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Abstract. We investigate the problem of the classification of smooth projective

toric varieties V of dimension d with a given Picard number p over an algebraically

closed field. For that purpose we introduce a convenient combinatorial description of

such varieties by means of primitive relations among d+p integral generators of the

associated complete regular fan of convex cones in ί/-dimensional real space. The main

conjecture asserts that the number of the primitive relations is bounded by an absolute

constant depending only on p. We prove this conjecture for p < 3 and give the classification

of ί/-dimensional smooth complete toric varieties with p = 3.

1. Introduction. Let k be an arbitrary algebraically closed field. A rf-dimensional
algebraic torus T is a product of d copies of the multiplicative group k* of k. A toric
variety V is a normal algebraic variety containing T as a Zariski open dense subset with
an algebraic action of T on V which extends the group law of T. Any toric variety
can be described by a finite system of cones spanned by integer points in the real space
Rd. The reader is referred to [1] for the precise definitions.

In this paper we restrict ourselves to complete smooth toric varieties V. Moreover,
we shall often assume that V is a projective toric variety.

One can notice that any description of smooth toric varieties has two sides: the
combinatorial structure of the corresponding fan and unimodularity conditions on its
generators. The weighted triangulations of (d— l)-dimensional sphere introduced in [7]
is an example of such a description. One of our objectives is to give a new description
of complete smooth toric varieties.

In §2 we introduce the notion of a primitive collection of generators and the notion
of an associated primitive relations among generators. We use these notions to describe
toric varieties. If a toric variety V is projective we define also the degree of a primitive
relation and the distance between a generator and a rf-dimensional cone of the
corresponding fan Σ(V).

All these notions are used in §3 to get some properties of the combinatorial structure
of a d-dimensional fan Σ(V) associated with a toric variety V. It should be remarked
that if the Picard number p(V) > 3 there exist combinatorial types of simplicial poly topes
which do not give rise to any complete regular fan defining a smooth toric variety [2].
We prove that an arbitrary rf-dimensional projective regular fan of cones has a primitive
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collection ^ = {xί9.. .,xk} of its generators such that xx + ••-+xk = 0. The last

statement is a generalization of a result of Oda in [7] for d=2.

Our next purpose is the classification of several types of smooth complete toric

varieties. This problem for d<3 was investigated by Oda and Miyake in [7]. They

obtained the list of all 3-dimensional smooth complete toric varieties with the Picard

number p < 5 which cannot be blown down. It is easy to see that the projective space

is the unique smooth complete ^-dimensional toric variety with p = 1. Recently

Kleinschmidt [4] has classified all smooth complete ^/-dimensional toric varieties with

p = 2. It turns out that all such varieties are projectivizations of a decomposable bundle

over a projective space of a smaller dimension. In this paper we give two generalizations

of this result of Kleinschmidt. First in §4 we give a criterion for a smooth complete

^/-dimensional toric variety V to be produced from a projective space by a sequence of

projectivizations of decomposable bundles. On the other hand, in §§5-6 we give the

classification of all smooth complete ^/-dimensional toric varieties with p = 3.

In §5 we prove strong combinatorial restrictions on a rf-dimensional fan Σ with

d+ 3 generators which generalize the result of Gretenkort, Kleinschmidt and Sturmfels

[2]. After that in §6 we find all primitive relations describing Σ. Finally, in §7 we state

some open questions.
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2. Basic definitions. We first recall some standard definitions used in the geometry

of toric varieties (see [1]).

2.1. DEFINITION. A convex subset σczRd is called a regular d-dimensional cone if

there exists a Z-basis {eί9...9 ed} of the integer lattice ZdaRd such that

σ={λ1e1 + +λded\λieR, ^ >0} .

In this case the elements eί9...9edaτe called generators of Σ.

2.2. DEFINITION. Let σeRd be an arbitrary regular ^/-dimensional cone with

generators el9.. ,9edeZd. For any subset Ecz{el9..., ed} we denote by L(E) the linear

hull of E(\ϊE= 0 , we let L(E) = 0). Then we call σ' = L(E) n σ a face of σ and we write

σ'<σ.

2.3. DEFINITION. A convex subset σ'eRd is called a regular k-dίmensional cone if

there exist a regular d-dimensional cone σeRd and a subset E of its generators such
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that k = dim L(E) and σ' = L(E) n σ is a face of σ. In this case we call E the set of
generators of σ'.

2.4. DEFINITION. A finite system Σ = {σu ..., σs} of regular cones in Rd is called
a complete regular d- dimensional fan if the following conditions hold:

( i ) if σeΣ and σ'<σ then σ'eΣ;
(ii) if σ, σ' are in Σ, then σnσ'-<σ and <τnσ'-<σ';
(iii) /?d = σ1u uσs.
We call any generator of a cone σe Σ a generator of Σ.

