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Introduction. Let X be a complex space form with the complex structure J and
the standard Kaehler metric {, >, M be an oriented 2-dimensional Riemannian manifold
and x: M— X be an isometric minimal immersion of M into X. Then the Kaehler angle
o of x, which is an invariant of the immersion x related to J, is defined by
cos(a)=(Jey, e, >, where {e,, e,} is an orthonormal basis of M. The Kaehler angle gives
a measure of the failure of x to be a holomorphic map. Indeed x is holomorphic if and
only if =0 on M, while x is anti-holomorphic if and only if x=7 on M. In [4], Chern
and Wolfson pointed out that the Kaehler angle of x plays an important role in the
study of minimal surfaces in X. From this point of view, we would like to know all
isometric minimal immersions of constant Kaehler angle in X.

In this paper, we shall mainly discuss this problem when X is a complex space
form of positive constant holomorphic sectional curvature. So, let P*(C) be the complex
projective space with the Fubini-Study metric of constnat holomorphic sectional
curvature 4p. Let S*(K) be a 2-dimensional sphere of constant Gaussian curvature K.
Examples of minimal surfaces of constant Kaehler angle in P*(C), are given in [1] and
[2]: For each integer p with 0<p<n, there exist full isometric minimal immersions
@np: SHK, )~ P"(C), where K, ,=4p/(n+2p(n—p)). Each ¢, , possesses holomorphic
rigidity, that is to say, such two immersions differ by a holomorphic isometry of P"(C).
The Kaehler angle o, , of ¢, , is given by cos(, ,)=(n—2p)/(n+2p(n—p)). Note that
K, ,=2p(1—(2p+ )cos(a, ,))/p(p+1).

Characterizing minimal surfaces of constant Kaehler angle in P"(C), Ohnita [10]
recently gave the following theorem: Let ¢: M— P*(C) be a full isometric minimal
immersion of a 2-dimensional Riemannian manifold M into P*C). Assume that the
Gaussian curvature K of M and the Kaehler angle a of ¢ are both constant on M.
Then the following hold.

(1) If K>0, then there exists some p with 0 <p <n such that K=4p/(n+ 2p(n— p)),
cos(a) =(n—2p)/(n+2p(n—p)) and (M) is an open submanifold of ¢, (S*(K)).

(2) If K=0, then cos(x) =0, that is to say, ¢ is totally real. Such ¢’s were already
classified by Kenmotsu [6].

(3) The case of K<0 is impossible.

In [10], Ohnita conjectured that the theorem will hold without the assumption
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that the Kaehler angle is constant. On the other hand, Bolton et al. [2] conjectured
that, if the Kaehler angle of an isometric minimal immersion x: M— P*(C) is constant,
then the Gaussian curvature of x is also constant, when the immersion is neither
holomorphic, anti-holomorphic nor totally real. They gave an affirmative answer to
this conjecture for n<4. We would like to discuss this conjecture under some additional
conditions. We prove the following:

THEOREM. Let X be a Kaehler manifold of complex dimension n of positive constant
holomorphic sectional curvature 4p and M be a complete connected Riemannian 2-manifold.
Let x: M— X be a full isometric minimal immersion with constant Kaehler angle o, which
is neither holomorphic, anti-holomorphic nor totally real. If the J-invariant first osculating
space of x is of constant dimension on M and the Gaussian curvature K of M satisfies
K> (1—"7cos(a))p/6>0 on M, then K is constant on M. Moreover, x is locally congruent
to either @, 1, ®, 2, OF @, 3.

COROLLARY. Let x: M—X be a full isometric minimal immersion with constant
Kaehler angle o, which is neither holomorphic, anti-holomorphic nor totally real. If the
Gaussian curvature K of M satisfies (1 —5 cos(a))p/3 > K> (1 —7 cos(a))p/6, then x is locally
congruent to @, 3.

The author would like to express particular thanks to Professor K. Kenmotsu for
his advice and encouragement during the development of this work.

