Tôhoku Math. J. 44 (1992), 59-68

ON CERTAIN EVEN CANONICAL SURFACES

KAZUHIRO KONNO

(Received February 15, 1991, revised August 2, 1991)

Abstract. We classify even canonical surfaces on the Castelnuovo lines, and show that the moduli space is non-reduced in many cases. We show that, in most cases, the rational map associated with a semi-canonical bundle induces a linear pencill of nonhyperelliptic curves of genus three, and that a nonsingular rational curve with self-intersection number -2 appears as a fixed component of the semi-canonical system. By the latter, we can apply a result of Burn and Wahl to show that they are obstructed surfaces.

Introduction. According to [8], we call a minimal surface a *canonical surface* if the canonical map induces a birational map onto its image. Canonical surfaces with $c_1^2 = 3p_g - 7$ and $3p_g - 6$ were studied in our previous papers [1] and [10] (see also [4] and [8]). These are regular surfaces whose canonical linear system |K| has neither fixed components nor base points.

In this article, we list up those which are even surfaces in order to supplement [1]and [10]. Here, we call a compact complex manifold of dimension 2 an even surface if its second Steifel-Whitney class w_2 vanishes ([8]). This topological condition implies the existence of a line bundle L with K=2L. In a recent paper [9], Horikawa classified all the even surfaces with $p_q = 10$, q = 0 and $K^2 = 24$ (numerical sextic surfaces). Following [9], we consider the rational map Φ_L associated with |L| also in the remaining cases. Recall that most canonical surfaces with $c_1^2 = 3p_g - 7$, $3p_g - 6$ have a pencil |D| of nonhyperelliptic curves of genus 3. Therefore, it is naturally expected that Φ_L should be composed of such a pencil. We show that this is the case, except for numerical sextic surfaces. Let $f: S \rightarrow P^1$ be the corresponding fibration. It turns out that the fact that S is an even surface forces $f_{\star}\mathcal{O}(K)$ to be very special (Lemmas 1.2 and 2.2). Using this, we can determine the fixed part Z of |L|. The remaining problem is to write down the equation of the canonical model. When $K^2 = 3p_g - 7$, we have no difficulty in doing this, since the (relative) canonical image itself is the canonical model. On the other hand, when $K^2 = 3p_a - 6$, we need to study the bi-graded ring $\bigoplus H^0(\alpha D + \beta Z)$ as in [9]. The calculation after Lemma 2.3 is a verbatim translation of [9].

As a by-product, we find that the moduli space is non-reduced in many cases (Theorems 1.5 and 2.5). The point is the presence of a (-2)-curve contained in Z. Then a general result of Burns and Wahl [3] can be applied to show that the Kuranishi space is everywhere singular. As far as surfaces of general type are concerned, such pathological

¹⁹⁹¹ Mathematics Subject Classification. Primary 14J29; Secondary 14J15.

examples were first obtained by Horikawa [7] and, later, by Miranda [11]. These two are put together in a remarkable paper of Catanese [5], where we can find many other obstructed surfaces.

The author would like to thank Professor Eiji Horikawa for sending his recent papers [8] and [9] before publication.

1. The case $c_1^2 = 3p_g - 7$. To simplify the notation, for any divisor Z on a surface S, we write $H^i(Z)$ instead of $H^i(S, \mathcal{O}([Z]))$ and put $h^i(Z) = \dim H^i(Z)$. Divisors and line bundles will be treated interchangeably.

In this section, let S denote an even canonical surface with $c_1^2 = 3p_g - 7$. Recall that it is a regular surface whose canonical system |K| is free from base points [1, §1]. Since $w_2 = 0$, we can find a line bundle L on S which satisfies K=2L. Since L^2 is a positive even integer and since $K^2 = 4L^2 = 3p_g - 7$, there exists a positive integer n safisfying

(1.1)
$$L^2 = 6n + 2, \quad p_g = 8n + 5.$$

Since K=2L, it follows from the Riemann-Roch theorem and the Serre duality that

(1.2)
$$2h^{0}(L) - h^{1}(L) = -\frac{1}{2}L^{2} + \chi(\mathcal{O}_{S}) = 5n + 5$$

In particular, we get

(1.3)
$$h^0(L) \ge \frac{5}{2}(n+1)$$
.

