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Abstract. For functional differential equations on a fading memory space, some
relationships between the BC-stabilities and p-stabilities are studied. Although the
BC-uniform stability is weaker than the p-uniform stability, it is shown that the BC-total
stability and BC-uniform asymptotic stability are respectively equivalent to the p-total
stability and p-uniform asymptotic stability.

1. Introduction. In the theory of functional differential equations (FDEs) with
infinite delay as well as integrodifferential equations, the space BC which consists of
all bounded continuous functions on (— oo, 0] is one of the important classes for the
space of initial functions. When one takes the BC as the space of initial functions, there
are mainly two ways to provide it with the structure of a metric space in connection
with stability problems. One way is to provide it with the supremum norm, and the
other is of compact open topology induced by a metric which is called the "p-metric".
Throughout this paper, the stabilities corresponding to the two metrics are referred
to as the BC-stabilities and the p-stabilities, respectively. Although there are some
similarities between them, some authors have studied them independently; for the BC-
stabilities, see [2], [3], [8], [9]; for the p-stabilities, see [5]-[7], [11], [13]. Practical
phenomena are intimately related to the BC-stabilities. Thus the BC-stabilities would
seem to be more usual than the p-stabilities. However, the supremum norm never
fade the past memory in contrast with the p-metric. This fact would produce some
difficulties when one tries to discuss the existence of periodic solutions or almost
periodic solutions under some BC-stability assumption. It is a remarkable difference
between the BC-stabilities and p-stabilities. The purpose of this paper is to study the
relationships between the above two stabilities. In what follows, we will do this for
FDEs considered on a fading memory space. A fading memory space is a considerably
flexible (phase) space for FDEs. Indeed, as pointed out in [1], some integrodifferential
equations can be set up as FDEs on a fading memory space. Hence our setting is not
so restrictive. As will be seen later, the BC-uniform stability does not necessarily imply
the p-uniform stability. However, the total stability is an equivalent concept in the
BC-stabilities and p-stabilities (Theorem 1). Therefore, via the p-stabilities, one can
often overcome some difficulties which would arise in the BC-stabilities. In fact, we
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can build up an existence result of almost periodic solutions under the BC-total stabi-
lity assumption (Corollary 1). Furthermore, under a mild assumption, we establish
(Theorem 2) that the BC-stabilities and p-stabilities are equivalent even for the uniform
asymptotic stability.

2. Fading memory spaces and some definitions. First of all, we shall explain some

notation and convention employed throughout this paper. Let Rn be the ^-dimensional
real linear space and denote by | | an appropriate norm in R". For any interval
/<= R: = ( — oo, oo), we denote by BC(/) the set of all bounded and continuous functions
mapping / into Rn, and set | φ | 7 = sup{| φ(s)\: sel}. In particular, we employ the
conventions BC(/) =: BC and | | 7 =: | |B C when I=(—oo,0:\ = : R~. For any compact
set K in Rn, we denote by int K the interior of K, and moreover we employ the notation
φ( ) £ K to denote that φ e BC and φ(s)e K for all se R~.

Now, for any function x: (— oo, a)-+Rn and t<a, define a function xt: R~ -+Rn by
xt(s) = x(t + s) for seR~. Let ^ be a real linear space of functions mapping R~ into Rn

with a complete seminorm | \m. We always assume the following conditions on the space
@.

(Al) There exist positive constants /, M and N with the property that if
x: (— oo, a)^Rn is continuous on [σ, a) with xσ e& for some σ<a, then for all te [σ, a),

(0 xtea,
(ii) xt is continuous in / (with respect to the seminorm | |^),

(iii) J\ x(t) \<\xt \®<M supσ< s<, | x(s) \ + N\xσ \m.

(A2) If {φk} is a sequence in J nBC converging to a function φ uniformly on
any compact interval in R~ (compactly on R~, for short) and supfc| φ

k |B C<oo, then
φeffl and \φk — φ\<%^>0 as fe->oo.

It is known [12, Proposition 2.1] that the space & contains BC and that there is
a constant />0 such that

(1) M Λ < / M B C
 f o r a 1 1 φeBC.

The space ffl is called a fading memory space, if it satisfies the following fading
memory condition together with (Al) and (A2):

(A3) If x\ R^Rn is a function such that xoe@, and x(t) = O on i?+: = [0, oo),
then \xt\<%^>0 as ί-»oo.