Every complete regular ^/-dimensional fan Σ is associated with a smooth complete
J-dimensional toric variety V(Σ). Moreover, two smooth complete d-dimensional toric
varieties V(Σ) and V(Σ') are isomorphic algebraic varieties if and only if the
corresponding fans Σ and Σ' are isomorphic up to unimodular transformation of Zd.

2.5. DEFINITION. A complete regular ^/-dimensional fan Σ in Rd is said to be
projective if there exists a function φ: Rd^>R such that

( i ) φ(Zd)czZ;
(ii) φ is a linear function on each cone of Σ;
(iii) for two arbitrary distinct ^/-dimensional cones σ and σ' in Σ the restrictions

φ\σ and φ|σ, are different linear functions;
(iv) φ is a convex function: <K*) + φ(y)><K x+jO for all x, yeRd.

We call such a function φ a support function on Σ.

It is well-known that a smooth complete ^/-dimensional toric variety V(Σ) is

a projective variety if and only if the corresponding fan Σ has a support function φ (see

[1], [7]).
We introduce now our new definitions.
Let Σ be a complete regular rf-dimensional fan and Let G(Σ) be the set of all

generators of Σ.

2.6. DEFINITION. A nonempty subset & = {xί9..., xk} a G(Σ) is called a,primitive
collection if for each generator xte^ the elements of ^\{x t } generate a (k—l)-
dimensional cone in Σ, while 0> does not generate any ^-dimensional cone in Σ.

2.7. DEFINITION. Let 0> = {xί9..., xh} be a primitive collection in G(Σ). Let S(^)
denote xί + +xfc. The/ocws σ(^) of ^ is the cone in Γ of the smallest dimension
containing S(JP). (It follows from 2.4 (iii) that such σ(^) exists.)

2.8. DEFINITION. Let 9 — {xu . . . , xk} be a primitive collection in G(Σ) and σ(^)
its focus. Let yu . . . , ym be generators of σ(^). It follows from 2.1-2.3 that there exists
a unique linear combination nιy1 + +«m.ym with positive integer coefficients n{ which
is equal to xx + +xk. Then the linear relation
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is called the primitive relation associated with Θ> and is denoted by

Suppose that I1 is a projective regular ^/-dimensional fan with a support function φ.

2.9. DEFINITION. Let &>={xl9..., xk} be a primitive collection in G(Σ) and let

Xi+ " ' +xk-nίy1- - - -nmym = 0

be the associated primitive relation. The integer

- • -nmφ(yj

is called the degree of 0> relative to φ. (It follows from 2.5 (iii), and 2.5 (iv) that Dφ(0>)

is always a positive integer.)

2.10. DEFINITION. Let σ be an arbitrary ^/-dimensional cone in Σ with generators

xί9 . . . , xd and let x be an element of G{Σ). There exists a unique linear combination

+ '" * +adxd with integer coefficients au . . .,ad which is equal to x. The integer

dφ(x, σ) = φ(x) — aιφ(x1)— —adφ(xd)

is called the distance between x and σ. (It follows from 2.5 (iii), and 2.5 (iv) that

dφ(x, σ)>0, and dφ(x, σ) = 0 if and only if xeσ.)

2.11. DEFINITION. Let σ be an arbitrary ^/-dimensional cone in Σ with generators

xu . . . , xd and let x be an element of G(Σ). We call x a nearest generator of Σ relative

to σ if xφσ and for any generator x'φσ, one has dφ(x,σ)<dφ(xf, σ). (It is possible that

σ has several nearest generators.)

We recall the computation of the Picard group Pic(V(Σ)) of a smooth toric variety

V{Σ) associated with a regular fan Σ (see [1], [6], [7]).

2.12. PROPOSITION. There exists a short exact sequence

0 > Zd - ! L F • Pic(F(Σ)) > 0 ,

wλere F is the free abelian group whose generators are the elements ofG(Σ), and the map

ψ is defined by the integer matrix Ψ whose rows consist of coordinates of the corresponding

elements of G{Σ).

2.13. COROLLARY. If Σ is a complete regular fan, then the dual group

can be identified with the group A^V^Σ)) of algebraic l-cycles modulo numerical

equivalence, and it consists of all possible linear relations with integer coefficients among

the elements of G{Σ) c Zά.
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2.14. REMARK. The group Pic( F(2Γ)) consists of all functions δ: Rd -• R which

satisfy 2.5 (i), (ii) modulo integral linear functions. If

a1x1+ + akxk = 0

is an integral linear relation among generators of Σ, which is an element R of A1(V{Σ))9

then

(R,δ} = a1δ(x1)+ - +akδ(xk)

is the corresponding intersection number. Obviously, this number does not change its

value if we replace δ by a sum δ+f, where/ : Rd^>R is an integral linear function. In

particular, the degree of a primitive collection relative to a support function φ is also

an intersection number.

We finish this paragraph by the following important theorem.