We put $m = h^0(L) - 1$ and consider the rational map $\Phi_L : S \to P^m$ induced by the complete linear system |L|.

LEMMA 1.1. Φ_L is composed of a pencil of nonhyperelliptic curves of genus 3.

PROOF. Suppose that Φ_L induces a generically finite map onto its image V. Since V is a nondegenerate surface in \mathbf{P}^m , we have deg $V \ge m-1$. We consider Φ_L as a rational map of S onto V. Then, it follows from (1.3) that

$$6n+2=L^2 \ge \deg V \deg \Phi_L \ge \frac{1}{2}(5n+1)\deg \Phi_L$$
.

Therefore, we get deg $\Phi_L \le 2$. If deg $\Phi_L = 1$, then we have $p_g = h^0(2L) \ge 4h^0(L) - 6$ (see, e.g., [6, Proposition 3.1]). This is impossible by (1.1) and (1.3). If deg $\Phi_L = 2$, then we have deg $V \le L^2/2 = 3n + 1$. It follows from (1.3) that deg V < 2m - 2. Therefore, V is birationally equivalent to a ruled surface by [2, Lemma 1.4]. This is impossible, since S is a canonical surface. Therefore, Φ_L is composed of a pencil. Since S is a regular surface, it is a linear pencil.

Put |L| = |mD| + Z, where |D| is an irreducible pencil and Z is the fixed part of |L|. Since we have

$$6n+2=L^2=mLD+LZ\ge mLD\ge \frac{1}{2}(5n+3)LD,$$

we get $LD \le 2$. Since $LD = mD^2 + DZ$ and $m \ge 4$, it follows that $D^2 = 0$. If LD = 1, then |D| is a pencil of curves of genus 2. This contradicts the assumption that S is canonical. Therefore, we have LD = 2 and see that |D| is a pencil of curves of genus 3 which must be of nonhyperelliptic type. q.e.d.

Let $f: S \to \mathbb{P}^1$ denote the holomorphic map induced by |D|. Put $f_*\mathcal{O}(K) = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)$, where a, b, c are integers satisfying

(1.4)
$$0 \le a \le b \le c$$
, $a + b + c = p_a - 3$

These integers can be characterized as follows: Let D be a general fiber of f, and consider the restriction map

$$\rho_i: H^0(K-iD) \rightarrow H^0(D, K_D)$$

for any integer *i*. Then *a* is the greatest integer among those *i*'s such that ρ_i is surjective. Note that ρ_0 is surjective since *S* is a canonical surface. Therefore, $a \ge 0$. *c* is the greatest integer among those *i*'s such that ρ_i is a nonzero map, and *b* is the greatest integer among those *i*'s such that we can find three sections $x_0 \in H^0(K-aD)$, $x_1 \in H^0(K-iD)$ and $x_2 \in H^0(K-cD)$ which induce a basis for $H^0(K_D)$.

LEMMA 1.2. a=n-1, b=2n and c=2m=5n+3. In particular, $h^{0}(L)=5(n+1)/2$ and $h^{1}(L)=0$.

PROOF. From [1, Claim III], we see that a, b and c further satisfy

(1.5)
$$a+c \le 3b+2, \quad b \le 2a+2$$

We have K=2L=[2mD+2Z]. Since c is the greatest integer with $H^0(K-cD) \neq 0$, we have $c \ge 2m$. Hence, it follows from (1.3), (1.4) and (1.5) that

$$a=n-1$$
, $b=2n$, $c=2m=5n+3$.

In particular, the equality holds in (1.3). Then we get $h^1(L) = 0$ by (1.2). q.e.d.

By this lemma, we know that n is an odd integer. Therefore, we can find a positive integer k with n=2k-1. Then L=[(5k-1)D+Z]. Furthermore, we have

(1.6)
$$LZ = 2k-2, \quad DZ = 2, \quad Z^2 = -8k,$$

by the proof of Lemma 1.1.

LEMMA 1.3. Z=2G, where G is a nonsingular rational curve satisfying DG=1, LG=k-1, $G^2=-2k$.