1. Preliminaries. Let X be a Kaehler manifold of complex dimension n of
constant holomorphic sectional curvature 4p, and {w,} be a local field of unitary
coframes on X so that the metric is represented by ds®=) w,d,, where «, §, 7, -+ - run
from 1 through n. We denote by {w,;} the unitary connection forms with respect to
{w,}. Then we have,

(1.1) dw, =Y W Aws,  Ogp+ D=0,
(1.2) AW, =3 Way AW+ Qyp
(1.3) Qup=—p(W, A Dp+0,5) 0, A D).

We set w, =05, 1+, 0gp=0,5_1 25— 1 +i0,425—,. Then {6,,_,, 0,,} is a canonical
I-form of the underlying Riemannian structure of X and {0,,_; 551, 024251} is the
Riemannian connection form with respect to {6,,_,, 0,,}. Let {e,,_;. e,,} be the dual
frame of {0,,_,, 6,,}. Then it is an orthonormal frame with Je,,_, =e,,. Such a frame
is called a J-canonical frame.

Let U be a neighbourhood of a point of X. We choose and fix a local orthonormal
system {€,, &,} of vector fields on U which may not be a J-canonical frame. Generalizing
the notion of the Kaehler angle of an immersion x, we use the same notation « defined
by cos(a)=<Jé,, &,). We denote by O the subspace of the tangent space 7,X spanned
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by é,, &,, Jé, and Jé,. If cos?*(x)# 1 on U, then the dimension of 0, is equal to 4 for
each pe U. Let N}, be the orthogonal complement of O} in T,X so that T,X=0,+N .
Since O, and N, are J-invariant subspaces of T,X, we can define vectors &, &,, ey, ¢,,
e; and e, as follows:

éy= —cot(x)é, —cosec(x)Jé, , é,=-cosec(a)Jé; —cot(x)é, ,

(1.4) cos * €, + sin % e cos * e +sin % e
. e = — — e, e,= — )é —)é, ,
1 2 1 2 3 2 2 2 2 4
ey =sin x ¢, —Cos x é e,= —sin x €, +cos a)é
3 2 1 2 3> 4 2 2 2 4 -

{€,, é,, é5, &,} is an orthonormal basis of O, and {e,, e, €3, ¢,} is a J-canonical basis
of O, for peU. This shows that starting from any orthonormal system {é,, é,} of
vectors satisfying {Jé,, &,)> # + 1 on U, we can construct a 4-dimensional subspace O
of T, X generated by {é,, é,, Jé,, Jé,} which has a J-canonical basis {e,, e, e3, e,}. Let
{é,} be a local orthonormal frame on X which extends {é}, é,, &5, €,}, where 4 runs
from 1 through 2n. Let {0} denote its dual frame. Then {e,, e,, e;, e4; &;, A>5} is a
local orthonormal frame such that {e;, e,, €3, ¢,} is J-canonical. Putting w,=0,,_, +
if,,, we have, by (1.4),

(1.5) 0, +i0, = sin<z>w1 —cos<;>@2 :

Orp i +i0,=0, (A=3).

We set cos(B)={Jés, &s». If cos?(B)#1 on an open subset U’ of U, then in the same
way as above the subspace N}, has a splitting with respect to the {&s, &} such that
Ny=0}+N:, pelU’, O} is a J-invariant 4-dimensional subspace of N, spanned by
{€s, &5, J&s, Jég} and N is its orthogonal complement in N). Then we have an
orthonormal basis {&s, &, &;, &} and a J-canonical basis {es, e, e, eg} of O2 over U'.
Let {€;;_1, €5} (A=5) be a J-canonical basis of N? over U and put &,,_;=e,;_; and
é,,=e,; for 1>5. Let {0,,_,,0,,} and {0,,_,.0,,} be dual coframes of {&,,_,,&,,}
and {e,,_;, €,,}, respectively, over U. Putting w,=0,,_, +i0,,, we have the following
relations, by (1.4):
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(1.6) Os+i0= cos(%)ah + sin(%)cb4 ,
0, +i0y= sin<!;>w3 —cos(%)du ,

Oror+iby=w,,  (A25).