2.15. THEOREM. Let Σ be aprojective regular d-dimensional fan of cones in Rd and

let Pτ(Σ) be the cone generated in Aι{V{Σ))®R by all primitive relations. Then Pr(£)

coincides with Mori's cone NE(V(Σ)) of effective 1 -cycles {see [9]).

The proof of this theorem is contained in [6], [8], [9].

3. Some properties. Let I1 be a complete regular d-dimensional fan of cones in Rd.

3.1. PROPOSITION. Let £P = {xu . . . , xk} be a primitive collection in G(Σ) with the

focus σ(0>). Then 0>nσ(0>) = 0.

PROOF. Let {yu . . .,ym} be the generators of σ(^) . It is sufficient to prove that

{xί9..., xk} n {yu . . . , ym} = 0. Assume, for instance, that x1=yί. It follows from the

definition of primitive collections that the element x = x2 + * + xk is in the interior of

the (k— l)-dimensional cone σ' generated by x2,..., xk. On the other hand, it follows

from the equality xx =yx and the primitive relation

that

x2+ '' +*fc = 0 h - l ) . > ; i + * * +nmym,

and the element x = x2 + * * 4- xk is in the interior of the cone σ" generated by yu ..., ym

(if « !>1), or by y2,.. -,ym, (if n1 = l). By 2.4 (ii), one has σ' = σ". The last equality

is possible only if {x2, . . . , xk} = {yu . . .,ym} and « t = 2 , n2=' =nm=\, or if

{x 2 , . . . , xk} = {y2, ...,ym}andnί=n2=- =nm=\.

If σ" is generated by {yu . . . , j m } , then yx must coincide with one x 2 , . . . , xk. This

contradicts the assumption that xί9..., xk are different generators of Σ ϊ

If σ" is generated by {y2,..., >>m}, then {xl9..., xk} = {yί9..., ym}. This contradicts

the fact that yl9..., ym are generators of
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Now we assume that Σ is a projective regular ^-dimensional fan of cones in Rd

with a support function φ.

3.2. PROPOSITION. There exists a primitive collection £P={xu . . . , xk} in G(Σ)

such that the associated primitive relation is of the form

In the other words, the focus σ(£P) = {ϋ).

PROOF. Since I1 is a complete fan, there exist generators xu . . . , xm eG(Σ) and

positive integers au . . . , am such that

We can assume that the sum

has the smallest possible value r (by 2.5 (iii), (iv), r is a positive integer).

Now we shall prove that in fact at= - - - =am=l and {xu.. .,xm} is a primitive

collection in G(Σ).

Obviously, xί9 ..., xm cannot be generators of a cone σeΣ. So, there exists a subset

in {xu . . . , xm} (e.g. {xί9..., xq}) which is a primitive collection. Let

*i + +xq-b1y1 -" ' -bpyp = 0

be the corresponding primitive relation. One has

r = <ti<P(xi)+ " ' +amφ(xj

= (aι-\)φ(x1)+ +(aq-l)φ(xq)

+ <*q+l<P(Xq+l)+ ' ' ' +βm<jΦU + <K*l)+ ' * " + <P(Xq)

>(a, - l)φ(xx)+ +{aq-l)φ(xq)

+ aq+1φ{xq+1)+ +amφ(xn) + b1φ{yι)+ • +bpφ(yp).

On the other hand,

( « 1 - l ) x 1 + +(aq-l)xq + aq+1xq+ί+- - +amxm + b1yι+ +bpyp = 0 .

This contradicts the choice of r unless at= - =am=l,q = m and the subset of generators

{*l5 . . . , xm} is a primitive collection in G(Σ).

3.3. PROPOSITION. Let σ be a d-dimensional cone in Σ and let xu . . . , xd be the

generators of σ. Consider two generators x, x' eG(Σ) which do not belong to σ. By 2.6,

there exists a primitive collection ̂ cz{χ, χu . . . , χd]. Then the following hold:

( i ) if σ(j?) contains x', then dφ(x, σ)>dφ(x\ σ);

(ii) if all generators of σ(0>) are in σ, then dφ(x, σ) = Dφ{&)\

(iii) there exists at most one primitive collection &cz{χ9χu , xd) such that the



SMOOTH PROJECTIVE TORIC VARIETIES 575

focus σ(0>) c σ;

(iv) if x is a nearest generator in G(Σ) relative to σ, then £P is a unique primitive

collection in {x, x 1 ? . . . , xd}, and dφ(x, σ) = Dφ(0>).

PROOF, (i) We first prove that if a primitive collection 9 (e.g., & = {x,xl9...,

x j , k<d), gives rise to a primitive relation

+xk-n1y1- - -nmym = 0 ,

then

(1) dφ(x9 σ)>nίdφ(yu σ)+ +nndφ(yn, σ).

