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ON CERTAIN EVEN CANONICAL SURFACES
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Abstract. We classify even canonical surfaces on the Castelnuovo lines, and show
that the moduli space is non-reduced in many cases. We show that, in most cases, the
rational map associated with a semi-canonical bundle induces a linear pencill of
nonhyperelliptic curves of genus three, and that a nonsingular rational curve with
self-intersection number —2 appears as a fixed component of the semi-canonical system.
By the latter, we can apply a result of Burn and Wahl to show that they are obstructed
surfaces.

Introduction. According to [8], we call a minimal surface a canonical surface if

the canonical map induces a birational map onto its image. Canonical surfaces with

c\ = 3pg — l and 3pg — β were studied in our previous papers [1] and [10] (see also [4]

and [8]). These are regular surfaces whose canonical linear system | K\ has neither fixed

components nor base points.

In this article, we list up those which are even surfaces in order to supplement [1]

and [10]. Here, we call a compact complex manifold of dimension 2 an even surface if

its second Steifel-Whitney class w2 vanishes ([8]). This topological condition implies

the existence of a line bundle L with K=2L. In a recent paper [9], Horikawa classified

all the even surfaces with/^ = 10, # = 0 and K2 = 24 (numerical sextic surfaces). Following

[9], we consider the rational map ΦL associated with \L\ also in the remaining cases.

Recall that most canonical surfaces with cj = 3pg — Ί, 3pg — 6 have a pencil | Z> | of

nonhyperelliptic curves of genus 3. Therefore, it is naturally expected that ΦL should

be composed of such a pencil. We show that this is the case, except for numerical sextic

surfaces. Let/ : S-+P1 be the corresponding fibration. It turns out that the fact that S

is an even surface forces f*Θ{K) to be very special (Lemmas 1.2 and 2.2). Using this,

we can determine the fixed part Z of | L |. The remaining problem is to write down the

equation of the canonical model. When K2 = 3pg — 1, we have no difficulty in doing

this, since the (relative) canonical image itself is the canonical model. On the other

hand, when K2 = 3pg — 6, we need to study the bi-graded ring 0// o (αZ) + jSZ) as in [9].

The calculation after Lemma 2.3 is a verbatim translation of [9].

As a by-product, we find that the moduli space is non-reduced in many cases

(Theorems 1.5 and 2.5). The point is the presence of a ( —2)-curve contained in Z. Then

a general result of Burns and Wahl [3] can be applied to show that the Kuranishi space

is everywhere singular. As far as surfaces of general type are concerned, such pathological
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examples were first obtained by Horikawa [7] and, later, by Miranda [11]. These two

are put together in a remarkable paper of Catanese [5], where we can find many other

obstructed surfaces.

The author would like to thank Professor Eiji Horikawa for sending his recent

papers [8] and [9] before publication.

1. The case c\ = 3pg — 7. To simplify the notation, for any divisor Z on a surface

S, we write H\Z) instead of H\S, 0([Z])) and put h\Z) = dim H\Z). Divisors and

line bundles will be treated interchangeably.

In this section, let S denote an even canonical surface with c\ = 3pg — 7. Recall that

it is a regular surface whose canonical system \K\is free from base points [1, §1]. Since

w2 = 0, we can find a line bundle L on S which satisfies K=2L. Since L2 is a positive

even integer and since K2=4L2 = ?>pg — Ί, there exists a positive integer n safisfying

(1.1) L2

 g

Since K=2L, it follows from the Riemann-Roch theorem and the Serre duality that

(1.2) 2h°(L)-h1(L)=- —

In particular, we get

(1.3) A ° ( L ) > |

We put m = h°(L) — 1 and consider the rational map ΦL: S-*Pm induced by the complete

linear system \L\.

LEMMA 1.1. ΦL is composed of a pencil of nonhyper elliptic curves of genus 3.

