C;, C;).

(2) Furthermore, suppose that ¢ and n are (¢, w)-diagrams and that the sum of the
coincident k rows forms an (e, w)-diagram. Then <7 is an (¢, w’):=(—1) e, w)-
degeneration and )

Sing(Cy ), C& ) =Sing(C§~*), C&?).

This is an analogue of the results of Kraft and Procesi [KP2, Proposition 3.1] and
[KP3, Proposition 12.3]. We will treat separately the two steps “cancelling columns”
and “cancelling rows”.

(3.2) Construction of morphisms g and #. Let ¥ and U be vector spaces with
involutions s, and sy, respectively. Put
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n,:=dimV,, ny,:=dimV,, m,:=dimU,, m,:=dimU,,
L*(U, V):={AdeHom(U, V);syAsy=A},
L=V, U):={BeHomV, U); syBs, = — B},
LW, Uy:=L*(U, V)x L~(V, U).
Then K(V)x K(U) acts on L(V, U) by
(9. W4, B)=(gAh™ ', hBg™") (9, e R(V)x R(V), (4, B)e L(V, U)).

We define two morphisms

pV) L E(v,U)-"w5(U), (A4, B)=AB, 74, B)=BA.
Then § (resp. #) is clearly K(V)-equivariant (resp. K(U)-equivariant).

DerFINITION ([KP1]). Let X be an affine variety with an action of a reductive
algebraic group G and Y an affine variety. A morphism ¢: X— Y is called a quotient
map under G if, via ¢, the coordinate ring of Y is identified with the ring of G-invariant
functions on X.

REMARK 6. If¢: X—Yisa quotient map under G and X is a G-invariant closed
subset of X, then ¢(X,) is closed in Y (cf. [MF, Chap. 1, §2]).

PROPOSITION 3. In the above setting, suppose that min{n,, n,} >max{m,, m,}. Then
(1) # is surjective and

Im g={Xep(V);rk(X|y,: Voo Vy)<my, tk(X|y,: V,oV,)<m,}.

Q) #: L(V, U)»pU) and j: L(V, U)-Im j are quotient maps under K(¥) and
R(U), respectively.

Propoéition 3, (1) easily follows from elementary computation of matrices. (2)
follows from Theorem 5, (1) below.

THEOREM 5 (Weyl, [W]). Let Mat(m, n) (resp. Sym(n), resp. Skew(n)) be the set
of all m x n-matrices (resp. n x n-symmetric matrices, resp. n x n-skew-symmetric matrices)
over C. Let J,, be a non-degenerate m x m-skew-symmetric matrix and Sp(m, C) the
symplectic group defined by J,,.

(1) GL(m, C)acts on Mat(l, m) x Mat(m, n) by g(A, B)= (Ag_l, gB). Then the image
of the comorphism of the morphism

Mat(l, m) x Mat(m, n) —— Mat(l, n), (A, B)—— AB

coincides with the ring of GL(m, C)-invariant polynomials on Mat(l, m) x Mat(m, n).
(2) O(m, C) and Sp(m, C) act on Mat(m, n) by left multiplication. Then the image
of the comorphism of the morphism
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Mat(m, n) —— Sym(n) , Ar—"'44
(resp. Mat(m, n) —— Skew(n), A+——'A4J,A)
coincides with the ring of O(m, C) (resp. Sp(m, C))-invariant polynomials on Mat(m, n).

(3.4) Proof of “cancelling columns” of Theorem 4, (1). Let V' be a vector space
with an involution s, and Dep(V) a nilpotent element with an ab-diagram
n: C,=Ad(K(V))D. Put U:=Im DcV. Since s,D=—Dsy, s, stabilizes U. Hence
sy :=S$y|y defines an involution of U and U is a vector space with an involution. In this

situation, we consider the morphisms in (3.3): (V) F L, U) ., p(U). Then we
easily see the following:

LEMMa 8. Let I: Ug VeHomd(U, V) be the inclusion and Dy:=[D: V-U]e

Hom(V, U). Then we have:
(1) (I, Do)e L(V, U), pI, Do)=D, #(I, Do)=[D|y: U~U].
(2) The ab-diagram of D[Ueﬁ(U) is n’ (cf. (1.9)).