Let yi = biΛx1+ - +bitdxd (bitJeZ), and x = α 1 x 1 + +adxd. Then

a1=n1b11-\-'"-\-nmbmΛ-\ ,

By 2.5 (iii), (iv), we get

φ(*i)+ ''' +φ f c )- fφW>(p(« 1 j 1 + +nmyj .

It follows from 2.5 (ii) that

Hence,

φ(xx) +••••+ φ(xk) + ̂ (x, σ)

>n1φ(y1)+ +nmφ(yj-a1φ(x1)- - -αdφ(xd)

-* i iφ(^ i ) - ' ' * -bltdφ(xd))+ ' ' '

) + *idφ(yi> σ)+ +nmdφ(ym9 σ).

This inequality implies (1). Thus, dφ(x, σ)>dφ(x', σ), if x'=yt for some / (1 <ί<m).
(ii) Let

-h +xk-n1y1— - -nmym = 0

be a primitive relation associated with the primitive collection ^\ Then
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Let yu...,ym be generators of σ (i.e. {yu . . .9ym}ci{xl9. ..,xd}). Using 2.5 (ii), we

get

a1φ(x1)+ +adφ(xd) = nιφ(y1)+ +nmφ(ym)-φ(x1)- -φ(xk) ,

where x = a1x1 + + fld*d. Hence, ^ ( x , σ) = Dφ(0>).

(iii) Assume that there exist two different primitive collections 8PX and ^ 2

 m

such that σ ( ^ t ) a σ and σ(^ 2 ) c σ. Then, from the corresponding primitive relations, we

get two different linear combinations ofxu...,xd which are equal to x. This is impos-

sible, since xu . . . , xd form a basis of Zd.

(iv) This statement is a corollary of (i), (ii) and (iii).

3.4. Γ-invariant Divisors. Every generator xeG{Σ) of a complete regular d-

dimensional fan Σ in Rd gives rise to a complete rugular {d— l)-dimensional fan Σx in

Rd~x corresponding to a smooth Γ-invariant divisor on V(Σ). The fan Σx consists of

images of all cones in Σ containing x via the natural pojection Rd -> Rd~x =Rd/Rζx}.

The following easy statement describes all primitive collections for Σx.

3.5. PROPOSITION, (i) The set G(ΣX) of all generators/or Σx consists of the images

x'eRd/R(x} of all generators x' such that {x, x'} generate a 2-dimensional cone in Σ.

(ii) If {xu .. .,xk} is a primitive collection in G(ΣX), then

{x,xu...,xk}, or {xu...,xk}

is a primitive collection in G{Σ).

PROOF, (i) The first statement is an immediate consequence of 3.4.

(ii) Let {xu - - , xk} be a primitive collection in G(ΣX). By 3.4, x, xί9 , xk are

not generators of a cone in Σ. Hence, there exists a primitive collection ^ c

{x, xί9..., xk}. Since {x, xί9..., xfc}\{xj} generates a cone in Σ for all / (1 <i<k), we

get {xu...,xk}c0>. Thus, ^ = {x, xu...,xk}9 oτ 0> = {xu .. .,xk}.

4. Toric bundles. By [7], using the language of primitive collections and

associated primitive relations, we get the following characterization of toric bundles.

4.1. PROPOSITION. A regular complete d-dimensional fan Σ corresponds to a toric

variety V— V(Σ) which is a toric Pk-bundle over a smooth (d—k)-dimensional toric variety

W if and only if there exists a primitive collection 0> = {x1, ..., xk+1}czG(Σ) such that

( i ) the corresponding primitive relation is

xx+ ' "+xk + 1 = 0 ;

(ii) 9 n 0>' = 0 for any primitive collection 0>' c G(Σ) such that 0>Φ0>'.

4.2. DEFINITION. We say that a regular complete d-dimensional fan Σ is a splitting
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fan if any two different primitive collections in G(Σ) have no common elements.

4.3. THEOREM. Let Σ be a splitting fan. Then the corresponding toric variety V(Σ)

is a projectίvization of a decomposable bundle over a toric variety W which is associated

with a splitting fan of a smaller dimension.

PROOF. By 4.1, we have only to prove the existence of a primitive collection with

zero focus (we cannot use 3.2 without knowing the projectivity of the fan Σ). We prove

the last statement by induction of #G{Σ).

By 3.5 (ii), any divisor Dx.= V(Σ) corresponding to a generator J C ^ G ^ ) on the

toric variety V(Σ) is also associated with a splitting fan. This allows us to apply the

induction hypothesis.

Assume that any primitive collection in G(Σ) has no zero focus. Choose a generator

x0 e G(Σ). Let {xl9 ..., xk} be a primitive collection in G(ΣXo) having zero focus (by the

induction hypothesis, it exists). By 3.5 (ii), we have to consider two cases.

