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ON CERTAIN QUARTIC FORMS FOR AFFINE SURFACES

KATSUMI N O M I Z U AND TAKESHI SASAKI

(Received December 21, 1990, revised March 11, 1991)

The main purpose of the present note is to introduce certain quartic forms

and other related invariants for nondegenerate affine surfaces and characterize a

number of classes of affine surfaces by the vanishing of each of such invariants (see

Theorems 1-4). Our results are closely related to the work in [B-N-S], [M-R], [N-M],

[N-Pl] and others.

Actually, our quartic forms can be defined for affine immersions and, more generally,

in the projective setting, as in [N-Pl], [N-P2], [N-P4], [S]. We hope to come back to

applications of this general approach. Here we shall prove yet another result (Theorem

5, and equivalently, Theorem 6) characterizing quadrics among nondegenerate hy-

persurfaces in the real projective space in a fashion similar to Theorem 12 in [N-P4].

1. Quartic forms for nondegenerate affine hypersurfaces. Let/ : Mn^Rn+1 be a

nondegenerate hypersurface in the affine space Rn + 1 provided with a volume element

by the usual determinant function det and the flat affine connection D. Then there exists

an affine normal ξ such that

(1) Ar/*( Y) = /*(V* Y) + h(X, Y)ξ

(2) Dxξ=-fm{SX),

where V is the induced affine connection on M", h the affine metric, and S the shape

operator. Moreover, the volume element defined by

(3) Θ(X19..., ^ ) = d e t [ / , ( ^ ) , . . . , f^Xn\ ξ]

coincides with the volume element for the nondegenerate metric h. The structure given

by (V, h, S) is called the Blashke structure on Mn. We have the following fundamental

equations (see [N-Pl]):

(4) (Gauss) R(X, Y)Z=h(Y, Z)SX-h(X, Z)SY

(5) (Codazzi) (V*Λ)( Y, Z) = <yγh)(X, Z)

(6) (Codazzi) (
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(7) (Ricci) h(SX, Y) = h(X, S Y).

In view of (5), C(X, Y, Z) = (yxh)(Y, Z) is totally symmetric in X, Y, Z. We call C
the cubic form. We now define

(8) Q(X, Y,Z,W)=(VXQ( Y,Z,W)+ <?γ,z,w[h(sx, γ)h(z, wy\,

where £fYtZ,w denotes the cyclic sum over Y, Z, and W. It is clear that Q is symmetric
in Y, Z, W. We shall show in a moment that it is symmetric in all four variables X, Y,
Z, W, that is, Q is a quartic form.

LEMMA 1. We have

(9) (vxc\ Y, z, w) - <yγc)(x, z, w)=(R(x, Y) A)(z, »O .

PROOF. From

Y, z, »o=xc( γ9 z, »o - c(v* r, z, »o - c( r, vxz, wo - Q r, z, vx ^)

we get

(vxcχr, z, tfθ=(vx χ

Alternating this equation, we obtain (9).

REMARK. We have (VXC)(Y,Z, W) = (VYC)(X, Z, W) for all X, Y, Z, W if and
only if VC is totally symmetric. By Lemma 1, this is the case if and only if R(X, Y)-h = 0
for all X, Y. It is known that this last condition is equivalent to the condition that AT
is an affine hypersphere. Hence VC is totally symmetric if and only if AT is an affine
hypersphere (as is known in [B-N-S]).

LEMMA 2. The form Q is totally symmetric.

PROOF. The symmetry in Y, Z, W is obvious. We now check the symmetry in X
and Y. From (8) and (9) we get

Q(X, Y, Z, W)-Q(Y, X, Z, W) = (R(X, Y)'h)(Z, W) + h{X, SZ)h(W, Y)

+ h(X, SW)h(Y, Z)-h(Y, SZ)h(W, X)-h(SY, W)h(X, Z ) .

By the Gauss equation, we can check that the right-hand side is 0. Lemma 2 is thus proved.

We write B(X, Y) = h(SX, Y) and observe that trace,, £ = trace S = «#, where H is
the affine mean curvature. We now introduce
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(10) B°(X, Y) = B{X, Y)-nHh(X, Y)

as well as

(11) Q°(X, Y, Z, W) = (VXC)(Y, Z, W) + Srγ,ZtWlBP(X9 Y)h(Z,

where 9* denotes the cyclic sum as before.

Since

YtZtWlKX, Y)h(Z,

it follows that Q° is also symmetric.

2. Other invariants and some formulas. We recall that the affine connection V and

the Levi-Civita connection V differ by a tensor K of type (1,2) such that

(12) Kχ = Vχ~Vχ

(13) C(X, Y, Z ) = -2h(KxY, Z ) , KXY=KYX.

Apolarity can be expressed by trace Kx = 0 for all tangent vectors X; or, equivalently,

traceΛΛ:=0.

We define a tensor L of type (1, 2) by

(14) L(X, Y) = \

We also set

(15) S° = S-HI,

where / denotes the identity endomorphism. S° is the trace 0 component of S.

LEMMA 3. We have

(16) L(X, Y) = - — h(S°X, Y)-2 tvΆCQ{KxKγ).

PROOF. In [N] we defined

(17) L(X, F) = trace[Z -+ <$ZK)(X, Y)~\

and showed

L(X, Y) = —lHh(X, Y)-h(SX, YJ\ .