Let g be any function which satisfies the condition

(2) g: /?~->[l, oo) is continuous, nonincreasing and \imθ_>_aog(Θ) = cQ.

Then the Banach space C° : = (C°, | \g) defined by

Cg = {φ : JR~ ->7?n is continuous and lim | φ(s) \/g(s) = 0}

s < 0
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is a (separable) fading memory space. For other examples of fading memory spaces,

see [4], [10].

Some integrodifferential equations can be set up as FDEs on a fading memory

space. For instance, consider a system of linear Volterra equations

(V) x(t) = D(t)x(t) + E(t, s)x(s)ds ,
J - oo

where D(t) is an n x n matrix function continuous on R, and E(t, s) is an n x n matrix

function continuous for — oo <s<t<co with the property that

(3) for any η > 0 there exists an S(η) > 0 such that

\E(t,s)\ds<η for all teR.f.
One can easily see ([1], [10, Chapter 9]) that there exists a function g which satisfies

j 0 . I E(t, ί + s) \g(s)ds< oo together with (2). Thus (V) can be considered as an FDE on

Now we consider a system of FDEs

(E) x(t)=f(t,xt) teR+,

where/: R+ x$^Rn. We impose the following conditions on (E):

(HI) sup{|/(ί, φ)\: teR + , | φ\Λ<H} = : L(H)< oo for each H>0.

(H2) /(ί, φ) is uniformly continuous in (/, φ)eR+ x W for any compact set W

In what follows, restricting initial functions to the elements belonging to BC, we

give the definitions of BC-stabilities and p-stabilities for a bounded solution of (E). To

do this, we impose the following condition on (E), too:

(H3) (E) has a solution u defined on R+ satisfying sup t>0 | u{t) \ < oo and u0 e BC.

From (H3) and Axiom (Al) it follows that supt>0\ut \m< oo; hence s u p ^ J ύ(t) \ < oo

by (HI). Thus the set

Γ(u): = the closure of {ut: t e R +}

is compact in & (cf. [12, Theorem 4.1]).

a. BC-stabilities. The solution u(t) of (E) is said to be:

(a-1) BC-uniformly stable (BC-US) if for any ε > 0 there exists a δ(ε) > 0 such that

σeR+ and φeBC with \φ — uσ\BC<δ(ε) imply \x(t;σ, φ) — u(t)\<ε for t>σ, where

x( - σ, φ) denotes any solution of System (E) through (σ, φ)\

(a-2) BC-uniformly asymptotically stable (BC-UAS) if it is BC-US and if there

exists a δ0 > 0 with the property that for any ε > 0 there exists a T(ε) > 0 such that σeR +

and \φ-uσ\BC<δ0 imply |x(t; σ, φ)-u(t)|<ε for t>σ + T(ε);

(a-3) BC-totally stable (BC-TS) if for any ε>0 there exists a δ(ε)>0 with the
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property that σeR +, φeBC with | φ — uσ | B C < δ ( ε ) a n d p e B C ( [ σ , oo)) with \p\[σtOD)<δ(ε)

imply | x(t; σ, φ, p) — u(t) \<ε for t>σ, where x( σ, φ,/?) denotes any solution of

(P) x(ή=f(t,xt) + p(t) teR +

through (σ, φ).

b. p-stabilities. For any φ,ψe BC, we set

where | |7 = | \[-jiOy Then (BC, p) is a metric space. Furthermore, it is clear that

ρ(φk, <p)->0 as fc->oo if and only if φk-+φ compactly on R~. Now, set

0(w) = the closure of {u(ή: teR} ,

and consider any compace set K in Rn such that int KZDΘ(U).

The solution w(ί) of (E) is said to be:

(b-1) p-uniformly stable with respect to K (p-US with respect to K) if for any

ε > 0 there exists a δ(ε)>0 such that σeR+ and φ(-)eK with p(φ, uσ)<δ(ε) imply

p(xt(σ, φ), ut)<ε for ί > σ ;

(b-2) p-uniformly asymptotically stable with respect to K (p-UAS with respect to

K) if it is p-US with respect to K and if there exists a δ0 > 0 with the property that for

any ε > 0 there exists a Γ(ε)>0 such that σeR+ and φ( )eK with p(φ, uσ)<δ0 imply

pίx^σ, φ), Mt)<ε for ί > σ + Γ(ε);

(b-3) p-totally stable with respect to K (p-TS with respect to K) if for any ε > 0

there exists a δ(ε)>0 with the property that σeR +, φ(-)eK with p(φ, wσ)<(5(ε) and

/?eBC([σ, oo)) with |p | [ σ f Q 0 ) <5(ε) imply p(x,(σ, φ,^), w f)<ε for />σ.