CASE 1. & = {x0, xu . . . , xk} is a primitive collection in G{Σ). It follows from

our choice of the set {x1 ?..., xk} that the sum S(0>) = xo + x1 + +xk is an integral

multiple of x0. By 3.1, S{&) cannot be a positive multiple of x0. Assume that

S(0>)=-axθ9 where aeZ>0. Then

xx+ +xk= — (a+ l)x 0 .

Thus, S(&>) is in the interior of the cone σeΣ generated by {xl9 .. .,xk}. By 3.1,

σnσ (^) = 0 , a contradiction. Hence only the next case is possible.

CASE 2. 0> = {xu . . . , xk} is a primitive collection, and the sum SQP) = x1 + + xk

is an integral multiple of x0.

Since every primitive collection has at least two generators, the number of primitive

collections for a splitting fan Σ is not greater than a half of the number of generators

of Σ. So, there exist two different generators xh XJGG(Σ) and a primitive collection

0>= | χ 1 ? . . . ? χfc} such that the sum S(βP) = x1 + +xk is an integral multiple of both

Xι and Xj. This is possible only if x~ —Xj So, {xh Xj} is a primitive collection with

zero focus.

The statement is proved.

4.4. COROLLARY. A smooth complete toric variety V is produced from a projective

space by a sequence of projectivizations of decomposable bundles if and only if the

corresponding fan Σ(V) is a splitting fan.

4.5. REMARK. One can notice that any complete smooth toric variety with Picard

number 2 is associated with a splitting fan [4].

5. Toric varieties with p = 3: the number of primitive collections. Kleinschmidt

and Sturmfels [5] have proved that an arbitrary smooth complete toric variety V of

dimension d with Picard number p = 3 is projective. Consequently, for any complete
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regular d-dimensional fan with d+3 generators there exists a strictly convex support

function φ : Rd-+R as in 2.5. Thus, the notions of the degree and the distance introduced

in §2 are well-defined.

5.1. Let X={xu..., xd + 3} be an arbitrary set consisting of d+3 elements. We

divide Xinto m nonempty subsets Xo, Xί9 ..., Xm^1 without common elements, where

m = 2/7 + 3 and p is a nonnegative integer. We can assume that

where 5 0

< s i " ' ' <sm-1=d+3 and #Xi = si — si_γ for z>0. It is more convenient in the

sequel to assume that the index / for Xt is an element of the residue ring Z/rnZ. We

denote by $Γf the union

XiVXi + yV ••• u l i + r

5.2. PROPOSITION. Let Σ be an arbitrary complete regular d-dimensional fan with

d+3 generators. Then there exists a nonnegative integer p such that the set

of all generators of Σ can be represented as a union of subsets Xo, Xl9 . . . , Xm- x without

common elements (see 5.1) and the corresponding subsets 3Ct (ieZ/mZ) are exactly all

primitive collections of the generators of Σ.

PROOF. This statement is a simple translation of the well-known description of

combinatorial types of J-polytopes with d+3 vertices from the Gale-transform language

(see [3], [8]) to the one of primitive collections.

5.3. COROLLARY. Let xaeXa, xbeXβ9 xceXγ be three of d+3 generators of a fan

Σ as in 5.2. Then the elements of X\{xa, xb, xc} generate a d-dimensional cone of Σ if

and only if the zero point 0 of the complex plane C is in the interior of the triangle with the

vertices e

2πia/m, e2πiβ/m and e2πiγ/m.

5.4. PROPOSITION. In the situation as in 5.2, one has m<l.

PROOF. Assume that m > 7. Since m is odd, we have m > 9. Choose three generators

xa, xb, xceX such that xaeX0, xbeXt, xceX2t, where m = 3t + t\\t'\<\. By 5.3,
A"\{xa, xb, xc} generates a d-dimensional cone σ of Σ. By 5.2, for each xie{xa, xb, xc}

there exist at least two primitive collections which contain only xt and generators of σ.

This contradicts 3.3 (iv), since at least one generator form the set {xa, xb, xc} is a nearest

generator relative to σ.

5.5. PROPOSITION. In the situation as in 5.2, one has mφl.
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PROOF. Assume that m = Ί. We have seen primitive relations

^(°f V y x— y a x' — Q
<sl\<Λ r) Lu Λ i Lu ur,jΛj — u >

Xi e SCr x'j e σ(3Cr)

where ar j are positive integers and r e Z/7Z. It is convenient to use a picture of heptagon

with the vertices ie2πίrΠ e C (see Figure 1).

5.6. LEMMA. For any OLSZIΊZ, one has

σ ( I α ) n G ( Σ ) c I α H u I α + 5 .

PROOF OF LEMMA 5.6. Choose x f l e l α + 1, xbeXa + 3, xceXa + 6. By 5.3, X\{xα, xb,

xc} generates a ^/-dimensional cone σ in Σ. By 3.3 (iv), in {xa, xb, xc} only xa can be a

nearest generator relative to σ, since xbe&0L + 2nί%'a + 3 and x c e f α + 4 n f α + 5 . By 3.3 (i),

σ(^a) does not contain xb and xc. But we can choose an arbitrary element in 9ί\ as xb.