PROOF. Suppose that ΦL induces a generically finite map onto its image V. Since

Kis a nondegenerate surface in Pm, we have deg V>m—\. We consider ΦL as a rational

map of S onto V. Then, it follows from (1.3) that

6« + 2 = L 2 > d e g F d e g Φ L > — ( 5 π + l ) d e g Φ L .

Therefore, we get degΦ L <2. If degΦ L = 1, then we have pg = h°(2L)>4h°(L)-6 (see,

e.g., [6, Proposition 3.1]). This is impossible by (1.1) and (1.3). If degΦL = 2, then we

have degK<L 2 /2 = 3 « + l . It follows from (1.3) that deg V<2m-2. Therefore, V is

birationally equivalent to a ruled surface by [2, Lemma 1.4]. This is impossible, since

S is a canonical surface. Therefore, ΦL is composed of a pencil. Since S is a regular

surface, it is a linear pencil.

Put ILI = I mD | + Z, where | D | is an irreducible pencil and Z is the fixed part of

\L\. Since we have
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6n + 2 = L2 = mLD + LZ>mLD> — (5n + 3)LD ,

we get LD<2. Since LD = mD2 + DZ and m>4, it follows that D2 = 0. If LZ> = 1, then

I DI is a pencil of curves of genus 2. This contradicts the assumption that S is canonical.

Therefore, we have LD = 2 and see that | D | is a pencil of curves of genus 3 which must

be of nonhyperelliptic type. q.e.d.

Let/: S-+P1 denote the holomorphic map induced by \D\. Put f¥Θ(K) = Θ(cή®

Θ(b)®Θ(c), where a, b, c are integers satisfying

(1.4) 0<a<b<c, a + b + c = pg-3 .

These integers can be characterized as follows: Let D be a general fiber of/, and consider

the restriction map

Pi\ H°(K-iD)^H°(D, KD)

for any integer i. Then a is the greatest integer among those f s such that p{ is surjective.

Note that p0 is surjective since S is a canonical surface. Therefore, a>0. c is the greatest

integer among those /'s such that pi is a nonzero map, and b is the greatest integer

among those fs such that we can find three sections xoeH°(K—aD), xx eH°(K—iD)

and X2GH°(K-CD) which induce a basis for H°(KD).

LEMMA 1.2. β = w-l , * = 2AI and c = 2m = 5n + 3. In particular, h°(L) = 5(n+\)/2

andh\L) = 0.

PROOF. From [1, Claim III], we see that α, b and c further satisfy

(1.5) α + c<3b + 2, b<2a + 2.

We have K=2L = [_2mD + 2Z]. Since c is the greatest integer with H°(K-cD)=£0, we

have c>2m. Hence, it follows from (1.3), (1.4) and (1.5) that

a = n— 1, b = 2n, c = 2m = 5n + 3.

In particular, the equality holds in (1.3). Then we get hl(L) = 0 by (1.2). q.e.d.

By this lemma, we know that n is an odd integer. Therefore, we can find a positive

integer k with n = 2k— 1. Then L = [(5k- 1)D + Z] . Furthermore, we have

(1.6) LZ=2k-2, DZ=2, Z2=-%k,

by the proof of Lemma 1.1.

LEMMA 1.3. Z — 2G, where G is a nonsingular rational curve satisfying DG=\,

LG = k-\, G2=-2k.

PROOF. Let T and F respectively denote a tautological divisor and a fiber of
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W=P(Θ(2k-2)®(9(4k-2)@(!)(l0k-2))^P1 .