As will be shown in Theorems 1 and 2, the definitions (b-2) and (b-3) do not depend

on the particular choice of a compact set K such that miK=>Θ(μ). If the terms

p(xf(σ, φ), ut) in (b-1), (b-2) and p(x,(σ, φ,/?), wf) in (b-3) are respectively replaced by

|x(ί; σ, φ) — u(t)\ and | x(ί; σ, φ,p) — u(t)\, then we have another concept of p-stability;

which will be referred to as the (p, Λ")-stability. Later, it will be shown that these two

notions of p-stability are equivalent. Therefore the p-stability implies the BC-stability,

because of p(φ,ψ)<\φ — ψ\BC for φ, I ^ G B C . In subsequent sections, we discuss the

opposite implications.

3. Equivalence of BC-total stability and p-total stability.

THEOREM 1. Let & be a fading memory space, and assume Conditions (HI), (H2)

and (H3). Then the following statements are equivalent:

(i) The solution u(t) of (E) is BC-TS.

(ii) For some compact set K in Rn such that int K=> Θ(u), the solution u(t) of (E)

is p-TS with respect to K.
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(iii) For any compact set K in Rn such that int K^>Θ(u\ the solution u(t) of (E) is

p-ΎS with respect to K.

Obviously, (iii) implies (ii). To establish the theorem, we need a lemma, from which

it follows that (ii) implies (i).

LEMMA 1. Assume Condition (H3), and let K be a compact set in Rn such that

int K^>Θ(u). Then the solution u(t) of (E) is p-ΎS with respect to K if and only if it is

(p, Rn)-TS with respect to K.

PROOF. The proof of the "only if" part is obvious. We shall establish the "if"

part. Take any ε>0, (σ, φ)eR+ x BC and/?eBC([σ, oo)) with φ( )eK, p(φ, uσ)<δ(ε)

and |p|[<τ,0O)<δ(ε), where δ(-) is the one for (p, Rn)-ΎS of the solution u(t) of (E). Then

x(ί) = χ(t; σ, φ, p) satisfies

(4) | x ( ί )-u( ί ) |<ε for t>σ.

To estimate p(xv ut), we first estimate \xt — ut\j. Let t>σ, and denote by k the largest

integer which does not exceed t — σ. If j<k, then j<t — σ\ hence \χt — ut\j =

sup_j <s<0 |x(ίH-s) — u(t + s)\<ε by (4). On the one hand, if j>k+\, thenj>t — σ; hence

sup \χ(t + s)-u(t + s)\, sup \
<s<σ-t σ-t<s<0

<Max< sup \φ(θ)-u(σ + θ)\,s\xp\x(θ)-u(θ)\\<\φ-uσ\j
l~j<θ<0 σ<θ J

by (4). Then

( Σ
j=l

k

j=k+ί

which shows that the solution u(t) of (E) is p-TS with δ( /2).

Now, in order to complete the proof of Theorem 1, it is sufficient to show that (i)

implies (iii). We shall accomplish it by contradiction. By Lemma 1, we assume that

the solution u(t) of (E) is BC-TS but not (p, Rn)-TS with respect to K; here,

Ka{χeRn: \x\<c} for some c > 0 . Since the solution u(t) of (E) is not (p, Rn)-ΎS with

respect to K, there exist an εe(0, 1), sequences {τm}c=JR
 + , {tm} (tm>τm), {φ m }cBC with

φm(-)eK, {pm} with/?meBC([τm, oo)), and solutions {*(•; τm, φm

9pj} such that

(5) p(φm,uτj<l/m and |/>J [ t m f 0 0 )<l//w
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and that

(6) \x{tm;τm,φm,pj-u(tm)\=ε and |x(t; τm, φm,pm)-u(t)\<ε on [τm, ί J

for me TV (N denotes the set of all positive integers). For each meN and TeR + , we

define φ m ' Γ e B C by

mT (φm(θ) if - Γ < 0 < O ,
<P t ) ~ i „ , ^ . . , . m w ί τ _ Γ ) if Θ<-T.