So, σ(%a)nXa + 3 = 0. Similarly, σ ( f > I α + 6 = 0 . By 3.1, σ(&a)n(XauXa + ίu

X<x + 2) = 0 Thus, the lemma is proved.

We return to 5.5.

We can take α e Z/ΊZ such that

Dφ(STJ = max{Dφ(^β) \ β e Z/ΊZ} .

Choose again xaeXa+ί, xbeXa + 3, xceXa + 6. Using 5.6 and 3.3 (ii), we get

Dφ(&<x) = dφ(xa, σ), where σ is generated by Z\{x f l, xh, xc). We have already seen in

the proof of 5.6 that in {xa, xb, xc} only xa can be a nearest generator relative to σeΣ.

So, dφ(xa, σ)<dφ(xb, σ) and dφ(xa, σ)<dφ(xc, σ). Assume, for instance, that

dφ(xb, o)<dφ{xc, σ). Applying 5.6 after the cyclic permutation αi—>α + 2, one has

xα<£σ(^α + 2 ) . Since xbe#*α + 2 , if follows from 3.3 (i) that xcφσ(&a + 2). Hence, by 3.3 (ii),
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we have Dφ(St>

a + 2) = dφ(xb9 σ). Consequently, Dφ(%aL + 2)>Dφ(%a). This contradicts the

choice of α e Z/7Z. Thus, the case m = 7 is impossible.

Propositions 5.4 and 5.5 imply the following theorem.

5.7. THEOREM. If Σ is a complete regular d-dίmensional fan with d+3 generators,

then the number of primitive collections of its generators is equal to 3 or 5.

If Σ has exactly three primitive collections in G(Σ), then we come to a particular

case of 4.3. In this case the associated smooth toric variety V(Σ) is isomorphic to a

projectivization of a decomposable bundle over a smooth toric variety W of a smaller

dimension with Picard number 2. Hence, we have to investigate only the case of five

primitive collections in G(Σ). This is the object of the next section.

6. Toric varieties with p = 3: the classification of primitive relations. Let Σ be a

complete regular ^-dimensional fan of cones in Rd with d+3 generators and with a

support function φ.

We use the notation of the previous section and assume that G(Σ) contains exactly

five primitive collections 9!'a = XavXa+l9 where αeZ/5Z. In our investigation it is

convenient to use a picture of the pentagon with vertices ie2πiΛ/5 e C (see Figure 2).

6.1. PROPOSITION. Suppose that σ(Xa) n G(Σ)czXu + 3for alloLeZ/5Z. Then for any

oceZ/SZ at least one of the following statements hold:

( i ) σ(&a

(ii) σ(fα

PROOF. It follows from our conditions that σ(^ α + 2)nG(I')c=A r

α and σ($~α+3)n

G(Σ)czXa+1. Assume that there exist xaeXa and xbeXa+ί such that xa$σ(&a + 2) and

xbφσ(^a + 3). Choose an arbitrary element xceXa+3. By 5.3, X\{x α , xb, xc} generates a

FIGURE 2.
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d-dimensional cone σeΣ. Thus, we have two primitive collections

{xa,xb} such that σ($"α + 2 ) , σ(# α + 3)c=σ. This contradicts 3.3 (iii).

The sum S(%"a) of all generators in 3CΛ is denoted by Sa. Let Pa be the sum of all

generators in Xa.

6.2. PROPOSITION. Suppose that σ(S£a) n G(Σ) c J a + 3 for all oc e Z/5Z. 77J<?A2 W/? to

a cyclic permutation of indices, one has So = 0, Sί = P4., S2=0, S3 = Pl9 S4 = P2.

PROOF. Using 6.1 for all α e Z/5Z, one can easily conclude that there exists β e Z/5Z
such that

σ(STβ + 2)nG(Σ) = Xβ and

Thus, we have

where P^εσ(f>

/,+ 2) a n ( i ^ + 3Gσ(^/?) It follows from these two equalities that

β +1 + Pβ + 2 = Pβ + P'β + 3

By 5.3, XβuXβ + 3 is contained in a ^/-dimensional cone σeΣ. So, the focus σ(&β+1) is

generated by a subset in Xβu Xβ + 3. On the other hand, it follows from our conditions

that (σ(^β + 1)f)G(Σ))czXβ+4. Consequently, P'β and P'β + 3 must be zero and Sβ + 2 = Pβ,

Pβ> Sβ + i=® Using again 6.1, we get

or σ(

In the first case, we can repeat the above arguments relative to

σ(&β + t)nG(Σ) = Xβ + 2 and σ(Xβ + 2)nG(Σ) = Xβ.

