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1. Introduction. The second main theorem and the defect relation of slow
moving targets were discussed in [7], where Stoll gave the bound n(n+ 1) for the sums
of defects. The author generalized this result in [5] and gave in [6] examples of
holomorphic mappings and moving targets which have the bound n+ 1. Ru and Stoll
[3] then gave the bound n+1 in the general case. Since their proof is complicated,
however, we give a simpler proof of Ru-Stoll’s theorem in this paper.

2. Statement of the result. Let f be a holomorphic mapping of C into P"(C).
Let f=(f,, - - -, f,) be its reduced representation, i.e., fis a holomorphic mapping of C
into C"*'—{0}. Fix ro>0. We define the characteristic function T(f;r) of f by
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for r>r,. In particular, the characteristic function of a meromorphic function is defined
as that of the corresponding holomorphic mapping of C into P!(C).

For g>n, let g; be g+ 1 holomorphic mappings of C into P"(C) with reduced
representations §;=(g;o, " *, g;») (0<j<g). Assume that the following conditions are
satisfied:

(1) T(g;;r)=0o(T(f;1) as r—>o0 (0<j<q);

(2) g¢;(0<j<q) are in general position, i.e., for any j,, - - -, j, With 0<jo< -+ <
IJn=4q,

det(gjkz)o <ka<nZE0.

By (2), we may assume that g;,#0 (0 <j<g) by changing the homogeneous coordinate
system of P"(C) if necessary. Then put {; =gu/gjo With {;,=1. Let & be the smallest
subfield containing {{;|0<j<q,0<k<n}uC of the meromorphic function field
on C. It is easy to check that T(h; r)=o(T(f; r)) as r— oo for all he K. Furthermore, we
assume
(3) fis non-degenerate over &, i.e., f,, ' -, f, are linearly independent over K.
Put hj=g;0fo+ -+ +9gjufs Then the counting function of g; for f'is defined by
2n
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for r>r,. The defect of g; for fis defined by

S, g):li:xlinf(l_%%’_)).

In this situation, Ru and Stoll proved:

THEOREM (Defect relation).

q
Y. 8(fig)<n+1.
j=o

3. Proof of Theorem. Let p be a positive integer. Let £(p) be the vector space

- generated over C by {]_[0S j<q S | Pjx non-negative integers with Zo<j<q Pu=p}. Since
0<k<n o<k<n

{jo=1, we have £(p)c= £(p+1). Thus we can take a basis {b,, - - -, b} of £(p+1) such
that {b,, - - -, by} is a basis of £(p), where t=dim £(p+ 1) and s=dim £(p). By (3), we
can deduce that b;f, (1<j<t,0<k<n) are linearly independent over C. Put F, =h/g,,
for 0<k<n.
First, we prove that b;F, (1<j<s,0<k<n) are linearly independent over C.
Assume that ), _.__c;b;F,=0 with ¢; e C. Then
0 n

1§o< Z cjkbjth>fl—‘_=0-
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k<n

Since f is non-degenerate over &, we have

Y cubilu=0  (0<i<n).
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These are expressed in terms of matrices as
( Z chbj, T, Z C'jnbj)(Cjk)Osj,kSnE(()’ -, 0).
1<j<s 1<j<s
By the condition (2), det({;)o<j k<. #0, hence we have
Y cubi=0  (0<k<n).

1<j<s
Since by, - - - by are linearly independent over C, we obtain ¢; =0 (1<j<s, 0<k<n).
Hence we conclude that b;F, (1 <j<s, 0<k<n) are linearly independent over C.
Since b;F, (1<j<s,0<k<n) are linear combinations of b;f, (1<j<t,0<k<n)
over C, we can choose fi; € C so that there exists Ce GL((n+ 1)t; C) such that

(b;F, (1<j<s,0<k<n), hy; (s+1<j<t,0<m<n)=(bf, (1<j<t,0<k<n))C,
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where h,; =" ., 0c1<nBebift (+1<j<t,0<m<n). Then we have an equality of
Wronskian determinants
W(b;F,(1<j<s,0<k<n), h,;(s+1<j<t,0<m<n))
=W/ (1<j<t,1<k<n))-det C.