Notice that | φ m Γ - M τ m | B C = | φ m - i i τ m | [ . Γ f 0 ] .

Claim 1. sup{| φ m ' Γ - φm \m: m e N} -•() as Γ->oo.

If this is not the case, there exist an ε > 0 and sequences {mk} c N and {7^}, Tk-^cc

as k->oo, such that | φ m k ' T k - φ m k | ^ > ε for fc=l,2,.... Put ψk = φmk>Tk-φmk. Clearly,

{ι/̂ k} is a sequence in BC which converges to the zero function compactly on R~ and

sup J φk | B C < oo. Then Axiom (A2) yields that | φk |Λ->0 as k->oo, a contradiction.

Claim 2. The set {φm, φm*τ\msN, TGR+} is relatively compact in M.

Indeed, since the set Γ(u) is compact in ^ , (5) and Axiom (A2) yield that any

sequence {<pmj}j°=i (nijEN) has a convergent subsequence in £8. Therefore, it suffices to

show that any sequence {φmjfTj}jL1 (rπjeN, TJER+) has a convergent subsequence in

J*. We assert that the sequence of functions {φmj' Tj(θ)}J)

= 1 contains a subsequence which

is equicontinuous on any compact set in R~. If this is the case, then the sequence

{φmj'Tj} would have a convergent subsequence in & by Ascoli's theorem and Axiom

(A2), as required. Now, notice that the sequence of functions {u{τmj + θ)} is

equicontinuous on any compact set in R~. Then the assertion obviously holds true

when the sequence {m}) is bounded. Taking a subsequence if necessary, it is thus sufficient

to consider the case m^ao as y->oo. In this case, from (5) it follows that

φmj(θ) — u(τm. + θ) = : wJ(θ)-+0compactly onR~. Consequently, {wj(θ)} is equicontinuous

on any compact set in R~, and so is {φmj(θ)}. Therefore the assertion immediately

follows from this observation.

Now, for any me TV, set xm(t) = x(t + τm; τm, φm, pj if t<tm-τm and xm(t) =

xm(tm-τm) if t>tm-τm. Moreover, set xm 'Γ(ί) = φm 'Γ(0 if teR" and xm'T(t) = xm(t) if

teR+. Since (xm)0 = φm and |x m ( ί ) |< 1 + | w|[o,oo) = : h<co forΊGR+, we have

by (1) and Axiom (Al); hence, if 0<t<tm — τm, then

I (d/dt)xm(t) I < |/(ί + τm, (x")f) I + \pm(t + τw) I < L(Mh + Nlc) + \/m < L

(independent o

by (5) and (HI). Consequently,
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(7) \xm(s1)-xm(s2)\<L\s1-s2\, sus2eR+, meN.

Set

W=the c l o s u r e o f {(xm>τ)t, ( x m ) t : meN, teR + ,

Combining (7) with Claim 2, we see by [12, Theorem 4.1] that the set W is compact

in Jf; hence/(ί, φ) is uniformly continuous on R+ x W by (H2). Define a continuous

function qm,τ on R+ by qm,τ(ή =f(t + τM, (xm),)-/(ί + τm, (xm'Γ)t) if 0 < / < / m - τ m , and

^,τW = ̂ , r ( ί w - τ J if ί > / m - τ m . Since | (^ '^-(x-XU<iV| φ w ' T - φ m U ( ί e * + ,

meW) by Axiom (Al), if follows from Claim 1 that sup{\(xm'τ)t~(xm)t\^: teR+,

meN}-^0 as Γ->oo; hence one can choose T= T(ε) e N in such a way that

sup{| qm, τ(t) \:meN,teR+}<<5(ε/2)/2 ,

where δ(-) is the one for BC-TS of the solution u(t) of (E). Moreover, for this T, select

an raeWsuch that m>2T(l +δ(ε/2))/δ(ε/2). Then 2~τ\φm-uτJτ/l\+\φm-uτJτ]<

p(φm, uτj < 2 ~ Tδ(ε/2)/l 1 + ̂ (ε/2)] by (5), which implies that

\φm-uτJτ<δ(ε/2) or | φm>τ-uτJBC<δ(ε/2) .