As a result, we obtain 5^ + 3 = 0, Sβ + 4. = Pβ + 2. In the second case, applying the same

arguments to

σ(3IΓβ + 3)nG(Σ) = Xβ + 1 and σ(Xβ)nG(Σ) =

we get Sβ + 3 = Pβ + ί, Sβ+4 = 0. Thus, the statement is proved.

6.3. PROPOSITION. Suppose that a cone σ(β*α) contains a generator xae Xa + 2. Then

the following statements hold:

( i) I Jn(σ(f

(ii) Sa+2 = 0;

(iii) σ(ara+1)

(iv) σ( f I + 3 )

( V ) S<x + 1 =
 POL + 4? *^α + 3 = ^ α + 1

PROOF, (i) Choose arbitrary xb e Xa, xc eXa + Ar. By 5.3, λ'XI.x^ xb, xc} generates a
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^/-dimensional cone σ in Σ. By 3.3 (i), dφ(xb, σ)>dφ(xa, σ). By 3.3 (iv), xa is not a nearest

generator relative to σ. Consequently, dφ(xa, σ)>dφ(xc, σ) and i & i (7(f a + 1)Uff(fa + 2 )u

σ(βCa) (see 3.3 (i)). Thus, Xa n (σ(S"a+ J u σ ( ^ a + 2 ) u σ(#"a + 3)) = 0 , since xb is an arbitrary

element of X^.

(ii) Assume that there exists xbeXa+ί such that xbeσ{3C0L + 2). Take an element

x c ε I α + 4 . Then A^XJ^, xb, xc} is the set of generators of a ^/-dimensional cone σeΣ.

By 3.3 (i), it follows from i f l e σ ( f α ) that dφ(xb9 σ)>dφ(xa, σ). Similarly, xbeσ(3£a + 2)

implies dφ(xa9 σ)>dφ(xb, σ). This is a contradiction. So, σ (&a + 2)nXoι+ί=0. Using 3.1,

one has (j(fα + 2 ) n ( I α + 2 u I α + 3) = 0 . By 6.3 (i), one has σ(&Oί + 2)nXO[ = 0. It suffices

to prove that (7(fα + 2 ) n J α + 4 = 0 .

Assume that there exists a generator xdeXa + 4 such that x d Gσ(^ α + 4 ) . Using 6.3

(i) after the cyclic permutation αi—>α + 2, we get

This contradicts xaeσ(&a).

(iii) By 6.3 (i) and 3.1, σ(&(X+1)n(Xa + ί u J α + 2 u I α ) = 0 . Assume that there exists

i ί , e l α + 3 n σ ( f f l ( + 1 ) . Using 6.3 (ii) after the cyclic permutation αi—>α+l, one has

σ(^"α + 3) = 0. This contradicts 3.3 (iii), since we have σ(^a + 2) = (τ(^'(X + 3) = 0. Thus,

Suppose that there exists xbεXa + 4. such that xbφσ(&(χ + 4). Take an element xceXa.

Then JΓ\{xα, xb, xc} is the set of generators of a ^/-dimensional cone σeΣ. We get two

primitive collections 3Ca+ι and ,^α + 2 in G(Σ)\{xb, xc) such that ( j ( f α + 1 ) u α ( f α + 2 ) c ( r .

This contradicts 3.3 (iii).

(iv) By 6.3 (i) and 3.1, σ(^'a + 3)n(X(X + 3 u l α + 4 u X a ) = 0. Assume that there exists

xbeXΛ + 2nσ(%'a + 3). Using 6.3 (ii) after the symmetry oι + β\-+(x — β of pentagon and the

cyclic permutation αι—>α+l, one has σ(^"α + 1) = 0. This contradicts 3.3 (iii), since we

have σ(arβ) = σ(arβ + 1) = θ. Thus, α ( i α + 3 ) n G ( Σ ) c I α + ,

Suppose that there exists xbeXa+1 such that xbφσ(&a + 3). Take elements xceXa

and xdeXa + 3. Then X\{x fe, xn xd} is the set of generators of a d-dimensional cone σeΣ.

We get two primitive collections ^ α + 2 and ^ α + 3 in G(Σ)\[xb, xc} such that

σ(^ α + 2)uσ(«^α + 3)c=σ. This contradicts 3.3 (iii).

(v) By 6.3 (iii) and 6.3 (iv), one has

P<x + 1 + ^a + 2 — *̂ a + 1 = ^ α + 4 + ^ ά + 4 ? ^ α + 3 + ^ α + 4 ~ ^α + 3 = ^ α + 1 + ^ ά + 1

where ? i + 4 eσ(f α + 1) and P^ + i 6(j(fα + 3). It follows from these two equalities that

^ α + 2 + ^ α + 3 = ^ α + l ~ l ~ * a + 4

Thus, σ(^ α + 2) n G(Σ) c (JTα+ x u Zα + 4 ) . On the other hand, we have Sα + 2 = 0 (see 6.3 (ii)).