REMARK 7. For an ab-diagram #, we have
min{n,(n), ny(n)} >max{n,(n’), ny(n")} .
This is easily verified by considering the case that # has only one row.
As before, we put dim V,=n,, dim V,=n,, dim U,=m,, dim U,=m,. Then by
Lemma 8, (2) and Remark 7, V and U satisfy the assumption in Proposition 3. Now we
put
LY(U, V) :={deL*(U, V);tk A=m,+m, (i.e., A: U-V is injective)} ,
L~(V,U):={BeL~(V,U);tk B=m,+m, (i.e., B: V- U is surjective)} ,
L':=L*U, VYxL (V,Uy<I(V,U),
pV) :={Xep(V);k(X|y,) =my, tk(X]y,)=m,} .

Then we have the following:

LemMA 9. (1) #|z: L'->P(U) is smooth.

Q) AL)=pV) and the map ,5|L~,: L'—-p(V) is locally trivial in the classical
topology with typical fibre K(U).

Since the proof of Lemma 9 is similar to that of [KP2, Lemma 5.2], we omit it.

LemMMA 10. Let C,cp(V) be a nilpotent orbit with an ab-diagram ¢ such that ¢ <n
and that the first columns of n and ¢ coincide. Then we have

(1) p~XC,) is a single orbit under R(V)x K(U) contained in L.

@ #p~NCH=C,-
(3) Put N,:=#"Y(C,). Then p(N,)=C,,
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@ AL nN)=p(V)'nC,
Proor. (1) Take XeC,. Since the first columns of # and ¢ coincide, we have
k(X|y,: Voo Vi)=ny0’)=ny(n’)=rk(D
rk(X,Vb : Vb'-> a) = na(a,) = na(nl) = rk(DlVb : Vb_‘) a) = dlm Ua = ma

(cf. Lemma 4). Hence Xed(V)=p(L). For any (P, Q)eL(V,U) such that
p(P,Q)=PQ=X, since rk(PQ)=rk(X)=m,+m,, we have (P,Q)el’ and hence
p~NC,)cL'. Therefore we have

p~HC)=p"HAARMX) =R(V)p~'(X)=RV)p|r) " (X) .

Vu: Va—> Vb)=dlm Ub=mb N

Since (§|z)” !(X) is a single K(U)-orbit by Lemma 9, (2), 5~ *(C,) is a single orbit under
R(V)x K(U).

(2) Take (P,Q)efp '(C,). Since rk(PQ)=m,+m,, we see that P|, : U,~V,,
Ply,: Uy~ V, are injective and Q|,,: V,-»U, Qly,: V,—»U, are surjective. Since
p(P, Q)=PQ is nilpotent, #(P, Q)=QP is also nilpotent. Let us denote by v the ab-
diagram of QPe C,cp(U). For an even integer 2> 0, let us compare the ranks of the
following two maps:

2h

i P P
[POY|y.: Vo Vid=V. 2o v, Lov, Sou, Bavs v, Lou, Lo v,

2(h—1)

—_—

[QP)u,: Uy Ud=[Uy ¥, S U, Lo Vs 1, U],
Since Q: V,—U, is surjective and P: U,—V, is injective, we have n (¢')" V)=
n(6®)=1k(PQ)|y,: V,»V)=1k(QP)" |y, : Uy~ U,)=nm"*"V) (cf. Lemma 4). Simi-
larly, we have ny((6')*~ V) =n,(v* V) and the same equalities hold for any odd integers
h>0. Therefore we have v=0¢’, i.e., AP, Q)€ C,. and hence #(p~*(C,))=C,..

(3) Since A(I, D)€ C, and (1, Dy)e C,, by Lemma 8, we have C,< (7~ (C,)) <
p(N,). Since N, is a K(U)-stable closed subset of L(V, U) and p is a quotient map
under K(U), p(V,) is closed. Hence C, < j(N,).