The function x m ' τ satisfies (xm'T)o = φm'T and

(d/dt)xm> τ(t) = (d/dt)xm(t) =f(t + τm, (χ-)f) +/7m(ί + τ J

=/(ί + τm, (xm'Γ),) + ̂  T(ί) + pjt + τm)

for / G [0, ίm - τm). Since um(t) = u(t + τ j is a BC-totally stable solution of x(t) =f(t + τm, xr)

with the same ^( ) as the one for u(t\ from the fact that s u p t > 0 | ^ m r ( ί ) + pm(τm + ί)l<

δ(ε/2)/2+l/m<δ(ε/2) it follows that |(xm>τ)(t)-u(t + τ m ) |<ε/2 on [0, ί m - τ j . In

particular, we have | x m ' Γ ( ί w - τ m ) - u ( ί m ) l < ε or | x(tm; τm, φm, pm) - u(tj \ < ε, which

contradicts (6).

It would be natural to ask whether the BC-US and p-US are equivalent under

Conditions (HI), (H2) and (H3). Needless to say, from the proof of Lemma 1 we easily

see that the p-US implies the BC-US. As the following example shows, however, the

opposite implication does not generally hold good.

EXAMPLE. Consider a scalar equation

(8) x(t)= — x(0 + s u p | x ( ~ n ) l teR+ ,
ί+1 n>o 1+ί + n

and set g(s)= 1 - s for seR~ and/(ί, φ)= -φ(0)/(t+ l) + supM>0{| φ(-t-n)\/g(-t-n)}

for (t, φ)eR+ x C°. Then Equation (8) can be considered as an FDE on R+ x C°. In

this case, it is not difficult to see that Conditions (HI), (H2) and (H3) (with w==0) hold

true. In the following, we shall prove that the zero solution of Equation (8) is BC-US

but not p-US with respect to K however small K is chosen. Indeed, for any
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(σ, φ)eR+ x BC, the solution x(t; σ, φ) of (8) is expressed by the variation-of-constants

formula as

P / I φ( — (j — n) |\
x(t; σ, φ) = X(t, σ)φ(0) + X(t, s) sup — ] ds , ί > σ ,

where X(t, s) = (s+ l)/(ί + 1). Then

ds |(p|B C<|(p|Bc

for />σ, which shows that the zero solution of Equation (8) is BC-US. Now, let K be

any compact set in Rn which contains zero in its interior. Then there exists a constant

c>0 such that K^{xeRn: | x |<c} . For any keN, define a function φk(')eKby

c if θ<-k

φ\θ)= 0 if θ>-k+\

linear if -k<θ<-k+l .

Clearly, p(φk, 0)-*0 as k-+co. Moreover,

Γ* / IΦk(-")l\
x(/c; 0, φΛ) = X(k, 0)φ (0) + X(/c, s) sup ds

Jo \»*° ̂
Γ k s + 1 c J ck Γ 1+2/cΊ

> Js = 1-log

J o f c + l l + s + /c k + l L 1 + k J
hence lim inf^^ [sup^ol x(t; 0, φk) |] >c(l —log 2)>0. Consequently, the zero solution

of Equation (8) is not p-US with respect to K.

As an application of Theorem 1, we can establish an existence result of almost

periodic solutions for almost periodic systems under the BC-total stability assumption.

This is a natural extension of the corresponding result for ODEs to the one for FDEs

on a fading memory space. We emphasize that the method for ODEs cannot be applied

directly to the case of FDEs on a fading memory space, because the convergence in

the p-metric does not necessarily imply the convergence in the BC-norm. Therefore the

following result would be of interest.

COROLLARY 1. Let 31 be a separable fading memory space, andf(t, φ)\ Rx&^>Rn

be a function almost periodic in teR uniformly for φe& which satisfies (HI) and (H3).

If the solution u(t) of(Έ) is BC-TS, then there exists an almost periodic solution of(Έ).

The proof is easy. Indeed, the BC-TS of u(t) yields the p-TS of u(t) by Theorem 1.