PROOF. Let T and F respectively denote a tautological divisor and a fiber of

$$W = \mathbf{P}(\mathcal{O}(2k-2) \oplus \mathcal{O}(4k-2) \oplus \mathcal{O}(10k-2)) \rightarrow \mathbf{P}^{1}$$

We can choose sections X_0 , X_1 and X_2 of [T-(2k-2)F], [T-(4k-2)F] and [T-(10k-2)F], respectively, in such a way that they form a system of homogeneous coordinates on each fiber of $W \rightarrow P^1$. We let (z_0, z_1) denote a system of homogeneous coordinates on the base curve P^1 . Since |K| is free from base points, we get a natural holomorphic map $g: S \rightarrow W$ over P^1 , the (relative) canonical map, which satisfies $K = f^*T$. Put S' = g(S). Then S' is linearly equivalent to $4T - (p_g - 5)F$ (see [1,§1]). The equation of any member of $|4T - (p_g - 5)F|$ can be written as

(1.7)
$$\phi X_1^4 + X_2(\phi_0 X_0^3 + \phi_{2k} X_0^2 X_1 + \phi_{4k} X_0 X_1^2 + \phi_{6k} X_1^3 + \phi_{8k} X_0^2 X_2 + \phi_{10k} X_0 X_1 X_2 + \phi_{12k} X_1^2 X_2 + \phi_{16k} X_0 X_2^2 + \phi_{18k} X_1 X_2^2 + \phi_{24k} X_2^3) = 0 ,$$

where ϕ is a constant and ϕ_i is a homogeneous form of degree *i* in z_0 , z_1 . If it defines S', then it follows from the proof of Claim III in [1,§2] that ϕ and ϕ_0 are both nonzero constants. Furthermore, S' has at most rational double points ([1, §1]).

From the above equation, we know that S' contains a rational curve B defined in W by $X_1 = X_2 = 0$. Note that, in a neighbourhood of B in S', S' is nonsingular, B is defined by $X_1 = 0$, and X_2 vanishes to the fourth order along B. We denote by G the inverse image of B by g. Since $K = [g^*T] = [(10k-2)D + g^*(X_2)]$, we have $2Z = g^*(X_2)$. Therefore, Z is of the form Z = 2G. We clearly have DG = 1.

If the coefficients ϕ 's are sufficiently general, (1.7) defines a nonsingular minimal surface with $c_1^2 = 3p_g - 7$ which is even.

We have shown the following:

THEOREM 1.4. For any even canonical surface S with $c_1^2 = 3p_g - 7$, there exists a positive integer k satisfying $p_g = 16k - 3$. Furthermore, S is the minimal resolution of a surface S' with only rational double points which is defined in $P(\mathcal{O}(2k-2) \oplus \mathcal{O}(4k-2) \oplus \mathcal{O}(10k-2))$ by Equation (1.7).

It would be worth stating here the following:

THEOREM 1.5. The moduli space of even canonical surfaces with $p_g = 13$ and $c_1^2 = 32$ is non-reduced.

PROOF. Let S be an even canonical surface with the above numerical invariants. By Lemma 1.3, S has a (-2)-curve G. In order to show the assertion, it is sufficient to show that its Kuranishi space M is singular at S. Note that, since S is canonical and even, every S_t , $t \in M$, enjoys the same properties. Then, as we have seen in Lemma 1.3, S_t contains a (-2)-curve G_t . However, a result of Burns and Wahl [2] tells us that a general vector in $H^1(S, \Theta_S)$ kills every (-2)-curve on S, where Θ_S denotes the tangent sheaf of S. Since $H^1(\Theta_S)$ is nothing but the Zariski tangent space of M, we see that dim M is strictly smaller than $h^1(\Theta_S)$. Therefore, M cannot be nonsingular

2. The case $c_1^2 = 3p_g - 6$. In this section, we denote by S an even canonical surface with $c_1^2 = 3p_q - 6$. Put K = 2L as before. Then we can find a positive integer *n* satisfying

(2.1)
$$L^2 = 6n$$
, $p_a = 8n + 2$.

If n = 1, such surfaces are numerical sextic surfaces which are completely classified in [9]. Therefore, we assume $n \ge 2$ in the following.

By the Riemann-Roch theorem, we have

(2.2)
$$2h^0(L) - h^1(L) = 5n + 3$$

In particular, we get

(2.3)
$$h^0(L) \ge \frac{1}{2}(5n+3)$$
.

The following can be shown in the same way as in Lemma 1.1.

LEMMA 2.1. If $n \ge 2$, then Φ_L is composed of a pencil of nonhyperelliptic curves of genus 3.