Conversely, take Y=(P, Q)€ N,. Since #(¥Y)=QPe C,, p(Y)=PQ is also nilpotent.
Let u (resp. v) be the ab-diagram of g(Y) (resp. #(Y)). Then Cvcﬁ(ﬁ,,)=C_,',,' and hence
v<n'. For any even integer 4>0, we have

n(u®)=rk((PQ)"

a a

h—1
yﬂ:V,,—>V,,)=rk<V,, 2y, Ly P,V>

<tk((QPY"~ |y, : Up—~>U)=n 0" V) <n,(n™).

Similarly, we have n,(u®)<n,(n™) and the same inequalities hold for any odd integer
h>0. Therefore u<n and j(¥)e C,=C,. Hence p(N,)=C,.
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(4) Since p(V)' =p(L’), we have (L' nN,)=p(V) nC,.

Conversely, take a K(V)-orbit C,cp(V)'nC, and XeC, (u<#). Since ny(u')=
rk(X |,,ﬂ)=m,,=nb(n ) and n,(u)y=rk(X [Vb)=m,,=n,,(11 "), the first cloumns of n and u
coincide. Therefore #(5~*(C,))=C, =C, by (2) and §~Y(C,)=N,nL’ by (1). Thus
C,<p(N,n L’) and hence p(V)'nC,< p(L' nN,). q.ed.

Now let us give the proof of ‘“cancelling columns” of Theorem 4, (1). For a
degeneration o <7 of ab-diagrams with a coincident first column, we have constructed
the morphisms

such that #,(3,  }(C,))= C,.. Therefore it is sufficient to show that 7, and g, are smooth
at a point Ye g, }(C,).
Since #: L(V, U)-p(U) is smooth at Ye I (cf. Lemma 9, (1)) and
N,=#"\C,) —C,
! i
£V, U)—"- (V)
is a fibre product, #,: N,—»p(U) is also smooth at Y.
On the other hand, since j |L~,: L'>p(V) is locally trivial with typical fibre K(U)
(cf. Lemma 9, (2)) and L' n N, is a K(U)-invariant closed subset of L',
Prliiam,: L0 Ny—p(L' nN)=8(V) nC, (cf. Lemma 10, (4))
is also locally trivial and hence p,: N,,—» C, is smooth at Y. Therefore the “cancelling

columns” of Theorem 4, (1) is proved.

(3.5) Construction of morphisms p and n. Let V (resp. U) be an (g, w,)-space
(resp. (gy, wy)-space) with an involution s, (resp. sy) and a bilinear form (, ), (resp.

(;)u)- Put
L(V,U):=Hom(V, U), L~(V,U):={XeL(V, U);syXsy=—X}
and define the adjoint X* e L(U, V) of Xe L(V, U) by
(Xv, wy=@, X*u), (ueU,veV).

Then K(U)x K(V) acts on L™(V, U) by (g, h)X=gXh~ ! (Xe L (V, U), (g, h)e K(U) x
K(V)). For an element Y of gl(V), we also consider the adjoint Y*egl(V) defined in
(1.2). Then we easily see the following:

Lemma 11. (1) sE=wysy.

(2) For an element Xe L(V, U), we have (X*)*=¢ye, X. In particular, (XX*)* =
epey XX* and (X*X)* =gyey X*X.

(3) For an element X€ L™ (V, U), we have sy XX*sy=wyw, XX* and sy X* Xs, =
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oo, X*X.
From now on, we suppose that (¢, wy)=(e, w), (gy, wy)=(—¢, —w) and put

n,:=dim V,, n,:=dim Vy, m,: =dim U,, m,:=dim U,. By Lemma 11, we can define two

morphisms

p

(V)= L™(V,U) > p(U), m(X)=XX*, p(X)=X*X.
Moreover, p (resp. n) is K(V)-equivariant (resp. K(U)-equivariant).