Then the existence of an almost periodic solution for (E) can be assured by the standard

argument; see, e.g., [5]-[7], [11], [13]. An example to which our corollary is applicable

is found in [5], [7], [11].
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4. Equivalence of BC-uniform asymptotic stability and p-uniform asymptotic

stability. In this section, we discuss the equivalence of BC-UAS and p-UAS of a

bounded solution of (E) by means of limiting equations. Throughout this section, we

suppose that 0& is a separable fading memory space.

Now, let C(R+ x &, Rn) be the space of all continuous functions mapping R+ x $

into Rn, which is equipped with the compact open topology. For any τeR+ and any

FeC(R+ x J , Γ ) , we set Fτ(t, φ) = F[t + τ, φ) for (ί, φ)sR+ x @. Under Conditions

(HI) and (H2), it is known (cf. [10, Chapter 8]) that the set {fτ: τeR + } is relatively

compact in C(R+ x M, Rn) and that its closure in C(R+ x Λ, Rn) is metrizable. There-

fore, for any sequence {τ'k}<=R + , there exists a subsequence {τk} of {τ'k} and an

element g in C(R+ x&,Rn) such that fXk-+g in C(R+ x J , Λ π ) ; in other words,

f(t + τk, φ)^g(t, φ) uniformly on any compact subset of R+ x J as k-+co. Moreover,

under Condition (H3), we may assume that there exists a veBC(R) such that

I ut+τk — vt U->0 compactly on R+. For the sake of simplicity, we write as

(wτk,/τk) -• (υ, g) compactly on R+ x J>

whenever the above situation occurs. Denote by Ω(u,f) the set of all (y, #)'s with the

property that (uτk,fτk)^>(v, g) compactly o n i ? + χ j for some sequence {τk} such that

τk—>oo as fc->oo. It is easy to check that if (υ, g)eΩ(u,f), then i; is a solution defined on

R+ of the system

The system (E^) is called a limiting equation of (E). If the solution of each limiting

equation of (E) is unique for the initial conditions, then (E) is said to be regular.

THEOREM 2. Let $ be a separable fading memory space, and assume Conditions

(HI), (H2) and (H3). Moreover, suppose that (E) is regular. Then the following statements

are equivalent.

(i) The solution u(t) of(E) is BC-UAS.

(ii) For some compact set K in Rn such that int K^>Θ(u), the solution u(t) of (E)

is p-UAS with respect to K.

(iii) For any compact set K in Rn such that int KZDΘ(U\ the solution u(t) of{E) is

p-UAS with respect to K.

Obviously, (iii) implies (ii). To prove the theorem, we first establish the following

lemmas. From Lemma 2 we can easily see that (ii) implies (i).

LEMMA 2. Assume Condition (H3), and let K be a compact set in Rn such that

int K^>Θ(u). Then the solution u(t) of(E) is p-UAS with respect to K if and only if it is

(p, /?")-UAS Wίλ respect to K.

LEMMA 3. Suppose that all the conditions in Theorem 2 are satisfied. If the solution

u(ή of(E) is BC-UAS, then it is BC-TS.
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PROOF OF LEMMA 2. The proof of the "only if" part is obvious. We shall establish

the "if" part. Suppose that the solution u(t) of (E) is (p, Λn)-UAS with respect to K.

The same argument as in the proof of Lemma 1 shows that the solution u(t) of (E) is

p-US with respect to K. Now, let p(φ, uσ)<δ0 and φ(-)eK, where δ0 is the one for

(p, /Γ)-UAS with respect to K of the solution u(ί) of (E). Then, for any ε > 0 there exists

a Γ(ε)>0 such that | x(t; σ, φ) — u(t) | <ε for all />σ+Γ(ε), which implies that

sup{\x(t + θ + σ;σ,φ)-u(t + θ + σ)\: σei? + , 0 e [ - L , 0],ρ(φ, uσ)<δo with φ(-)eK}->0

as /--•oo for each L > 0 , or sup{p(xί+(T(σ, φ), ut+σ): σeR + , p(φ9 uσ)<δ0 with φ(-)GK}-+

0 as ./-• oo. This shows that the solution u(ί) of (E) is p-UAS with respect to K.