Let {054 1.25-15 020~ 1,200 024,25} e the Riemannian connection form with respect
to the orthonormal coframe {0, _,, #,,}. By taking the exterior derivative of (1.6), and
using (1.1) and (1.6), we get

0,,= i{cos2<%)w1 - sin2<%>w22} ,

o 1 .
0,3+i0,,= —<w12 +7(doz-—s1n(oc)(w“ +w22))} )

9~14+i0~24=i{a)12 — (do—sin(a) @ +0)22))}

(1.7 51 7+ i0~27 = {COS<%> Sin(é)wl 3 COS(%) cos(%)wm
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~ ~ o WA
0122-1+10221-4 =COS<?>C‘)1A +sm<?>wu >

(71,2,1+i(:72,2,1=i{cos(%)wu—sin(%>a‘)u}, (A=5).

By taking the exterior derivatives of (1.6),—(1.6)s, we get other identities related
to #,, and w,,, which we omit to show.

2. Minimal surfaces of Kaehler manifold. Let M be an oriented 2-dimensional
Riemannian manifold and x: M— X be an isometric immersion of M into a Kaehler
manifold X of constant holomorphic sectional curvature 4p. Let {&,, é,} be a local
orthonormal frame on M. By definition, cos(«) = {Jé,, &, is the Kaehler function (a is a
Kaehler angle) of x (cf. [4]). The immersion is said to be totally real if cos(a)=0 on M.
It is said to be complex if cos*()=1 on M. We assume that x is not a complex immersion
at a point pe M. In the open subset cos?(x) # 1, we extend {é,, &,} to a neighbourhood
of X and using results of Section 1, we get canonical 1-forms {0, 8, 8, 8,} defined
on the neighbourhood of X. Let {(7,,}, A=1, ---,2n, be a local orthonormal frame on
X which contain the {0}, 0,, 03, §,}. We denote the restriction of {§,} to M by the same
letters. Then we have §,=0 (3<t<2n) on M. Putting ¢ =8, +if,, the induced metric
of M is written as ds?*= ¢¢. By taking the exterior derivative of (1.5) restricted to M,
we get

—;—{doc—ksin(oc)(w11 +w,,)} =ap+bo,
2.1 W, =bp+cd,

cos(%)w,11 =a,¢ +bl$ s

sin<z>w“=bl¢+cl$, 3<i<n,

where a, b, ¢, a;, b, and ¢, are complex-valued smooth functions defined locally on M
and depend only on the choice of {é;, &,}. Let {A,;} be the components of the second
fundamental form so that g, =Zj h,,-j(7j. By using (1.7) and (2.1), all A,;;’s can be expressed
in terms of by a, b, ¢, a;, b, and c;. Indeed, we have

tij
1 _ = _
h3u=——3{a+a+2(b+b)+c+c} ,

i
h312=7(—a+5+C—C_) s
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1 ) _
hyyn= —E—{—a—a+2(b+b)—c—5} ,
i _ _
h411=?{a—a+2(b—b)+c—5} s
1 _ _
h412=7(—a—a+c+c) R
2.2) h422=é{—a+ﬁ+2(b—5)—c+é},
1 _ - _
hyyo1,11= _?{a1+az+2(bz+b_x)+cz+cz} ,
I _ _
h21_1'12=3{—a1+a1+c1——cl} )
1 _ — _
hyi1,22= —“?{_al—a1+2(bl+b}.)_cl_cl} ,
i _ — _
hzx.n=?{aa—ai+2(bz‘bz)+cx—cl} ,
1 _ _
hu,u:?("az—arf‘cx*‘cz) >

i _ — _
h“‘22=—2—{——al+al+2(b,1—bl)—c,1+cl} .

By (2.2), the mean curvature vector of this immersion is written as —(b(é; +ié,)+
ZE (855 +1€,,;)+ [conjugate]). The immersion x is said to be minimal if h, , +h,5, =0
on M for any ¢, or equivalently, if 5=b,=0 on M for any A. x is said to be superminimal
if it is minimal and ¢=0 on M (cf. [4], [6]). Note that a complex immersion is always
minimal and | c|? is a scalar invariant of x.