PROPOSITION 4. Suppose that min{n,, n,} >max{m,, m,}. Then = is a surjective
quotient map under K(V). On the other hand,

Im p={Xep(V);rk(X

Vﬂ)Smb, rk(X|V,,)Sma}
and p: L™ (V, U)-1Im p is a quotient map under K(U).

Proor. The statements with respect to the images of = and p follow from

elementary computation of matrices. = and p are quotient maps in view of Theorem 5.
q.e.d.

(3.6) Proof of “cancelling columns” of Theorem 4, (2). Let V be an (g, w)-space
with an involution s, and a bilinear form (, ),.. Let D € p(¥) be a nilpotent element with
an (¢, w)-diagram n: De C»*' < p(V). Put U:=Im D< V. Then sy stabilizes U as before
and so we can define an involution s, of U by sy:=sy,|y. Let us consider a bilinear
form |u, v|:=(u, Dv), (u,ve V) on V. Since

[u, v|=(D*u, v)y =(—Du, v)y = —&(v, Du)y = —&(v, Du)y = —¢| v, u| (u,veV)

and the radical of |, | is precisely Ker D, |, | induces a non-degenerate —e-form (, )y
on U=Im D=V/Ker D:

(Du, Dv)y=(u, Dv), (u,velV).
Then we can easily verify that
(syDu, Dv)y = — w(Du, syDv)y (u,vel).

Hence U is a (—e, —w)-space with respect to s, and (, )y.
In this situation, we consider the morphisms p and nin (3.5). LetI: Ug Ve L(U, V)
be the inclusion and D, :=[D: V—-U]e L(V, U). Then we have the following:

LemMA 12. (1) (Dy)*=1.
@ p(Do)=D, n(Do)=[D]y: U~U]eCl "~ p(U).

Let us put
L :={YeL (V,U);rtk Y=m,+m,},
p(V) :={Xep(V);tk(X]y ) =my, tk(X[y,) =m,} .
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Then we have the following:

LemMA 13. (1) x|y: L'>p(U) is smooth.
2 pL)=p(V) and p~Y(p(Y)) is a single orbit under K(U). Moreover
p| L2 L'>p(V) is locally trivial in the classical topology with typical fibre K(U).

Proor. The smoothness of n[ s L'->p(U) (i.e., the surjectivity of (dn)y: L™(V, U)
—p(U), P— PY*+ YP* forany Ye L') and the fact p(L")=p(V)’ follow from elementary
computation of matrices.

Let us prove the local triviality of p|... The group K(V)=GL(V,)x GL(V,) acts on
L™(V,U) (resp. p(V)) on the right by (Y, g)— Yg (resp. (X, g)—g*Xg). Clearly,
p: L=V, U)-p(V)is K(V)-equivariant with respect to these actions. Moreover, we can
verify that L’ and p(V')’ are single orbits under K(¥) and hence p| L. L'-p(V)" is locally
trivial.

Take YeL' and Ze L™ (V, U) so that p(Y)=p(Z) (i.e., Y*Y=Z*Z). Since Y is
surjective and Y* is injective, rk(Z*Z)=rk(Y*Y)=m,+m,. Hence Z is surjective and
Z* is injective: Ze L'. Therefore Ker Y=Ker(Y*Y)=Ker(Z*Z)=Ker Z and hence we
can take an element he K(U)=GL(U,) x GL(U,) in such a way that Y=hZ. Then
Z*Z=Y*Y=Z*h*hZ. Since Z* is injective and Z is surjective, we have A*h=1, i.e.,
he K(U). q.e.d.

LEMMA 14. Let C&® <p(V) be a nilpotent orbit with an (e, w)-diagram o such that
o <. Suppose that the first columns of n and o coincide. Then we have the following:

() p~ YCE®) is a single K(U)x K(V)-orbit contained in L'.

Q) mp HCEFM)=CH >~

(3) Put Ny:=n""(C >~ ). Then p(N,)=C&?.