PROOF OF LEMMA 3. Suppose that the solution u(ή of (E) is BC-UAS, and let

(δ( ), δ0, T(')) be the triple for BC-UAS of u(ί), where we may assume δo<δ(\). We

first establish that

(9) (v,g)eΩ(uJ) and \φ-vσ\BC<δ(η/2) imply \y(t;σ, φ,g)-v(t)\<η for t>σ,

where y( ; σ, φ, g) denotes the (unique) solution of (E^) through (σ, φ). Select a sequence

{τk} with τk-+oo as k->co such that (wτk,/τk)->(t;, g) compactly on R+ x J^, and consider

any solution x( ; σ-f τfc, φ — t>σ + wσ+τk) of (E). For any ksN, set xfc(ί) = x(ί + τk; σ + τfc,

φ — i?σ + u σ + t f c ), teR. Since the solution w(ί) of (E) is BC-US, from the fact that

1 (xk)σ - uσ+τk IBC = I φ - vσ IBC < δ(η/2) it follows that

(10) \xk(t)-u(t + τk)\<η/2 for all t>σ and keN;

hence sup{|(x*) f |Λ: />σ, ^ G N } < M ( ^ / / 2 + |W | [ 0 i 0 0 ) ) + 7V| φ - ί ; σ + Mσ + τ kU by Axiom (Al).

In virtue of (HI), this implies that {xfc(0} is uniformly equicontinuous on [σ, oo).

Thus we may assume that xk(t)->y(t) compactly on [σ, oo) for some function

y: [σ, co)-*Rn. Since xk(σ) = φ(0) — v(σ) + u(σ + τk), we obtain y(σ) = φ(0). Hence, if we

extend the function y by setting yσ — φ, then yeC(R, Rn) and | (xk)t — yt |^-^0 compactly

on [σ, oo). Letting k^co in the equation

•Px\t) = φ(0) - v(σ) + u(σ + τk) + | f(s + τk9 (xk)s)ds , t > σ ,

we obtain

^(5,js)rfs, ί > σ ,\
J σ

which means that y(t) = y(t; σ, φ, g) for t>σ by the regularity assumption. Then (9)

follows from (10) by letting k-+co.

Repeating the above argument with η = 2, one can establish that

(11) {v,g)eΩ(uJ) and I φ - ^ | B C < ^ o imply \y{t;σ,φ9g)-υ{t)\<ε

for />σ+Γ(ε/2) .
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Now, we assert that the solution u(t) of (E) is BC-TS. Suppose not. Then there

exist an ε, 0<ε<δo, sequences {τk}aR + , {rj, r f c>0, {φk}czBC, {/?k},/?keBC([τk, oo)),

and solutions {x( ; τk, φk,pk)} such that, for all keN,

(12) \φk-uτk\BC<Vk and \pk\[τkfO0)<\/k

and

(13) \zk(τk + rk)-u(τk + rk)\=ε and |zk(t)-u(t)\<ε for / e ( - o o , τk + rk)

here z\t): = x(t; τk, φk,pk). We first consider the case that {rk} is unbounded. Without

loss of generality, we may assume that (uτk+rk_T,fτk+rk_T)-^(v, g) compactly on R+ x@

for some (v9 g)eΩ(u,f) and that zk(τk + rk — T+ /)->z(ί) compactly on (— oo, Γ] for some

function z, where T= T(ε/2). Repeating almost the same argument as in the proof of

the claim (9), we see by (12) that z satisfies (E^) on [0, Γ]. Let k-+oo in (13) to obtain

\z(t) — v(t)\<ε on (—oo, Γ] and \z(T) — v(T)\=ε. This is a contradiction, because

l z o~ ι ; olBc^ ε < ( 5o implies \z(T)-v(T)\<ε by (11). Therefore the sequence {rk} must

be bounded. Thus we may assume that {rk} converges to some r, 0 < r < oo. Moreover,

we may assume that {zk(τk + t)} converges to a function ξ compactly on (— oo, r] .

Consider the case where the sequence {τk} is unbounded; hence we may assume that

(wTk,/Tk)->(w, h) compactly on R+ x @ for some (w, h)eΩ(u9f). Then ξ(t) satisfies the

limiting equation (Eh) on [0, r], and moreover we have | ξ0 — w0 \ B C = 0 and | ξ(r) — w(r) \ = ε

by letting fc->oo in (12) and (13). This is a contradiction, because we must have ξ = w

on [0, r] by the regularity assumption. Thus the sequence {τfc} must be bounded, too.