From now on, we assume that x is minimal. Let K be the Gaussian curvature of
M, defined by df,,= —(i/2)K¢ A ¢. By virtue of (1.6), and (2.1),, the Gauss equation
of x becomes (cf. [6, Prop. 1])

(23) K=(1+3cos*@)p—2(al*+|cl*+}la;*+3 ;1 c:l?) .

By taking the exterior derivative of (2.1) and using the structure equation, we get, for
some locally defined functions a;, ¢;, a;; and c; ; (i=1, 2),
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da—ia§12=a1¢+azd;,
, 2 5 a 5 o 3.
with a,=|a|*cot(®)—).|a,|*tan o +3|¢;|?cot 5 +74—psm(20c),
A i
(2.4) dc+3icl,=cip+c,d,  with ¢;=—accot(a),

~ — . _ o
da,l—2ia,1012—Zauwlu=al,1¢+al,2¢, with amz—calcot(?),
u

~ — . o
dc,1+2ic,1912—Zcuw,lu=cl,1¢+cl‘2¢), with cl‘1=caltan<7>.
u

We put g=e*¢p and @, =Y 4 4;,0,, where k is a locally defined real-valued function
and (a,,) is a unitary matrix (4, u>3). Then we have &, =e*w,, @, =¢™*w, and hence,
by (1.1), we get @y =idk+w,, Byy=—idk+w,y, @1="*wy5, ), B1,a,,=e 0y,
and Y @&,,a,,=e *0,,. By (2.1), we have a=e "*a, c=e’*c, 4,=¢ **a;,a, and
& =e*a,,c,. Thus [al?, |c|?, Y |a,|* and Y | c, |* are scalar invariants of x. We wish to
compute the Laplacians of these functions. Let A be the Laplacian for the metric of M.

LEMMA 2.1. Let x: M— X be an isometric minimal immersion of M into a Kaehler
manifold X of constant holomorphic sectional curvature 4p with the Kaehler angle o.. Then
we have

Ax=4|a|? cot(@)—4Y | a; tan(%) +4Y | ¢, 2 cot(%) +3psin(2a) ,

Alog|c|>=6K+8|al?+4Y Ja; | cos(®) sec2<%>

o

—4Y | ¢;|* cos(x) cosecz<?> —12p cos?() .

Proor. By adding (2.1); to its conjugate, we get da=a¢g+a¢p. Hence da=
ia¢p —a¢). Because of dda=(i/2)(Ax)p A P, we get the formula for Aa by (2.4),. By
(2.4),, we get the formula for Alog|c|?.

REMARK. The first formula in Lemma 2.1 was also proved by Chern and Wolfson
[4, p. 72]. Using this, we get formulas for Alog(sin(«/2)) and Alog(cos(e/2)), which
coincide with the formulas (2.1) and (2.2) in [5], if n=2.

Using Lemma 2.1, we have Alog(| c|?sin?a)=6K, which coincides with (2.2) in
[6]. Hence, in the same way as Theorem 3 in [6], we get the following.

PROPOSITION 2.2. Let X be a complex n-dimensional Kaehler manifold of positive
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constant holomorphic sectional curvature 4p and M a complete connected 2-dimensional
Riemannian manifold. Let x: M— X be an isometric minimal immersion which is not
complex. If K=0, then either c=0 or K=0 on M.

Note that Proposition 2.2 is an extension of Theorem 3 in [6] and Theorem 6.1
in [5].

We assume that K>0 on M, hence ¢c=0 by Proposition 2.2. Let H(¢)=h,,, +ih,;,
with 1=3,4, ---,2n, and we put H=) (H(1))>. Then we get H=4)  a,c; by (2.2).
Hence, | H|? is a globally defined smooth function on M. Using (2.4), we get dH +
4iHf,,=H,¢p, where we put H,=4) (d,c;,+a,c;). Hence A|H|*=2(4K|H|*+
2| H, |?). On the other hand, we have | H|> <4(} | a, |>+ ) | ¢;|*)* by Schwarz’s inequality.
From these and the Gauss equation (2.3), if K>0, | H|? is a subharmonic function
on M bounded above, hence is constnt (=0). We put V,; =) h,,& and V,,=
Y hy1,€,. Then, by (2.2), we have