@ p(L'nN)=p(¥) nCF),

By using Lemma 13 and Lemma 14, one can easily deduce the proof of the
“cancelling columns” of Theorem 4, (2) from that of Theorem 4, (1) in (3.4). The proofs
of Lemma 14, (1), (2) are similar to those of Lemma 10, (1) (2). We can also prove (3)
and (4) similarly, if we assume Theorem 3. But since we have not proved Lemma 7
which we need to prove Theorem 3 yet, let us give the proof of Lemma 7 here.

Put N:=p~(C®*). Since p is continuous, we have p(N)<p(N). On the other
hand, since N is a K(U)-invariant closed subset of L~ (¥, U) and p is a quotient map
under K(U), p(N) is closed (cf. Remark 6) and hence p(N)=p(N)=C® . Similarly, we
have n(N)=n(N)=C{"*~* by using Lemma 14, (2). Let o be an (¢, w)-diagram in
Lemma 7. Since p(N)=C&®>C& by assumption, there exists YeN such that
p(Y)e C&®. Again by Lemma 14, (2), we have n(Y)e C %~ nn(N)= C{* ~“). Hence
C{r#~®cC ). Thus Lemma 7 is proved.

(3.7) Proof of “cancelling rows” of Theorem 4, (1). To prove the remaining
part of theorem 4, we need the following concept. Let ¥ be a vector space with a linear
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action of an algebraic group G and X a closed G-invariant subvariety of V. Let N be
a subspace of ¥ complementary to the tangent space T,(Gx)< ¥V for a point xe X. Put
S:=(N+x)nX. Then the map GxS—X, (g, s)—gs is smooth at (e, x) and hence
Sing(X, x)=Sing(S, x). S is called a cross section of X at a point xe€ X.

REMARK 8. In the above setting, if X is irreducible or equidimensional, then we
have dim,S'=codim(X, Gx) (cf. [KP3, 12.4]).

Let us give some remarks on the connection of ab-diagrams and Young diagrams.

REMARK 9. (1) For an ab-diagram v, let us denote by Y(v) the Young diagram
which we obtain by replacing a and b by the block []. Then for a nilpotet element
x,€p(V) with an ab-diagram v, Ad(GL(V))x, is just the nilpotent orbit in gI(V)
corresponding to the Young diagram Y().

(2) Ifv<uis a degeneration of ab-diagrams, then.clearly we have Y(v)< Y(u) (for
the definition of the ordering of Young diagrams, see [KP1]).

(3) Let (g,f) be a symmetric pair defined by (G, 8) and x an element of the
associated vector space p. Then we have

dim ¥ —dim p*=dim f—dim p

by [KR, Proposition 5], where £* and p* are the centralizers of x in f and p, respectively.
It follows from the above equality that dim Ad(G)x=2 dim Ad(K,)x. In particular, in
the setting of (1), we have dim Ad(GL(V))x,=2 dim C,.

Now let us give the proof of the “cancelling rows” of Theorem 4, (1). Let V be
a vector space with an involution s and C, (resp. C,) be a nilpotent K(V)-orbit in (V)
with an ab-diagram # (resp. o) such that ¢ <#n. Moreover, we suppose that the first k
rows of n and o coincide. Let v be the ab-diagram which consists of the coincident &
rows and 7 (resp. ) the ab-diagram which we obtain by erasing v from #5 (resp. o):
n=v+1, c=v+4. Let us denote by o; the i-th row of ¢: v=Z:‘=1 05, 6=, ,;0; For
x,€C,, we can take an x,-stable and s-stable direct sum decomposition V'=@®]_, V,,
such that the ab-diagram of x,|yaieﬁ( V,) is o;, where r is the number of rows of a.
Put V,:=@* |V, and V;:=@_,,,V,. Then ¥V, and V; are also vector spaces
with involutions sl,,v and s|V5, respectively. Moreover, x, is decomposed as x,=
(x,, x5)eP(V,)@P(V;) with x,eC, and x;eC; Take x;e€C;cp(V;) and put
X, =(x,, x;)€ C,.