We can choose sections Xo, X, and X2 of [Γ-(2Jfc-2)F], [Γ-(4Jfc-2)F] and

[Γ—(10/: —2)F], respectively, in such a way that they form a system of homogeneous

coordinates on each fiber of W^P1. We let (z0, zx) denote a system of homogeneous

coordinates on the base curve P 1 . Since | AΊ is free from base points, we get a natural

holomorphic map g: S-^W over P1, the (relative) canonical map, which satisfies K—

f*T. Put Sf = g(S). Then 5" is linearly equivalent to 4T-(pg-5)F (see [1,§1]). The

equation of any member of \4T—(p—5)F\ can be written as

0JTί + 2 ( & > 0 + 0 2 * * 0 1 + 04**0*? + 06**1 + 0 8 **§*2

+ 010 fc*0*l*2 + Φ\2kXlX2 + Φl6kX0X2

where </> is a constant and φt is a homogeneous form of degree i in z0, zx. If it defines

5", then it follows from the proof of Claim III in [1,§2] that φ and φ0 are both nonzero

constants. Furthermore, S" has at most rational double points ([1, §1]).

From the above equation, we know that S" contains a rational curve B defined in

W by X1=X2 = 0. Note that, in a neighbourhood of B in 5', 5 ' is nonsingular, B is

defined by Xγ = 0, and X2 vanishes to the fourth order along B. We denote by G the

inverse image of B by g. Since K= [<g*Γ\ = [(10fc-2)/) + g*(Λr

2)], we have 2Z = 0*(X2).

Therefore, Z is of the form Z = 2G. We clearly have DG=\. q.e.d.

If the coefficients φ's are sufficiently general, (1.7) defines a nonsingular minimal

surface with c\ = 3pg — l which is even.

We have shown the following:

THEOREM 1.4. For any even canonical surface S with cl = 3pg — Ί, there exists a

positive integer k satisfying pg=\6k — 3. Furthermore, S is the minimal resolution of a

surface S' with only rational double points which is defined in P((9(2k — 2)®@(4k — 2)@

Θ(\0k-2)) by Equation (1.7).

It would be worth stating here the following:

THEOREM 1.5. The moduli space of even canonical surfaces with pg=l3 and c\ = 32

is non-reduced.

PROOF. Let S be an even canonical surface with the above numerical invariants.

By Lemma 1.3, S has a ( —2)-curve G. In order to show the assertion, it is sufficient to

show that its Kuranishi space M is singular at S. Note that, since S is canonical and

even, every St, teM, enjoys the same properties. Then, as we have seen in Lemma

1.3, St contains a ( —2)-curve Gv However, a result of Burns and Wahl [2] tells us

that a general vector in H1(S, Θs) kills every ( —2)-curve on S, where θs denotes the

tangent sheaf of S. Since H1(ΘS) is nothing but the Zariski tangent space of M, we

see that d imM is strictly smaller than A1(ΘS). Therefore, M cannot be nonsingular



EVEN CANONICAL SURFACES 63

at S. q.e.d.

2. The case c\ = 3pg — 6. In this section, we denote by S an even canonical sur-

face with c\ = 3pg — β. Put K=2L as before. Then we can find a positive integer n satis-

fying

(2.1) L2 = 6n, g

If n — 1, such surfaces are numerical sextic surfaces which are completely classified in

[9]. Therefore, we assume n>2 in the following.

By the Riemann-Roch theorem, we have

(2.2) 2h°(L)-h\L) =

In particular, we get

(2.3) A°(L)>y

The following can be shown in the same way as in Lemma 1.1.

LEMMA 2.1. Ifn>2, then ΦL is composed of a pencil of nonhyperelliptic curves of

genus 3.

Put ILI = I mD | + Z, where | D | is a pencil of nonhyperelliptic curves of genus 3

and Z is the fixed part of \L\. Then we have LZ> = 2, Z)2 = 0. As in §1, le t/ : S^P1

denote the holomorphic map induced by\D\, and p u t £ 0 ( A ) = 0(α)®0(b)00(c). The

integers a, b and c satisfy (1.4). By [10, Lemma 9.3], these further satisfy

(2.4) α + c<3fo + 3, b<2a + 2.

The following can be shown in the same way as in Lemma 1.2 by using (2.4) instead

of (1.5).

LEMMA 2.2. a = n -1, b = 2n - 1 and c = 2m = 5n + 1. In particular, h°(L) = (5n + 3)/2

andh\L) = 0.

