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Abstract. The purpose of this paper is to give a rigidity theorem for real

hypersurfaces in Pn(C) satisfying a certain geometric condition.

Introduction. Let Pn{C) denote an n{ > 2)-dimensional complex projective space

with the metric of constant holomorphic sectional curvature 4c.

We proved in [4] that two isometric immersions of a {In — l)-dimensional

Riemannian manifold M into Pn(C) are congruent if their second fundamental forms

coincide. In general, the type number is defined as the rank of the second fundamental

form. In this paper we shall give another rigidity theorem of the same type:

THEOREM A. Let M be a {In — \)-dimensίonal Riemannian manifold, and i and ϊ be

two isometric immersions of M into Pn{C) {n > 3). Assume that i and ΐ have a principal

direction in common at each point of M, and that the type number of (M, ί) or (M, ΐ) is

not equal to 2 at each point of M. Then i and i are congruent, that is, there is a unique

isometry φ of Pn{C) such that φoi = i.

We shall say that an isometry φ of a real hypersurface M in Pn{C) is principal if

for each point p of M there exists a principal vector v at p such that the vector φ*{v)

is also principal at φ{p), where φ^ denotes the differential of φ at p. Then as an

application of Theorem A we have:

THEOREM B. Let M be a homogeneous real hypersurface in Pn{C) {n>3). Assume

that each isometry of M is principal. Then M is an orbit under an analytic subgroup of

the projective unitary group PU{n+ 1).

Note that all orbits in Pn{C) under analytic subgroups of the projective unitary

group PU{n+ 1) are completely classified in [4].

The authors would like to express their thanks to the referee for his useful advice.

1. Preliminaries. Let M be a {2n— l)-dimensional Riemannian manifold, and i be
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an isometric immersion of M into Pn(C). In this section, let the indices i,j, k, I run from

1 through 2n — 1. Choose a field {el9..., e2n- J of local orthonormal frame on M, and

denote its dual 1-forms by 0f. Then the connection forms θ^ and the curvature forms

Θu are defined by

(1.1) 0 y + 07.. = o and dθi + ΣθijAθj = °,

(1.2) θtj^dθj j
k

respectively. We denote the second fundamental tensor of (M, ή by (H^, and put

Φi = YJJHijθj. Moreover, we denote the almost contact structure of (M, i) by (Jipfk)

Then we have the equations of Gauss and Codazzi,

(1.3) Θtj = φ(A φj + cθt A θj + cΣ(JikJji + V « ) f l * Λ θι

(1.4) # f + X 0, Λ 0,, =

The three tensors H=(Hij), J=(Jij) and/=(/]) satisfy

(1-5)

(1-6)

(1.7)

(1-8)

We denote by ί the rank of the matrix (ify), which is called the (y/?e number of (M, Ϊ)

For another isometric immersion ί of M into PΠ(C) we shall denote the differential

forms and tensor fields of (M, ί) by the same symbol but with a hat.

2. Key lemmas. Let M be a (2«—l)-dimensional Riemannian manifold, and i,

ϊ be two isometric immersions into the complex projective space Pn(C). In the remainder

of this paper, the index α stands for the special index 1 to avoid confusion, and the

indices i9j, k, I run from 2 through In— 1, unless otherwise stated.

In this section, we assume that at each point of M, i and ϊ have a principal direction

in common. Then we can set φa = λaθa and φa = λaθ(X.

LEMMA 2.1. JaiJjk = JaiJjk.
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PROOF. From (1.3) we have

φa A φt + cX(Λ/ i Λ + JxiJjk)θj Λθk = φ~oιΛφi + cΣ{jJik + Jjjk)θj Λ θk .

Taking account of the coefficients of θj Λ θk, we have

(2.1) JajJa~ JΛJij + 2JxiJJk = Jjik - Jj,j + 2JJjk .

Puttingy=/ in (2.1), we have

(2.2) JJU=JJU.

It follows from (2.1) and (2.2) that

(2.3) (V«ί - JJvVjk + (- ΛΛ* + Λ * W i + 2(ΛΛ - W = ° '

(2.4) (JaJJik-Jjώ'hi+(ΛΛ, -J*jJ*k)Jij+2(ΛΛ.--Λi-W* = 0

Adding (2.3) to (2.4), we have

(2-5) {JΛJJik-jJik)Jaj + {JΛJJxi-JJ^Jjk = Q.