1 . i _ o
(2.5) Vii= "‘32(“1"‘514‘01"‘01)321—1 +?Z(al—al+c}._c).)321 )

i _ . 1 _ s
Via= _?Z("A‘al—cx"‘ca)euﬂ_?Z(al+al—cl—cl)821'

V,, and V,, are independent of the choice of the normal frame field {é,} (1>3). The
subspace O2 spanned by {V,,, V,, JV,,, JV,,} is called that J-invariant first osculating
space of x. The geometric meaning of | H|? follows from the identity | H|>=(||V,,]|>—
1V1212)2+4{Vyy, V502 We define a subset of M by Q,={peM, V,,(p)=0 or
V12(p)=0}. For the set T)(M) of unit tangent vectors of T,(M), we define a subset of
N, (M) by ATyM))={Y h;X.X;é,Y X&eTYM)}, which is called the ellipse of
curvature in the first osculating space ([5]). Summarizing these computations, we have
the following:

PROPOSITION 2.3. Under the same assumption as in Proposition 2.2, if K>0 on M
and Q,,=0, then the ellipse of curvature in the first osculating space is a circle.

3. Minimal surfaces with constant Kaehler angle. We wish to study a minimal
immersion x: M— X with constant Kaehler angle «, which implies a=0. Suppose that
x is not complex and K>0 on M. Then, by Lemma 2.1 and Proposition 2.2, we have
—4tan(e/2)) |a;|* +4cot(®/2)) | c;|*+3psin(2e)=0 and c¢=0. Hence, the Gauss
equation (2.3) is expressed as Y |a; |+ |c;|>=(1/2)(1+3cos*(®))p —(1/2)K. These
equations give

G.1) Y la, 2 =—;~cosz<%>(p +3p cos(a)—K) ,
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Yleil? =% sin2<%)(p —3p cos(x)—K) .

If K>(1—3 cos(a))p >0, we then have K= (1 — 3 cos(x))p, which means that K is constant.
Hence, by Ohnita’s theorem [10], we conclude that x is locally congruent to ¢, ;.
Summarizing these facts, we get:

THEOREM 3.1. Let M be a complete connected oriented 2-dimensional Riemannian
manifold and X a Kaehler manifold of complex dimension n of positive constant holomorphic
sectional curvature 4p. Let x: M— X be a full isometric minimal immersion with constant
Kaehler angle o which is not complex. If K>(1—3 cos(a))p >0, then K is constant and x
is locally congruent to ¢, . If K>(1+3 cos(a))p >0, then K is constant and x is locally
congruent t0 @, ,—1.

By (3.1), we have Y |a; >~ |c; 1> =(1/2)(4p — K) cos(«). By this and (2.5), we have
Q,)=¢ if cos(®)#0 on M. From now on, we assume that x is not totally real, i.e.,
cos(o) #0.

LEMMA 3.2. Under the same assumptions as in Theorem 3.1 we have
AQ 1 a; 1) =2BK—p—>5p cos@))} | a; 1) +4Y | a,. |,
ARl €21 =203K—p+5p cos@)Y| c; 1) +4Y | cs2|* .

PrOOF. We only give the proof for the formula for A(}’|c; |?), because the other
can be shown in a similar way. By (2.4),, we have d(}_|c; %)=}, {(c;C12+ i1 )0 +
(614,000} and  dey g +ic; 101~ €, 10;, = (tan(e/2)a,c, + tan(a/2)a; e+
(1/2) sec®(a/2)aca;)p + (tan(a/2)a;c, + tan(a/2)a; ,c +(1/2) sec*(a/2)aca;)¢. Hence, we get

dd"(}|c; |2)=21{Zl PR+ Y (s P+l ez ) +(L+ f)+8662<%)| a8 1

*COSCCZ<%>(Z| c11%)?+p cos(@)) | c; |2}¢ IR
where we put L= {tan(a/2)a,c, +tan(x/2)a, ,¢+(1/2)sec*(¢/2)aa,c}c;. By Theorem
2.1, Proposition 2.3 and (3.1),, we have ¢, ; =0, > a,¢; =0 and L=0.