Let k be an integer with n = 2k—\, k>2. Then L=[(5fc — 2)D + Z ] and we have

(2.5) LZ = 2fc-2, DZ = 2, Z 2 = - 8 f c + 2 .

Though the proof of the following is quite similar to that of Lemma 1.3, we shall need

some results in [10].

LEMMA 2.3. Z = 2GO + G l 5 where the Gf are nonsingular rational curves satisfying

DGO = 1, LG 0 = fc-l, G2

0=-2k\ DG^LG^O, G{=-2 .

PROOF. As in § 1, let Γand Frespectively denote a tautological divisor and a fiber of
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W=P((9(2k-2)®Θ(4k-3)®Θ(\0k-4))->Pι .

We choose sections Xθ9 Xί and X2 of [T-(2k-2)F\ [Γ-(4fc-3)F] and
[Γ—(10/: —4)F], respectively, so that they form a system of homogeneous coordinates
on each fiber of W-+P1. We let (z0, z j denote a system of homogeneous coordinates
on P1. Since | K\ is free from base points, we get a natural holomorphic map g: S-> W
over P1 which satisfies K=f*T. Put S' = g(S). Then S" is linearly equivalent to
4Γ-(/?fl-6)/Γ(see [10, §6]). Using Ays, the equation of any member of\4T-(pg-6)F\
can be written as

φ0X\ + X2(φ2Xl + Φik + \

+ ΦίOk- l^O^l^l ~^~Φί2k-2^1^2 + Φlβk-6^0^2 + Φl8k-

where <£f is a homogeneous form of degree / in z0, zγ. If it defines 5", then it follows
from [10, Lemma 9.3] that φ0 and φ2 are not identically zero. Furthermore, S' has
only rational double points except for a unique fiber which is a double conic curve (cf.
[8] and [10, §9]).

Let Go denote the proper inverse image of the rational curve B defined in W by
X1=X2 = Q. Note that, on S", B is defined by Xx =0 in a neighbourhood of its generic
point. We have 2Z=g*(X2). Therefore, the above equation shows that Z is of the form
Z = 2G0 + Z/. It is clear that we have DG0=\. Then we get DZ' = 0 by (2.5). We have
LG0<k-\ by 2k-2 = LZ = 2LG0 + LZ'. Combining this with LG0 = ((5k-2)D +
Z)G0 =5k — 2 + 2Gl + G0Z\ we get G%< — 2k. Since Go is a nonsingular rational curve,
we have KG0 + Gl=-2. From this, we get G%= -2-2LG0> -2k. In sum, we get
Gl=-2k, LG0 = k-l, G0Z'=\ andLZ' = 0.

Since KZ' = 2LZ' = 0, Z' consists of ( —2)-curves. Let Gx denote the unique
irreducible component of Z' with G0G1 = \. We have 0 = LZ' = 2G0Z' + (Z')2, that is,
( Z ' ) 2 = - 2 . Since 0 = LG1 = 2G0Gί + G2

ί+G1(Z'-Gι), it follows that G 1 (Z'-G 1 ) = 0.
Hence, we get (Zf — G1)

2 = 0. Then, Hodge's index theorem shows Zf = G1. q.e.d.

In order to write down the equation of S' explicitly, we follow an idea in [9] to
study the bi-graded ring Q)H°(oιD + βZ). Though the computation is essentially the
same as in [9], we collect it for the sake of completeness.

Let Gt be defined by ζieH°(Gil 0 < / < l , and put ζ = ζ2

0ζx. By the choice of b =
4k — 3, we can find a section ξeH°((6k— \)D + 2Z) which is linearly independent of
zi

oz^k~1~iζ2, 0<i<6k—l, where we regard z0, zx as a basis for H°(D). Since

((6/c - Ϊ)D + 2Z)G0 = - 2k +1 < 0, ((6k - \)D + 3G0 + 2Gί)G1 = - 1 ,

we can write ξ = ίoCoCi with some ξoeH°((6k— 1)D + 3GO + G1). Note that ξ0 is a
nonzero constant on Go. Similarly, by the choice of a = 2k — 2, we can find a section
ηeH°((&k-2)D + 2Z) which is linearly independent of z^zf ~2" ίC2(O<ί<8/c-2) and
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zj

ozlk-ι-jξ(ΰ<j<2k-\). Since H°(K-aD)-+H°(KD) is surjective, we see that η is a
nonzero constant on GouGί. Note that C2, ζ and η induces a basis for H°(KD).