Exchanging the role of / and J, we have

(2.6) (Λ A - JjώJ.j+(I/*. - liJ*j)J}k = 0

Multiplying (2.5) by Jak, (2.6) by Jak, and then taking their difference, we find

and hence

(2.7) (ljJai - ΛΛ;)(ΛΛ - Jjik) = 0

If there were indices /, y, k such that

(2.8) . ΛΛΛΛ

then from (2.7) we have JΛJJai — / α i / α j = 0. This, together with (2.5) and (2.6), implies

Jaj = 0 and Jaj = 0, which contradicts (2.8). q.e.d.

LEMMA 2.2. J=±J.

PROOF. We need to consider three cases.

Case I: /al-^0 for some /. Put ε = Jai/J(xi. Then from Lemma 2.1 we have

(2.9) 4 = e/y.

Since « > 3 and rank J=2n — 2, we have ε^O and so

(2.10) JΛi = —JΛi for all i .
ε

From (1.6) we have
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(2.11) e 2 Σ ^ + -U2«+/«2 =

(2.12)

(2.13)

(2.14)

Now we put α = j ; / ί

2 = l - / α

2 and ά = Σfi

2= 1 -/ α

2 . Then it follows from (2.13)

and (2.14) that

(2.15) a = ε2ά.

On the other hand, from (1.6) and (2.2) we have that

γ f2_γ(γ T r\
2_γ(γf f\2_μγf2

LaJj — Lλ LJaiJij I ~ Lλ ZjJ<xiJij ) —J<x LJJj '
j j \ i / j \ i ) J

w h i c h m e a n s ( 1 — a)a = (\— ά)ά, a n d so a = ά or a + ά=l.

From (2.11) and (2.12), we have

This and (2.15) imply

(2.16) ά-ε2a = (n

Regardless of whether a = ά or a + ά=l, from (2.15) and (2.16) we have ε 2 = l since

n > 3, which shows J=±J.

Case II: Jai = 0 for all i and λ2 + λ2>0. Then Lemma 2.1 gives J β i = 0. It follows

from the equation of Gauss (1.3) that

and so

(2.17) (Xaφt-λaφdΛθa = O.

Thus we can write

(2.18) ί.a$i-λ.φi = cft..

Again from the equation of Gauss (1.3) we have

(2.19) φi A φj = φi A φj (mod θk A θt).
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Here we may set φ—λfti. Then cancelling φi and φj from (2.18) and (2.19), we have

Taking account of the coefficients of θa A θh we have

Cjλiλa = O for iφj.

Since λaφ0 or λaφ0, we may assume λaΦ0. Then we have Cjλ — 0 for iΦj. But it is

known that in any non-empty open set U of M there exists a point /? where rank H>2

(cf. [4]). These facts imply that there exists an index /' such that cv = 0, i.e., the vector

ev is a principal direction common to i and ί. Now, the index /' can play the same role

as α. Therefore, since JiΊφ0 for somey, the present case have been reduced to Case I.

Case III: Jai = 0 for all / and λa = λa = O. Then Lemma 2.1 gives Jai = 0. It follows

from (1.6) that fa

2 = l and/α

2 = 1. We may set/β= 1 a n d / α = l .

Denote by K (resp. G) the matrix (HtJ) (resp. (/y)) of degree In —2. In such a

situation we shall show:

(2.20) The matrices K, K, G and G are all non-singular.

(2.21) GK=GK and KG = KG.

(2.22) KGK=cG and KGK=cG.

First, the matrices G and (? are non-singular by (1.6) and fi=fi = 0. From /α i = 0

and (1.7) we have φt= —ΣjJjiθαj or equivalently

(2.23) θαi = ΣΦjJji.
j

Similarly, we have θ<xi = YJJφjJji. Thus these equations show (2.21).

On the other hand, since Jαi = 0, the equation of Codazzi (1.4) implies

(2.24) Aj
i ij

From (2.23) and (2.24) we have (2.22), which shows the non-singularity of K and K.

Thus our assertion was proved.