Let us construct four cross sections of the closures of the orbits of x, at x,. First
we put

Y:={Aep(V); AV, cV; AV;cV,}, X:={4 el(V); AV, cV; AV;cV,} .
Then we have the following:
pan=pryeiviey, In=tr)elriex,
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[x, W)@V AI=d(V)@ (Vs [x, XY,
[x,, BV )@P(Vl<tV)@T(Vs),  [x,, YIcX.
Take subspaces N,, N,, N5, N, of gl(V) such that
V)RV =[x, {V)OUVIION,, Y=[x,, X]®N;,
()W) =[x, s(V)®BVNI®N,, X=[x, YI®N,
and put N:=N,®N,®N;®N, N:=N,®N,, No:=N;®N;, Ny:=N,,

S :=(N+x,)n{AdGL(V)x,} , S":=(N"+x,)n {AdGL(V,) x GL(V3)x,} ,

So:=(No+x,)n{AdK(V)x,} , So:=(Np+x,)n{AdK(V,) x K(V5)x,} -

Then S (resp. S’, resp. Sy, resp. S;) is a cross section of the closure of the orbit
under GL(V) (resp. GL(V,) x GL(V;), resp. K(V), resp. K(V,)x K(V;)) of x, at x,. By
Remark 8, we have

dim,_S=codim({AdGL(V))x,}, AdGL(V)x,),

dim, S’ =codim({Ad(GL(V,) x GL(V))x,} , AAGI(V,) x GL(V)x,)
=codim({AdGL(Vo)x;} »  AdGL(V)x;) .

Then by [KP2, Proposition 3.1], we have dim, S=dim,_S’. By the normality of the
closures of GL(V)-orbits in gl(V) ((KP1]), {Ad(GL(V))x,} is normal at x,. But since
Sing(S, x,)=Sing({Ad(GL(V))x,}, x,), S is normal at x, (cf. Remark 5). Since S’ is a
closed subset of S, S” and S coincide in a suitable neighbourhood of x,. By the closure
relation of nilpotent GL(V)-orbits in gl(¥) (cf. [KP1]), we have

S'np(V)=(No+x,)n[(BV,) n {AdGL(V,))x,}) x (B(V5) n {Ad(GL(V5)x;7})]

=(N6+xa)ﬂ[< U C,“>><( U Cuz>:l’
pieD(SY() H2e D(SY()

where we write D(< Y (v)): = {u, € D(n,(v), ny(v)); Y(u,) < Y(v)}. To show that So=(Ng+
x,)n(C, x C;) and S, coincide in a suitable neighbourhood of x,, we need the following
lemma:

LEMMA 15. In the above setting, (No+x,)n(C, x C;) is open in S'np(V)nC,=
s'nC,.

Proor. Put W:={(U,,cp<rey Cu) X (U en< vy Cun)} N Cp We consider the
projection

pl:W—+< U C,‘,>=:W1, Py, y2)=y1 -

n1eD(<Y(v)
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Since W, = p(V,) is a finite union of the closures of K(V,)-orbits and C, is an irreducible
component of W, of the maximum dimension (cf. Remark 9, (3)), C, is open in W,.
q.e.d.

By Lemma 15, there exists a neighbourhood U of x, in S such that Sy,n U=S"nC,n
U. Then we have SnC,nU>S,nU>8,nU=S8"nC,nU. Since S and S’ coincide in
a suitable neighbourhood of x,, S, and S} also coincide in a suitable neighbourhood
of x,, S, and S} also coincide in a suitable neighbourhood of x,. Therefore we have

Sing(C,, C,)=Sing(S,, x,) = Sing(S, x,) = Sing(C, x Cis (x5 X5)) -
Since C, is smooth at x,, we have
Sing(C,, C,)=Sing(C;, x5)=Sing(C;, C;) .
Thus the proof of Theorem 4, (1) is completed.

(3.8) Proof of the “cancelling rows” of Theorem 4, (2). For an (g, w)-space V
with an involution s and a bilinear form (, ), we put

q*(V):={XelV); X*=X}, ¢ (V):={Xep(V); X*=X}.
Then we have

=t @a*(), sV)=p(V)®q (V),

slN=tM@q*M@p(M@q (V), [p(V),q"(V1=q (V).