By the Riemann-Roch theorem, we have χ((12k-3)D + 3Z) = 22k-2. Since

(12/c-3)D + 3Z = K + (2/c+l)£) + Z and |(2/c+l)D + Z | contains a connected member,

we have H%l2k-3)D + 3Z) = 0 for i > l . Therefore, we get ft°((12fc-3)D + 3Z) = 22fc-2.

In //O((12k-3)Z) + 3Z), we have the following 22/c —3 elements:

(0<i<6/c-2),

Therefore, there exists a new element ψ. lίφ were zero on Go, it is also zero on Gx. Since

one can show A0((12fc-3)/> + 5G0 + 2G1) = 22fc-3, this is impossible.

We next consider the cohomology long exact sequence for

Since Z\D is of degree 2, we have A°(0D(3Z)) = 4. This and H1((\2k-3)D + 3Z) = 0 show

h°((12k-2)D + 3Z) = 22k + 2. In H°{{\2k-2)D + 3Z\ however, we have the following

22/c+ 3 elements:

_/ _12fc-2-i>3
Z 0 Z l <=

z^zf" 1-^

^zf-'ί*/ (0<i<4/c),

z0^, z^φ ,

Therefore, there exists a relation of the form

(2.6) Aiφ = Aoζ1ξl-\-A4_kζι

where the At are homogeneous forms of degree i in z0, zx. We remark that Ax cannot

be zero as a linear form. By restricting (2.6) to G l 5 we find that Ax vanishes on G1.

Geometrically, this implies that Gx is contained in the fiber defined by Aί =0. Similarly,

by restricting (2.6) to Go, we see that A0ΦQ. Therefore, we may put Ao = 1 and Aλ=z0

by a linear change among z0 and zx. Multiplying ζ to (2.6), we get

(2.7) z0ζι// =

We write the right hand side of (2.7) as β(z0, zu η, ξ, ζ2) for simplicity.

We finally look at //°((24/c-6)D + 6Z) which is of dimension 100/c-17. Here, we

have the following lOOλ;— 16 elements modulo (2.7):
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z z
-%*η

z o z ί f c ~ 2 ~ ι C 2 ^ 2

z o z i s C ĵ
3

z } 2 f c " 3 c 3 ι A ,
ztk-2ζξψ,

(0<i<16fe-4),

(0<i<12fe-4),

(0<i<10fc-3),

(0<i<8fc-2),

(0<i<6fc-3),

It follows that we have a relation among these. In this relation, the coefficient of φ2

cannot be zero. To see this, suppose that we have a relation which does not involve
ψ2. Then, by eliminating φ from this using (2.7), we would get a cubic relation among
ξ, η and ζ2 with coefficients homogeneous forms in z0, zx. Since ξ, η and ζ2 induce a
basis for H°(KD), and since D is a nonhyperelliptic curve of genus 3, this leads us to a
contradiction. Therefore, by a suitable change of φ if necessary, we get a relation of
the form

(2.8)

where the Bi are homogeneous forms of degree / in z0, z x. Since φ is not zero on Go,
2?0 is a nonzero constant. We write the right hand side of (2.8) as P(z0, z1 ? η, ξ, ζ2) for
simplicity.

Now, eliminating φ from (2.7) and (2.8), we get

(2.9)

Since the holomorphic map g:
see that S' is defined by

0, zl9 η, ξ, ζ2)2-z2ζ2P(z0, zl9 η, ξ, ζ2) = 0 .