ProOPOSITION 3.3. Let x: M— X be a full isometric minimal immersion with constant
Kaehler angle o, which is neither complex nor totally real. If there exists an open subset
U of M such that K|, <(1—3 cos(a))p, then we have n>4.

Proor. By (3.1), we have V,,#0 and V,,#0 on U, and é,, é,, Jé,, Jé,, V,,,
Vis, JV11, JV,, are linearly independent on U. This means that n>4.

Using the second formula in Lemma 3.2 and (3.1),, we have:
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THEOREM 3.4. Let X be a Kaehler manifold of complex dimension n of positive
constant holomorphic sectional curvature 4p and M a complete connected Riemannian
2-manifold. Let x: M— X be a full isometric minimal immersion with constant Kaehler
angle o, which is neither complex nor totally real. If K> (1—5 cos(a))p/3 (>0) on M, then
K is constant, and we have K=(1—5 cos(a))p/3 or ¥ | ¢; |*=0. In case K=(1—5 cos(a))p/3,
x is locally congruent to ¢, ,, and in case Y | c;|*=0, x is locally congruent to @, ;.

COROLLARY 3.5. Under the same assumption as in Theorem 3.4, if (1—
3 cos(a))p> K> (15 cos(a))p/3, then x is locally congruent to @, ,.

REMARK. Using the first formula in Lemma 3.2, we get a result analogous to
Theorem 3.4: If K> (145 cos(a))p/3 (>0) on M, then K is constant, so that x is locally
~ congruent to ¢, ,_; or ¢,,_,. Hence, we can estimate (3 |c;|?) when cos(x)>0, or
(3 la; 1*) when cos(x)<0. Hence, we may assume cos(a)>0.

Because of Proposition 2.3 and the assumption that x is not totally real, V;, and
V., are perpendicular to each other and of the same lengths. Normalizing these vectors,
we adopt them as a basis of 02, so that &5=V,,/|V,,|l and &=V ,/|V,,|. We put
cos(B)=<J&%5, &>. Then we have cos(B)=0|a;1>=Ylc; D/ la; 2+ lc;l). If
cos(f)= £ 1 on M, then we have ) |a;|*=0 or Y| c,|*=0, and this case is reduced to
Theorem 3.1. Now we assume cos(f)# + 1 at a point of M. Then dim(0O?)=4 in a
neighbourhood U of this point. So, as in Section 1, we get the equations (1.4) and (1.5)
on U. With respect to this new frame, we have V,,=h’,,€s, V,,=h},,€s and
hgi1=h,11=hs12=h;1,=0 (t=7). From these equations, (1.6) and (2.1), we have

3.2 c3= cot(—lg‘)d4 , 4= tan<g>&3 and a;=c¢;=0, “1=9).
Moreover, because of ||V ,||=|V;.l, ¢; and ¢, are both real-valued and c;c,=0. We

may assume c; #0. Hence A%, = —sec(f/2)c; and hg,, =sec(ff/2)c;. Using (2.1), (2.4)
and the facts mentioned above, we get

(o — o
Sm(;)‘”sz =c3¢, COS<E>CU41 =49,

W31 =W4=0;; =W;,=0, (4=5),
(3.3) des+2ic30,,—cy33=03,0 ,
C3Wy3= _04,2¢_’ s C3W;3= “01,25 s (A=5),

da4—2ia4012 -—a4w44=a4,1¢ s
a4w34:_a3,1¢5 a4wl4=—al,1¢’ (125)'