Put |L| = |mD| + Z, where |D| is a pencil of nonhyperelliptic curves of genus 3 and Z is the fixed part of |L|. Then we have LD=2, $D^2=0$. As in §1, let $f: S \rightarrow P^1$ denote the holomorphic map induced by |D|, and put $f_*\mathcal{O}(K) = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)$. The integers a, b and c satisfy (1.4). By [10, Lemma 9.3], these further satisfy

(2.4)
$$a+c \le 3b+3$$
, $b \le 2a+2$.

The following can be shown in the same way as in Lemma 1.2 by using (2.4) instead of (1.5).

LEMMA 2.2. a=n-1, b=2n-1 and c=2m=5n+1. In particular, $h^{0}(L)=(5n+3)/2$ and $h^{1}(L) = 0$.

Let k be an integer with n=2k-1, $k \ge 2$. Then L = [(5k-2)D + Z] and we have

(2.5)
$$LZ = 2k-2, \quad DZ = 2, \quad Z^2 = -8k+2.$$

Though the proof of the following is quite similar to that of Lemma 1.3, we shall need some results in [10].

LEMMA 2.3.
$$Z = 2G_0 + G_1$$
, where the G_i are nonsingular rational curves satisfying

$$DG_0 = 1, LG_0 = k - 1, G_0^2 = -2k; DG_1 = LG_1 = 0, G_1^2 = -2$$

PROOF. As in §1, let T and F respectively denote a tautological divisor and a fiber of

63

q.e.d.

$$W = \mathbf{P}(\mathcal{O}(2k-2) \oplus \mathcal{O}(4k-3) \oplus \mathcal{O}(10k-4)) \to \mathbf{P}^{1}$$

We choose sections X_0 , X_1 and X_2 of [T-(2k-2)F], [T-(4k-3)F] and [T-(10k-4)F], respectively, so that they form a system of homogeneous coordinates on each fiber of $W \rightarrow P^1$. We let (z_0, z_1) denote a system of homogeneous coordinates on P^1 . Since |K| is free from base points, we get a natural holomorphic map $g: S \rightarrow W$ over P^1 which satisfies $K=f^*T$. Put S'=g(S). Then S' is linearly equivalent to $4T-(p_g-6)F$ (see [10, §6]). Using X_i 's, the equation of any member of $|4T-(p_g-6)F|$ can be written as

$$\phi_0 X_1^4 + X_2 (\phi_2 X_0^3 + \phi_{2k+1} X_0^2 X_1 + \phi_{4k} X_0 X_1^2 + \phi_{6k-1} X_1^3 + \phi_{8k} X_0^2 X_2 + \phi_{10k-1} X_0 X_1 X_2 + \phi_{12k-2} X_1^2 X_2 + \phi_{16k-6} X_0 X_2^2 + \phi_{18k-3} X_1 X_2^2 + \phi_{24k-4} X_3^3) = 0 ,$$

where ϕ_i is a homogeneous form of degree *i* in z_0 , z_1 . If it defines S', then it follows from [10, Lemma 9.3] that ϕ_0 and ϕ_2 are not identically zero. Furthermore, S' has only rational double points except for a unique fiber which is a double conic curve (cf. [8] and [10, §9]).

Let G_0 denote the proper inverse image of the rational curve *B* defined in *W* by $X_1 = X_2 = 0$. Note that, on *S'*, *B* is defined by $X_1 = 0$ in a neighbourhood of its generic point. We have $2Z = g^*(X_2)$. Therefore, the above equation shows that *Z* is of the form $Z = 2G_0 + Z'$. It is clear that we have $DG_0 = 1$. Then we get DZ' = 0 by (2.5). We have $LG_0 \le k-1$ by $2k-2=LZ=2LG_0+LZ'$. Combining this with $LG_0 = ((5k-2)D + Z)G_0 = 5k-2+2G_0^2+G_0Z'$, we get $G_0^2 \le -2k$. Since G_0 is a nonsingular rational curve, we have $KG_0 + G_0^2 = -2$. From this, we get $G_0^2 = -2-2LG_0 \ge -2k$. In sum, we get $G_0^2 = -2k$, $LG_0 = k-1$, $G_0Z' = 1$ and LZ' = 0.