Now let us prove the “cancelling rows” of Theorem 4, (2). Let V be an (g, w)-space
and C® (resp. C*)) be a nilpotent K(¥)-orbit in p(¥) with an (¢, w)-diagram n (resp.
o) such that ¢ <n. Moreover, we suppose that the first k rows of # and ¢ coincide and
that the sum v of the coincident k rows is also an (¢, w)-diagram. Let us denote by 6 <#
the (&, w)-degeneration which we obtain by erasmg v from o =<n: n=v+n,0=v+o. Let
us decompose s asc=Yy.,_, o;s0 that v=Y " s,and6=Y_,., 0, where o, (1<i<r)
are primitive (¢, w)-diagrams.

Take x, € C® ). Then by the proof of [02, Proposition 2], we can take an x,-stable,
s-stable and (, )-orthogonal direct sum decomposition V= (—B" V,, (therefore each V,,
is also an (g, w)-space with respect to the restrlctlons of s and ( )) such that the
(¢, w)-diagram of x,|,, €p(V,) is o;. Put V,: =@¥ ,V, and V;:=@'_, ., Vo Then
V, and V; are also (e, w)-spaces and x, is decomposed as x,=(x,, xs5)ep(V,) ®p(V5)
with x, e C®* and x;€ C¥ . We denote by X, (resp. Y, resp. X,, resp. Y,) the subspace
of ¥(V) (resp. p(V), resp. g*(V), resp. q~(V)) consisting of endmorphisms 4 such that
AV,c Vs AVz;< V,. Then we have the following:

(V)=tV)etVy) @ X, , pN=p(V)@p(V)®Y,,
q+(V)=q+(Vv)®q+(V6)@X2 , (V)= (V)®q (V)@ Y,,
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n=tr)olrieX,®Xx,), V)=pV,)®p(V)®(Y,®Y,),
[x,, Xil<Y,, [x,X,]c¥,.
Take subspaces N{, N[, Ny, N3 such that
p(V)®@p(Va)=[HV,)®HVs), x,JONT ,
T (V)®a (Va=[a"(V)@a (Vo) x,J® Ny ,
Y, =[X;, x5, JON;, Y,=[X5,x,]J®N;3

and put Ng:=N; ®@N; ®N; ®N3, Nyg:=N{®N, Ng:=N{®N;, Ng':=N{.
Then we have

PN=[HV), x1®No,  BV)®B(Va)=[HV) DTV, x,1®No,
pPIN=[V), x,J®Ng ,  p(V)@p(Va)=[HV,)DHVo), x,J®Ng'

Take x;€ C¥ ' =p(V;) and put x,:=(x,, x;)€ C ),

So:=(No+x,)n{AdK(V)x,} , 0:=(No+x,)n {AdK(V,) x K(V)x,}

Sg :=(Ng +x)n{AdK()x,},  Sg":=(Ng'+x,)n {AdK(V,) x K(Va)x,} -

Then S, (resp. S, resp. Sg, resp. S¢’) is a cross section of C, (resp. C, x Cs, resp.
CE, resp. C&9'x CE?) at x,.

Here we note that S, and S, are constructed in the same manner as those in (3.7).
Therefore S, and S|, coincide in a suitable neighbourhood of x,. By Theorem 3, we have

Sonp(V)=(Ng +x,)n{(p(V)nC)x (p(V5)n Cp)} =(Ng ' +x,)n(CH x CF ) =S5

and hence Sonp(V)>Sg 2S5’ =S,np(V). Therefore S§ and S¢ also coincide in a
suitable neighbourhood of x,. Hence we have

Sing(Cy7, C&)=Sing(S¢, x,)=Sing(S,", x,)

=Sing(C{ x C™, (x,, x7) =Sing(C{"?), €,

where the last equality follows from the smoothness of C** at x,. Therefore the proof
of Theorem 4 is completed.
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