From now on 4, u- - - run from 5 to through n. By taking the exterior derivative
of (3.3) and using the structure equations, we have
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deg 3+ 3icy 2012 —Ca 2040 =C4 229 ,

de, ;+3ic; 0, —%: Cu2@Wiy=C;219+ 220, with ¢; 51 =—c4,0; /a4,
(3.4) das, —31'(13,1512 —a3,1033=0a3,,¢,

da; —31'01'10:2—;(1”,1(0“:(11_1 1¢+aa,12¢; ) with a; 1,=—a; ¢; 5/c3
By the definition of &% and &5, we have 0, ,,_, =0, ,,=0 (A>5). By taking the exterior

derivative of these forms and using the structure equations, we can introduce the
quantities defined by the following equations:

h’5110~5,21—1 =h21—1,1119~1 +hyi-111205
(3.5 h%lzgs,zz—l=h21—1,112§1"‘h21—1,111§2,
'51155,21=h21,111§1 +h21,112§2 )
61206 20=h2111201 — 221110, A=5.

By taking the exterior derivative of (1.6);, we get

O5.21- 14105251 =COS<‘§‘>W31 + Sin(‘é‘)“_’u s

55,2;1 + i0~6,2). = i<COS<§>w31 — Sin<§>a—)“> )

Hence, by (3.3), hy3-1.111> P22-1,1125 P22.111 and h,; 14, are expressed in terms of a; ,

and ¢, , because of h's;; = —hy,, = —sec(B/2)c;. Indeed, we have
1 _ _
hys-1,111= “?(am +a; 1 +¢2+Ci2),
i _ _
hai 1,112 = _?(am —a;,17C4,2 +¢32)»
3.6)

i _ _
haii11 =?(al,l —a,1+¢i2—Ch2) s

haii12= ——2—(01,1 +a;1—¢32,—C52)-

Using these quantities, we define normal vectors V,,; and V,,, in the following way:

Vll 1 =Z(h21— 1,11 1521— 1 +h21,11 152).) and Vl 12 :Z(hZA— 1,11252}.— 1 +h2}.,112e~21)' By
(3.6), V1, and V,,, are of the following forms:
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1 _ o ] _ s
3B Vin= _"Z—Z(al,l +a,1+¢;,+C2)€5, -1 +EZ(‘11,1 —0;1+C1,—C3 2082,

i _ . 1 _ A
Viia= _?Z(al,l —Q5,1—Cu2+C; 28,4 _?Z(am +a;,1—C12,—C32)€3; -

THEOREM 3.6. Let X be a Kaehler manifold of complex dimension n of positive
constant holomorphic sectional curvature 4p and M a complete connected 2-dimensional
Riemannian manifold. Let x: M—X be a full isometric minimal immersion of constant
Kaehler angle o, which is neither complex nor totally real. If there exists an open subset
U of M such that 0<K |U<(1 —5 cos(a))p/3, then we have n>S5.

PrOOF. By assumption, we get K<(1—3 cos(a))p on U. Hence, by Proposition
3.3, we get n>4 and ) |c;|*#0. Assume that ) |c;,/*=0 on U. Then we have
d(}’| ¢;1>)=0. On the other hand, by Lemma 3.2, we have AY | ¢, |* #0, which contradicts
the constancy of Y |c,|*. Hence, we have Y |c; ,|*#0. Using (3.6), we have V,,#0
or V,,,#0 at a point of U. This shows that n>5.

REMARK. Combining Theorem 3.4 and Theorem 3.6, we can give another proof
of the fact that the conjecture by Bolton et al. [2] is affirmative if n<4.

Let {¢', &5} be another local orthonormal frame on M such that &, =cos(k)é, —
sin(k)é, and é’, =sin(k)é, +cos(k)é,. Then we have V', =cos(2k)V,, —sin(2k)V,, and
V' ,=sin(2k)V,, +cos(2k)V,,. On the other hand, by the definition of c;, we have
V1= —sec(B/2)cses and V,,=sec(B/2)c;eq. S0, under such a change, we have, by (3.3),
chy=cs, dy=ay, ¢y =€"%c,, and ¢ ,=e**() a;,¢, ,), where we put w;=) a;,0, for
a unitary matrix (a;,) (5<4, u<n). Hence | c, , |2 and Y| ¢c;.,|? are scalar invariants of
X. :