Since KZ' = 2LZ' = 0, Z' consists of (-2)-curves. Let G_1 denote the unique irreducible component of Z' with $G_0G_1 = 1$. We have $0 = LZ' = 2G_0Z' + (Z')^2$, that is, $(Z')^2 = -2$. Since $0 = LG_1 = 2G_0G_1 + G_1^2 + G_1(Z' - G_1)$, it follows that $G_1(Z' - G_1) = 0$. Hence, we get $(Z' - G_1)^2 = 0$. Then, Hodge's index theorem shows $Z' = G_1$. q.e.d.

In order to write down the equation of S' explicitly, we follow an idea in [9] to study the bi-graded ring $\bigoplus H^0(\alpha D + \beta Z)$. Though the computation is essentially the same as in [9], we collect it for the sake of completeness.

Let G_i be defined by $\zeta_i \in H^0(G_i)$, $0 \le i \le 1$, and put $\zeta = \zeta_0^2 \zeta_1$. By the choice of b = 4k-3, we can find a section $\xi \in H^0((6k-1)D+2Z)$ which is linearly independent of $z_0^i z_1^{6k-1-i} \zeta^2$, $0 \le i \le 6k-1$, where we regard z_0 , z_1 as a basis for $H^0(D)$. Since

 $((6k-1)D+2Z)G_0 = -2k+1 < 0$, $((6k-1)D+3G_0+2G_1)G_1 = -1$,

we can write $\xi = \xi_0 \zeta_0 \zeta_1$ with some $\xi_0 \in H^0((6k-1)D + 3G_0 + G_1)$. Note that ξ_0 is a nonzero constant on G_0 . Similarly, by the choice of a = 2k - 2, we can find a section $\eta \in H^0((8k-2)D+2Z)$ which is linearly independent of $z_0^i z_1^{8k-2-i} \zeta^2 (0 \le i \le 8k-2)$ and

 $z_0^j z_1^{2k-1-j} \zeta(0 \le j \le 2k-1)$. Since $H^0(K-aD) \to H^0(K_D)$ is surjective, we see that η is a nonzero constant on $G_0 \cup G_1$. Note that ζ^2 , ξ and η induces a basis for $H^0(K_D)$.

By the Riemann-Roch theorem, we have $\chi((12k-3)D+3Z)=22k-2$. Since (12k-3)D+3Z = K + (2k+1)D+Z and |(2k+1)D+Z| contains a connected member, we have $H^{i}((12k-3)D+3Z)=0$ for $i \ge 1$. Therefore, we get $h^{0}((12k-3)D+3Z)=22k-2$. In $H^{0}((12k-3)D+3Z)$, we have the following 22k-3 elements:

$$\begin{cases} z_0^i z_1^{12k-3-i} \zeta^3 & (0 \le i \le 12k-3), \\ z_0^i z_1^{6k-2-i} \zeta \zeta & (0 \le i \le 6k-2), \\ z_0^i z_1^{4k-1-i} \zeta \eta & (0 \le i \le 4k-1). \end{cases}$$

Therefore, there exists a new element ψ . If ψ were zero on G_0 , it is also zero on G_1 . Since one can show $h^0((12k-3)D+5G_0+2G_1)=22k-3$, this is impossible.

We next consider the cohomology long exact sequence for

$$0 \to \mathcal{O}((12k-3)D+3Z) \to \mathcal{O}((12k-2)D+3Z) \to \mathcal{O}_D(3Z|_D) \to 0$$

Since $Z|_D$ is of degree 2, we have $h^0(\mathcal{O}_D(3Z)) = 4$. This and $H^1((12k-3)D+3Z) = 0$ show $h^0((12k-2)D+3Z) = 22k+2$. In $H^0((12k-2)D+3Z)$, however, we have the following 22k+3 elements:

$$\begin{cases} z_0^i z_1^{12k-2-i} \zeta^3 & (0 \le i \le 12k-2), \\ z_0^i z_0^{6k-1-i} \zeta \zeta & (0 \le i \le 6k-1), \\ z_0^i z_1^{4k-i} \zeta \eta & (0 \le i \le 4k), \\ z_0 \psi, \ z_1 \psi, \\ \zeta_1 \zeta_0^2. \end{cases}$$