Hence we may assume that \imk^o0τk = τ for some τ<oo. Then ξ(t — τ) satisfies (E) on

[τ, τ + r], and moreover we have \ξo-uτ\BC = 0 and \ξ(r) — u{τ + r)\ = ε by (12) and (13).

This again contradicts the fact that the solution u(t) of (E) is BC-US.

Now, in order to complete the proof of Theorem 2 it is sufficient to show that (i)

implies (iii). Suppose that the solution u(t) of (E) is BC-UAS, and let ((5( ), <50, Γ( )) be

the triple for BC-UAS of w(ί), where we may assume <50 < δ( 1) < 1. Let K be any compact

set in Rn such that int K^>Θ(u). Combining Lemma 3 with Theorem 1, we see that the

solution u(t) of (E) is p-TS with respect to K. Thus it suffices to establish the following

assertion:

(*) for any ε > 0 there exists a Γ(ε)>0 such that p(φ, uτ)<δ1 : = ̂ (δo/4) with φ( )eK

implies ρ(xt(τ, φ), ut)<ε for all / > τ + T(ε), where δ(-) is the number for the p-total

stability of u(t).

If this is not the case, then there exist an ε > 0 and sequences {τk}czR+, {/fc},

tk > τk + 2k, {φk} c= BC, and solutions {x( τk9 φk)} such that

(14) p(φk,uτk)<δl9 φk( )eK

and

(15) P(*fk(τfc, φ% utk)>ε



56 S. MURAKAMI AND T. YOSHIZAWA

for all keN. Since $(•) is the one corresponding to the fact that the solution u(t) of

(E) is p-ΊS with respect to K, (14) and (15) imply that

(16) p(Xf(τk, <Λ ut) < δo/4 for all t > τk

and p{xt(τk, φk), ut) > δ(ε) for all t e [τfc, τk + 2k~] or

(17) P(xt+τk+k(^ψklut+τk+k)>δ(ε) for all ίe[-/c,/c],

respectively. Set xfc(ί) = x(t + τk + fc, τk, φfc) for /eΛ. Since p(φ, φ)>2~1\ φ-φ \J

[l+|φ-(Ali]>2-χθ)-ιA(O)|/[l+|φ(O)-ιA(O)|], we have \φ(0)-ψ(0)\<2p(φ,ψ)/

[1 —2p(φ, \jj)~\ whenever p(φ, ψ)<\/2; hence (16) implies that

(18) \At)-u{t + τk + k)\<δol[_2-δo\ for all /e[-fc,/c].

Since {xfc(ί)} is uniformly bounded and equicontinuous on any compact set in R, we

may assume that xk(t)^>μ(t) compactly on R for some bounded continuous function

μ\ R^>Rn. Also, we may assume that (uTk+k,fτk+k)-+(v, g) compactly on R++& for

some (v,g)eΩ(u,f). Then μ(t) = y(t; 0, μ0, g) on R. Letting fc->oo in (18), we have

\μ(ή-v(t)\<δo/l2-δo] on R. In particular, \μo-vo | B c < < V [ 2 - < 5 0 ] < A Then

\μ(ή — v(t)\-+O as /->oo, by (11); hence p(μv vt)-+0 as t^co. On the other hand, letting

A;->oo in (17), we obtain p(μv vt)>δ(ε) for all teR, a contradiction. This completes the

proof of Theorem 2.

Under the condition (3) and the conditions (19) and (20) (see below), it is known

[8, Theorem 3] that the BC-TS and BC-UAS are equivalent for the zero solution of a

system of linear Volterra equations

(V) x(t) = D(ήx(t) + E(t, s)x(s)ds .
* - 0 0

Since (V) can be set up as an FDE on a separable fading memory space as shown in

Section 2, combining [8, Theorem 3] with Theorems 1 and 2, we obtain the following

counterpart for the p-stabilities.

COROLLARY 2. Suppose that Condition (3) and the following are satisfied:

(19) D(t) and E(t, t + s) are bounded and uniformly continuous in (ί, s)sR x W for any

compact set Wa R ~.

J-o
Γ

(20) supl'l D(t) I + \E(t9t + s) \ds} < oo .
ί e * J-oo

Then, for any compact set K in Rn which contains zero in its interior, the zero solution

of(Y) is p-ΎS with respect to K if and only if it is p-UAS with respect to K.
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