On the other hand, from the equation of Gauss (1.3) and the fact that 0^=0^ it

follows that

HikHβ-HαHJk + c(JikJjl-JilJJk + 2Ji/kl)

= HikHμ - HnHJk + c(jjβ - Jjjk + 2JtjJkd •

Multiplying (2.25) by Jjk and summing up over j and k, we have

(2.26) KGK+cG + c(G,G}G = KGK-cGGG+c(G, G}G,

where we put (G, <J> = Σ i i J ΛjΛv e t c
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Multiply (2.26) by KG from the left. Then, since KGKGK=KGKGK=cG2K= - d t e t c .

by (2.21) and (2.22), we have

(2 + <G, G})KGG = -2K-(G,G}K, and hence

(2.27) (2 + <G, G ))KG = 2KG + <G, G }KG .

Exchanging the roles of i and ί, we have

(2.28)

Subtracting (2.28) from (2.27), we have KG = KG. It follows from this and (2.27) that

G = εG,

where ε = <G. G}/(G, G>. Consequently we have ε2 = 1 since G2 = G2= —I. q.e.d.

3. The proof of the theorems. We adopt the notation in § 1. From Lemma 2.2

and <90 = <9I7 we have

(3.1) φiΛφj=φiΛφj.

Then, by a well-known lemma of E. Cartan [1], we have at each point of M,

(3.2) if t>3 or ί>3, then φi = εφt ( ε = ± l ) , for /= 1,..., In-1,

(3.3) t + t<\ or t = t.

On the other hand, it is known that in any non-empty open subset of M there

exists a pointp such that t(p)>2 (cf. [4]). Thus from (3.2) we have H= ±Heverywhere

on M. Now Theorem A is reduced to a result in [4, Theorem 3.2]. q.e.d.

PROOF OF THEOREM B. Since M is complete, it follows from a theorem of the first

author of the present paper [3] that there exists a point p0 on M such that ί(po)>3.

Let/? be an arbitary point on M. Then, since Mis homogeneous, there exists an isometry

g of M such that g(po)=P' Since i is principal by assumption, two isometric immersions

i and ϊ=ι°g of M into Pn(C) have a principal direction in common. Then by Lemma

2.2 we have J= ±J. Hence from (3.3) we have 3<ί(po) = t(po).

Since the differential g^ of # is a linear isomorphism, we have

in particular, / > 3 on M. Now by Theorem A there exists a unique isometry φg of

PΠ(C) such that φgoi = iog, and z(M) is just an orbit under the analytic subgroup

{φg; gel(M)} of PU(n+ 1), where /(M) denotes the group of all isometries of M.

q.e.d.

REMARK. The present authors think that Theorms A and B are also valid for

complex hyperbolic spaces Hn{C) with negative constant holomorphic sectional



RIGIDITY FOR REAL HYPERSURFACES 507

curvature 4c, c < 0. The details will be discussed in a forthcoming paper.

REFERENCES

[ 1 ] E. CARTAN, La deformation des hypersurfaces dans Γespace euclidean reel a n dimensions, Bull. Soc.

Math. France 44 (1910), 65-99.

[ 2 ] M. KIMURA AND S. MAEDA, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989),

299-311.

[ 3 ] Y. J. SUH, On type number of real hypersurfaces in Pn(C\ Tsukuba J. Math., 15 (1991), 99-104.

[ 4 ] R. TAKAGI, On homogeneous real hypersurfaces in a complex projective space, Osaka. J. Math. 10

(1973), 495-506.

[ 5 ] R. TAKAGI, Real hypersurfaces in a complex projective space with constant principal curvatures, I, II,

J. Math. Soc. Japan, 27 (1975), 43-53, 507-516.

[ 6 ] T. TAKAHASHI, Homogeneous hypersurfaces in space of constant curvature, J. Math. Soc. Japan 22

(1970), 395^10.

UNIVERSITY OF TSUKUBA CHIBA UNIVERSITY

INSTITUTE OF MATHEMATICS DEPARTMENT OF MATHEMATICS

IBARAKI, TSUKUBA-SHI, 305 FACULTY OF SCIENCE

JAPAN CHIBA-SHI, 260

AND JAPAN

ANDONG UNIVERSITY

DEPARTMENT OF MATHEMATICS

ANDONG, 760-749

KOREA