So, />; + 1 = i>; + 4 = 0 and 5 ί

α + 1 = P α + 4 , Sα + 3 = Pα + 1 . The statement is proved.

6.4. COROLLARY. Suppose that a cone σ{3C0) contains a generator xaeXΛ + 2. Then

one has
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( σ ( f α ) u α ( f α + 4 ) ) n G ( I ) c I α + 2 u f α + 3 .

PROOF. Assume, for instance, that there exists xbeXa+1 Π(τ(f α + 4 ). By 6.3. (ii),

after the cyclic permutation αi—>α + 4, one has σ ( ^ α + 1 ) = 0. This contradicts 6.3 (v).

Now we assume that there exists xbεXa + 4 n<j(fα). By 6.3 (ii), after the symmetry

α + βi—>α —β and the cyclic permutation αi—»α+l, one has σ(^*α + 3) = 0. This again

contradicts 6.3 (v).

Using 3.1, we finish our proof.

6.5. PROPOSITION. Suppose that a cone σ(βα) contains a generator xae Xa. Then at

least one and only one of the following statements hold:

( i ) JTα + 3 c z σ ( ^ α )

(ii) Xa + 2^σ(3ra

PROOF. We first assume that there exist xbε!%a + 2 and jcce#>

α + 3 such that

xb$σ(β£Λ + ̂ ) and x^σ^J. Choose an arbitrary element xdeXa. By 5.3, A'NJJCJ,, xc, xd}

generates a ^/-dimensional cone σeΣ. Thus, we have two primitive collections ^ α + 4 ,

&acX\{xb, xc} such that σ(^ α + 4 ) , σ(^a)czσ. This contradicts 3.3 (iii). Hence, the "at

least one" part is proved.

Assume then, for instance, that (i) holds. Since Xa + 2

 u XΛ + 3 ι s a primitive collection,

at least one element xbeXa + 2 is not a generator of σ(^α). So, we have

where P e σ(#"α) is a linear combination of (Xa + 2 u l α + 3 ) \ { ^ } w i t n nonnegative integral
coefficients. On the other hand, it follows from 6.3 (v) that

Λt + 3 + ^ α + 4 = Ptx + 1

These two equalities imply

Hence, σ(^ α + 4 )c iσ(^ α ) . This shows that xbφσ(&a + 4) and I α + 2Φσ(f α +

We can now finish our classification of primitive relations.

6.6. THEOREM. Let us assume that &(X = X0LuX0L+u where αeZ/5Z,

X3 = {tl9 . . . , tP3} , X* = {uu . . . , uP4} ,

andp0 +p1 +p2 +p3 +p* = d+ 3. Then any complete regular d-dimensional fan Σ with the

set of generators G(Σ)= {JXa and five primitive collections Ά\ can be described up to a

symmetry of the pentagon by the following primitive relations with nonnegative integral

coefficients c2, . . . , cP2, bί9 ..., Z?P3:
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PROOF. One of the following two conditions hold:

( i ) σ(&a) nG(Σ)czXa + 3 for all α e Z/5Z,

(ii) up to a symmetry of the pentagon there exists a cone σ($Γα) containing a

generator xae&a + 2.

In the first case, we can use 6.1 and get the above primitive relations for α = 0,

where cί=- = cP2 = b2 = = bP3 = 0.

In the second case, we can use 6.3-6.5 and get the above primitive relations, where

z1=xb, α = 0,

P = c2z2+ + cP2zP2 + b1t1 + + bP3tP3

(We use the notation in the "only one" part in the proof of 6.5).

We can take the set

{υu . . .,vpo,y2, . . .,yPi, z 2 , . . . , zp2, t u . . . , tp3, u2, . . . , uP4}

as a basis of Zd. Thus, tί9 yu v1 are defined by

Ul=-u2-'- -uP4-vί - -vpo + c2z2+ - - +cP2zP2 + bίtί + +bP3tP3 .

7. Open questions. The most interesting problem related to smooth complete

projective toric varieties seems to me the following:

7.1. MAIN CONJECTURE. For any d-dimensional smooth complete toric variety with

Picardnumber p defined by a complete regular fan Σ, there exists a constant N(p) depending

only on p such that the number of primitive collections in G(Σ) is always not more than N(p).

It is easy to see that N(l)=\, N{2) = 2. Using our result in §5, we get #(3) = 5. For

2-dimensional toric variety with p + 2 generators the number of primitive collections

equals (p—l)(p + 2)/2. In connection with the conjecture, it is interesting to ask the

following:

7.2. QUESTION. Does there exist for p>\ a complete regular d-dimensional fan Σ

with p + d generators such that the set G(Σ) contains more than

(p-l)(p + 2)/2

primitive collections!
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