LEMMA 3.7. Let x: M—>X be an isometric minimal immersion with constant
Kaehler angle o, which is neither complex nor totally real. On an open subset U of M
such that cos(f)# + 1, we have

Alcy, |2 =6Klc, , |2 +4|cy 22 ?
o
+4icy, |2{5602<?> al—| Ca 1?/c3 —21 a1 lz/ai-kp COS(O‘)} s

AYleiaP=6KY |cin P+ 4 lcaa1 P+ Y| ca22?) +4p cos(@)) | ¢, 5 2
=40 | c;2 172 /c3+4] Y G20, */al—8|cy s IZZI cial?/c3
~4C4.22),€120;,1/04—4C4,22) C23,205,1/a4 »

where A runs from S through n.

ProoF. We only prove the formula for A} |c; ,|?) here, because the other can
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be shown in a similar way. By (3.3) and (3.4),, we have

d(Z| Ca21)=2(C22C0 22+ C12Ca21)P +Y(€1,2€1,21 +C12€122)9

dcl'“ +210L21912 —ZC,,,ZICOM

a1 Q4,191 a1 12\
=<—C4,2 P tCq2 22 ¢+ _C4,22—a —Ca2 ¢.

4 a4 4 as

Hence, we can directly calculate dd“(}’|c; ,1?) .

PROPOSITION 3.8. Let M be a complete 2-dimensional Riemannian manifold and
x: M— X be an isometric minimal immersion of constant Kaehler angle a, which is neither
complex nor totally real. If cos(f)# +1 on M and K is strictly positive on M (hence M
is compact), then we have |c, ,|*=0 on M.

ProoF. By (3.2), (3.3), Lemma 3.2 and Lemma 3.7, we have A(a3lc,,|?)=
10Ka3|cq 51> +4|ascq 22 +a4 14,2, which shows that aj|c, ,|* is constant. Hence,
we get | ¢, ,|>=0.

Let HP(f)=h,y 1, +ihyy 4, With1=9, 10, - - -, 2n,and we put H? =) (H®())*. Then
we get H¥=4) a, ,c; , by (3.7), where 4 runs from 5 through n. | H®|? is a globally
defined smooth function on M. By (3.3), (3.4) and Proposition 3.8, we have
dH® + 6iH®0,, =43 (d; 1520 +d;.11¢,2)¢ because of Y(@,1¢,2;, +3d;12¢,,)=0. By
the same calculation as in the proof of Proposition 2.3, we have the following:

PrOPOSITION 3.9. Under the same assumptions as in Proposition 3.8, we have
H?»=0o0n M.

¢}y |ca2 > (5<A<n) is independent of the choice of normal vectors &, 5<1<2n.
By Lemmas 3.2 and 3.7 as well as Propositions 3.8 and 3.9, we have

(3.8 A{C§Z| Ci2 |2} = 2"% Z| Ci2 |2{6K_ p+Tp COS(“)} + 4Z| €3Cy,22FC3,2C;,2 1%,
from which we obtain:

THOREM 3.10. Let X be a Kaehler manifold of complex dimension n of positive
constant holomorphic sectional curvature 4p and M be a complete connected Riemannian
2-manifold. Let x: M— X be a full isometric minimal immersion of constant Kaehler angle -
o, which is neither complex nor totally real. If the J-invariant first osculating space of x
is of constant dimension on M and K> (1—7 cos(a))p/6>0 on M, then K is constant so
that x is locally congruent to either ¢, (, @, , or @, ;.

ProOOF. By Theorem 3.4, we may assume that there exists an open subset U such
that K <(1 —5cos(a))p/3 on U. Hence, by Theorem 3.6, we get Y | c;|*#0and ) |c; , |*#0
at a point of U. Hence by assumption we have cos(f)# +1 on M. By (3.8) we have
6K—p+7p cos(ax)=0, which shows that x is locally congruent to ¢, ;.
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COROLLARY 3.11. Letx: M— X be afull isometric minimal immersion with constant
Kaehler angle o, which is neither complex nor totally real. If (1—5cos(a))p/3>
K>(1—7cos(a))p/6, then x is locally congruent to ¢, ;.
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