Therefore, there exists a relation of the form

(2.6)
$$A_1 \psi = A_0 \zeta_1 \zeta_0^2 + A_{4k} \zeta \eta + A_{6k-1} \zeta \zeta + A_{12k-2} \zeta^3,$$

where the A_i are homogeneous forms of degree *i* in z_0 , z_1 . We remark that A_1 cannot be zero as a linear form. By restricting (2.6) to G_1 , we find that A_1 vanishes on G_1 . Geometrically, this implies that G_1 is contained in the fiber defined by $A_1 = 0$. Similarly, by restricting (2.6) to G_0 , we see that $A_0 \neq 0$. Therefore, we may put $A_0 = 1$ and $A_1 = z_0$ by a linear change among z_0 and z_1 . Multiplying ζ to (2.6), we get

(2.7)
$$z_0 \zeta \psi = \xi^2 + A_{4k} \zeta^2 \eta + A_{6k-1} \zeta^2 \xi + A_{12k-2} \zeta^2 .$$

We write the right hand side of (2.7) as $Q(z_0, z_1, \eta, \xi, \zeta^2)$ for simplicity.

We finally look at $H^0((24k-6)D+6Z)$ which is of dimension 100k-17. Here, we have the following 100k-16 elements modulo (2.7):

K. KONNO

$$\begin{array}{ll} & z_{0}^{i} z_{1}^{24k-6-i} \zeta^{6} & (0 \leq i \leq 24k-6) \,, \\ & z_{0}^{i} z_{1}^{18k-5-i} \zeta^{4} \zeta & (0 \leq i \leq 18k-5) \,, \\ & z_{0}^{i} z_{1}^{16k-4-i} \zeta^{4} \eta & (0 \leq i \leq 16k-4) \,, \\ & z_{0}^{i} z_{1}^{12k-4-i} \zeta^{2} \zeta^{2} & (0 \leq i \leq 12k-4) \,, \\ & z_{0}^{i} z_{1}^{10k-3-i} \zeta^{2} \zeta \eta & (0 \leq i \leq 10k-3) \,, \\ & z_{0}^{i} z_{1}^{8k-2-i} \zeta^{2} \eta^{2} & (0 \leq i \leq 8k-2) \,, \\ & z_{0}^{i} z_{1}^{6k-3-i} \zeta^{2} \zeta^{3} \eta & (0 \leq i \leq 6k-3) \,, \\ & z_{0}^{i} z_{1}^{2k-1-i} \zeta^{2} \zeta^{2} \eta^{2} & (0 \leq i \leq 4k-2) \,, \\ & z_{0}^{i} z_{1}^{2k-1-i} \zeta^{2} \zeta^{2} \eta^{2} & (0 \leq i \leq 2k-1) \,, \, . \\ & \eta^{3} \,, \\ & z_{1}^{12k-3} \zeta^{3} \psi \,, \\ & z_{1}^{6k-2} \zeta \zeta \psi \,, \\ & z_{1}^{4k-1} \zeta \eta \psi \,, \\ & z_{1}^{\psi^{2}} \,. \end{array}$$

It follows that we have a relation among these. In this relation, the coefficient of ψ^2 cannot be zero. To see this, suppose that we have a relation which does not involve ψ^2 . Then, by eliminating ψ from this using (2.7), we would get a cubic relation among ξ , η and ζ^2 with coefficients homogeneous forms in z_0 , z_1 . Since ξ , η and ζ^2 induce a basis for $H^0(K_D)$, and since D is a nonhyperelliptic curve of genus 3, this leads us to a contradiction. Therefore, by a suitable change of ψ if necessary, we get a relation of the form

(2.8)
$$\psi^{2} = B_{0}\eta^{3} + B_{2k-1}\xi\eta^{2} + B_{4k-2}\xi^{2}\eta + B_{6k-3}\xi^{3} + B_{8k-2}\xi^{2}\eta^{2} + B_{10k-3}\xi^{2}\xi\eta + B_{12k-4}\xi^{2}\xi^{2} + B_{16k-4}\xi^{4}\eta + B_{18k-5}\xi^{4}\xi + B_{24k-6}\xi^{6},$$

where the B_i are homogeneous forms of degree *i* in z_0 , z_1 . Since ψ is not zero on G_0 , B_0 is a nonzero constant. We write the right hand side of (2.8) as $P(z_0, z_1, \eta, \xi, \zeta^2)$ for simplicity.