Take a multi-index a=fao, -+ -, o) with distinct oo, - - -, 2,€{0, - - -, ¢}. We apply the

above argument to F, , - -, F, instead of F,, - - -, F,. Then we denote A;,; for 4,,; and
C, (e C—{0}) for det C. Put
W,=W(b;F, (1<j<s,0<k<n), h;;(s+1<j<t,0<m<n))

and
W=Wb;f, 1<j<t,0<k<n)).

Since b;f; (1<j<t, 0<k<n) are linearly independent over C, we have W#0. Then we
have

(0] w,=C,W.
For any fixed ze C, we take distinct indices «o, * - -, @, = o, - * *, B, -, such that
(5 [Fo(2) < - <IF (2SI Fp(2)|< -+ <|Fp, (2)[<0.

Then we have

(6) logll f(2)ll <log| Fy (2) | +log ™ A(2) .

for j=0, - - -, g—n, where

2n
(7 j log™ A(re)d0 = o(T(f; r))

0

and log* x=max(0, log x) for x>0. Indeed, let y,, - - -, 7, be distinct integers with
0<7q, " " *, »<4q. Then the equalities

F, =, Jot+ - +Cyufu for j=0,---,n

and (2) admit the representations
fi= iOA,ZjF” for k=0, ---,n,
=
where A};e & and y is the multi-index (y,, - - -, y,). Therefore we have
lfk(z)ISngIAﬁ,{z)l|F,,,(z)| for k=0,---,nand [=0,---,q—n

by (5), where a=(oy, - - -, ,) and hence
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/@< Y 44| Fpz)| for 1=0,---,q—n.
O<k,j<n

Here if we put A=) % _, . |A4};|, where y ranges over the set {y=(yo, ***.7,)|
Yo» " "+ ¥ distinct and 0<y,, - - -, y,<¢}, then we have (7) because of 4};€ K and the
concavity of log*. Now (6) is clear.

By (4), we obtain

|Fo - Fl°

(8) log W -=log|Fy, -~ F,,qfn|‘—log

|Fay  Fo I

%o
) o |W,|
=log| Fy, Fﬂq,"| —log I*P:* F ISH'?TI&Q» D —s)

—(n+ 1)t —s) log|| /1 +¢,

for some constant ¢,;. We put

b LA
Y Fyy o Fy P e
Then we obtain
2n
9) J log™ D (re’®)d0=S(f;r)
o)

by the lemma of logarithmic derivatives and the concavity of log*, where S(f;r) is a
quantity which satisfies
(10) lim  S(f;r)/T(f;r)=0

r— o, ré¢E

for some subset E of (ry, o0) of finite Lebesgue measure. By (8) we have

|F07'7

- FP .
(1) log|Fy, -+ Fy, P <log-~ | "l +log* D, +(n+1)t—s)log| f|+¢, .

| W
By (6) and (11) we get an inequality
il |FO e Fq I.\‘ + ) ~
(12) s(g—n) log || fll <log o +Y log* D, +(n+1)(t—s) log | fl
+c, logt A+c;
on C for some constants ¢, and c¢;. By integrating this inequality over the circle
{zeC||z|=r} (r>r,), we obtain



DEFECT RELATION 359

s(a—n)T(f; F)SSZZ?ON(J‘, gi N+S( )+ 0+ De—s)T(; 1) +o(T(f; 1) -

Therefore we have

4 N(f,957) o\ SUsn)
,-Zo<'_ TU:n )S"“”"“)(s 1>+T(f;r)

and hence

ié(f, gj)5n+1+(n+1)<i—1>.
j=0

S

By Steinmetz’ lemma (cf. [7, Lemma 3.12]), we have

liminf ' =1.
p—wo S
Thus we have the defect relation
q
Y 8(fig)<n+1.
j=0

REMARK. In the situation of §3, we put

l 2n ) l 2rn )
N,,(r)=~-J~ log | W(re') |d9—-—f log| W(rqe')|db ,
2n J, 2n J,

0,=lim inf N (r)/T(f; r) and @ =lim inf @ ,/s. Then we have

r—o p—

q
of,gp)+0O<n+1
=0

J

by the inequality (12). It is easy to see that 0<@ <n+1. If all {;, are constants, then
W is the Wronskian determinant of f, - - -, f, for all p, and @ can take various values.
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