W is obtained by putting Xo = η, Xλ = ξ, X2 = C2, we

(2.10) β(z0, zl9 X09 Xl9 X2)
2-z2X2P(z0, zl9 X09 Xl9 X2) = 0 .

It follows that Sf has a double curve along a conic defined by z 0 = Q = 0. Let σ: S * - ^ '
be the blowing up of the conic. In order to describe 5*, we introduce a new variable
w = Q/z0 which can be regarded as a fiber coordinate of [2Γ—(8fc —7)F]. Then 5* is
defined in the total space of [2Γ-(8fc-7)F] by
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\zow-Q = 0,

Since w = ζψ, we can lift g: S^>S' to h: S^»S*. It is easy to see that (2.11) defines a

surface which is singular only at zo = w = Xί=X2 = 0 provided that P and Q are

sufficiently general. This singularity is given locally by

z0w-(X2

1+ocw2+- ) = 0 .

Therefore, it is a rational double point of type Λγ from which Gί arises. It may be clear

that X2 = 0 induces on S the divisor 2Z = 4GO + 2G1.

We have shown the following:

THEOREM 2.4. For any even canonical surface S with cl = 3pg — 6, there exists a

positive integer k satisfying pg=\6k — 6. If k>2, then S is the minimal resolution of a

surface defined by Equation (2.10) in P(Θ(2k-2)@Θ(4k-3)®Θ(\0k-4)).

Noting that S contains a ( — 2)-curve Gu we can show the following in the same

way as in Theorem 1.5.

THEOREM 2.5. The moduli space of even canonical surfaces with c\ = 3pg — 6,

pgφ\0, is non-reduced.

REMARK 2.6. When pg= 10 and K2 = 24, an even canonical surface is one of the

following (see, [9]):

(1) a sex tic surface.

(2) a triple covering of a quadric surface in P3.

(3) a surface with a pencil of nonhyperelliptic curves of genus 3.

See also [10, 4.3, 4.4 and §9]. In [9], it is shown that these together with non-canonical

ones form an irreducible family. In particular, ( —2)-curves on a surface S of type (3)

disappear as S deforms to a sextic surface.

REFERENCES

[ 1 ] T. ASHIKAGA AND K. KONNO, Algebraic surfaces of general type with c* = 3ρ —7, Tόhoku Math. J.
42 (1990), 517-536.

[ 2 ] A. BEAUVILLE, L'application canonique pour les surfaces de type general, Invent. Math. 55 (1979),
121-140.

[ 3 ] D. BURNS AND J. WAHL, Local contributions to global deformations of surfaces, Invent. Math. 26
(1974), 67-88.

[ 4 ] G. CASTELNUOVO, Osservazioni intorno alia geometria sopra una superficie, Nota II, Rendiconti del
R. Instituto Lombardo, s. II, vol. 24 (1891).

[ 5 ] F. CATANESE, Everywhere non reduced moduli spaces, Invent. Math. 98 (1989), 293-310.
[ 6 ] O. DEBARRE, Inegalites numeriques pour les surfaces de type general, Bull. Soc. Math. France 110

(1982), 319-346.
[ 7 ] E. HORIKAWA, Algebraic surfaces of general type with small c\ III, Invent. Math. 47 (1978), 209-248.



68 K. KONNO

[ 8 ] E. HORIKAWA, Notes on canonical surfaces, Tόhoku Math. J. 43 (1991), 141-148.

[ 9 ] E. HORIKAWA, Deformations of sextic surfaces, preprint (1990).

[10] K. KONNO, Algebraic surfaces of general type with c2

1 = 3p - 6 , Math. Ann. 290 (1991), 77-107.

[11] R. MIRANDA, On canonical surfaces of general type with K2 = 3χ-\0, Math. Z. 198 (1988), 83-93.

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION

KYUSHU UNIVERSITY

ROPPONMATSU, CHUO-KU, FUKUOKA 810

JAPAN