Now, eliminating ψ from (2.7) and (2.8), we get

(2.9)
$$Q(z_0, z_1, \eta, \xi, \zeta^2)^2 - z_0^2 \zeta^2 P(z_0, z_1, \eta, \xi, \zeta^2) = 0.$$

Since the holomorphic map $g: S \to W$ is obtained by putting $X_0 = \eta$, $X_1 = \xi$, $X_2 = \zeta^2$, we see that S' is defined by

(2.10)
$$Q(z_0, z_1, X_0, X_1, X_2)^2 - z_0^2 X_2 P(z_0, z_1, X_0, X_1, X_2) = 0.$$

It follows that S' has a double curve along a conic defined by $z_0 = Q = 0$. Let $\sigma: S^* \to S'$ be the blowing up of the conic. In order to describe S^* , we introduce a new variable $w = Q/z_0$ which can be regarded as a fiber coordinate of [2T - (8k - 7)F]. Then S^* is defined in the total space of [2T - (8k - 7)F] by

(2.11)
$$\begin{cases} z_0 w - Q = 0, \\ w^2 - X_2 P = 0. \end{cases}$$

Since $w = \zeta \psi$, we can lift $g: S \to S'$ to $h: S \to S^*$. It is easy to see that (2.11) defines a surface which is singular only at $z_0 = w = X_1 = X_2 = 0$ provided that P and Q are sufficiently general. This singularity is given locally by

$$z_0 w - (X_1^2 + \alpha w^2 + \cdots) = 0$$
.

Therefore, it is a rational double point of type A_1 from which G_1 arises. It may be clear that $X_2 = 0$ induces on S the divisor $2Z = 4G_0 + 2G_1$.

We have shown the following:

THEOREM 2.4. For any even canonical surface S with $c_1^2 = 3p_g - 6$, there exists a positive integer k satisfying $p_g = 16k - 6$. If $k \ge 2$, then S is the minimal resolution of a surface defined by Equation (2.10) in $P(\mathcal{O}(2k-2) \oplus \mathcal{O}(4k-3) \oplus \mathcal{O}(10k-4))$.

Noting that S contains a (-2)-curve G_1 , we can show the following in the same way as in Theorem 1.5.

THEOREM 2.5. The moduli space of even canonical surfaces with $c_1^2 = 3p_g - 6$, $p_q \neq 10$, is non-reduced.

REMARK 2.6. When $p_g = 10$ and $K^2 = 24$, an even canonical surface is one of the following (see, [9]):

- (1) a sextic surface.
- (2) a triple covering of a quadric surface in P^3 .

(3) a surface with a pencil of nonhyperelliptic curves of genus 3.

See also [10, 4.3, 4.4 and §9]. In [9], it is shown that these together with non-canonical ones form an irreducible family. In particular, (-2)-curves on a surface S of type (3) disappear as S deforms to a sextic surface.

REFERENCES

- [1] T. ASHIKAGA AND K. KONNO, Algebraic surfaces of general type with $c_1^2 = 3p_g 7$, Tôhoku Math. J. 42 (1990), 517–536.
- [2] A. BEAUVILLE, L'application canonique pour les surfaces de type général, Invent. Math. 55 (1979), 121-140.
- [3] D. BURNS AND J. WAHL, Local contributions to global deformations of surfaces, Invent. Math. 26 (1974), 67–88.
- [4] G. CASTELNUOVO, Osservazioni intorno alla geometria sopra una superficie, Nota II, Rendiconti del R. Instituto Lombardo, s. II, vol. 24 (1891).
- [5] F. CATANESE, Everywhere non reduced moduli spaces, Invent. Math. 98 (1989), 293-310.
- [6] O. DEBARRE, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), 319-346.
- [7] E. HORIKAWA, Algebraic surfaces of general type with small c_1^2 III, Invent. Math. 47 (1978), 209–248.

[8] E. HORIKAWA, Notes on canonical surfaces, Tôhoku Math. J. 43 (1991), 141-148.

[9] E. HORIKAWA, Deformations of sextic surfaces, preprint (1990).

[10] K. KONNO, Algebraic surfaces of general type with $c_1^2 = 3p_g - 6$, Math. Ann. 290 (1991), 77–107. [11] R. MIRANDA, On canonical surfaces of general type with $K^2 = 3\chi - 10$, Math. Z. 198 (1988), 83–93.

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION

KYUSHU UNIVERSITY

ROPPONMATSU, CHUO-KU, FUKUOKA 810

Japan