Since the right hand side is -(n/2)h(S°X, Y) and since L(X, Y)-L(X, Y) =

2trace(KxKγ), we obtain (16).

Taking Vx of both sides of (13), we obtain
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(18) (V*C)( Y, Z, W) = 4h(KxKγZ, W) - 2h((VxK)γZ, W).

Hence we may express the quartic form Q by

(19) Q(X, Y, Z, W)= -2h(Qx(Y, Z), W),

where

(20) QX(Y, Z) = (VxK)γZ-2KxKγZ-—[h(Y, Z)SX+h(SX, Y)Z + h(SX, Z)Y\

We define

(21) U(X, Y) = traceh[Z -> QZ(X, 7)] .

We find

U(X, Y) = L(X, Y) - — (trace S)-h(X, Y)-h(SX, Y),

from which we get

LEMMA 4. We have

U(X, Y)=- ̂ - ^ h(SX, Y)-2 trace KXKY .

Similarly to (19), we have

(22) Q°(X, Y,Z,W)=- 2h(Q°x( Y, Z), W),

where

(23) Q°X(Y, Z) = (VxK)γZ-2KxKγZ--^lh(Y, Z)S°X+h(S°X, Y)Z+h(S°X, Z)Y\

We define

(24) U°(X, Y) = traceΛ[Z -, Q°Z(X, F)]

and obtain

LEMMA 5. We have

U°(X9 Y)=-(n^h(S°X, Y)-2traceKxKγ.

3. Affine surfaces. The following is found in [B, p. 157].

LEMMA 6. We have
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trace KxKγ = Jh(X, 7 ) ,

where J=h(K, K)/2 is the Pick invariant.

For the sake of completeness, we indicate the proof. Take a basis {Xl9 X2} in the

tangent space such that h(Xί,Xί)=\, h(XuX2) = 0, h{X2, X2) = ε= ± 1. Using

h(KXιXl9X2) = h(KX2Xί,X1), h(KXιX2, X2) = h(KX2X1, X2) together with traceKXl =

trace KXl = 0, we see that KXι and KXl are represented by matrices of the form

[_εb -a\
and

l-a -b
respectively. We compute

trace KXι = 2(a2 + εb2), trace KXχKX2 = 0 , trace K\2 = 2ε(a2 + εb2).

We have h(K, K) = 4(a2 + εb2) and J=2(a2 + εb2). This proves the formula.

We now obtain the following results.

THEOREM 1. Let M2 be a nondegenerate affine surface in R3 with the Blaschhe

structure. IfUis identically 0, then the surface is an affine sphere and its affine metric is flat.

REMARK. Affine spheres with flat affine metrics have been classified in [M-R] as

the graphs of the following functions:

(I) z = x2+y2;

(II) z=\/(xy);

(III) z=l/(x2+/);

(IV) z = xy + F(x), where F is an arbitrary smooth function of y.

REMARK. Surfaces of type (IV) above are exactly nondegenerate ruled improper

affine spheres, as is known in [B, p. 221].

THEOREM 2. Let M2 be a nondegenerate affine surface in R3. If Q is identically 0,

then the surface is one of (I), (II), (III) in Theorem 1 or Cay ley surface

(IV*) z = xy-y3β.

REMARK. AS is shown in [M-N], a nondegenerate affine surface such that CφO

and VC = 0 is either (II), or (III) or (IV*).

THEOREM 3. Let M2 be a nondegenerate affine surface in R3. If U° is identically

0, then the surface is either a quadric or a surface (IV) or a ruled proper affine sphere,

which was described by Radon as follows:

(V) (u, ϋ) , t?>0H/(«, v) = υz(u) + z\u),

where z(u) is an R3-valued smooth function such that det[z z' z"~\ is a nonzero constant.

REMARK. For (IV) and (V), see [B, p. 220], as well as [M-R] and [Si].

THEOREM 4. Let M2 be a nondegenerate affine surface in R3. If Q° is identically
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0, then the surface is a quadric whose affine metric is definite or a Cayley surface.

We are going to prove these theorems.

PROOF OF THEOREM 1. By Lemmas 4 and 6 we get h(SX, Y) = -Jh(X, Y) for all
X, Y. Thus &=—//, where / denotes the identity transformation. Hence H— —J. The
scalar curvature β of the affine metric h is equal to H+J (see Proposition 5.3 of [N]),
which is 0 in our case. This means that the surface is an affine sphere with flat affine
metric. By [M-R] we get the desired classification (I)-(IV) of such surfaces. For these
surfaces, it is obvious that the tensor Q° is identically 0.

PROOF OF THEOREM 2. The assumption Q = 0 implies U=0. By Theorem 1, we
get affine surfaces (I)-(IV). For a surface of type (IV), we have H=—J=0. Thus
VC=<2 = 0. Excluding quadrics (C=0) we get a Cayley surface. Among the quadrics,
only the surface (I) satisfies Q = 0. We have thus shown that Q = 0 leads to the affine
surfaces (I), (II), (III) and (IV*). Conversely, the surfaces (I) and (IV*) obviously satisfy
Q = 0. Now we can verify by direct computation that the surfaces (II) and (III) also
satisfy Q = 0. We shall illustrate this computation for the surface (II) only.

Denote {x, y} by {x1, x2}. Then the affine metric has components

ί 2 = ~ 1 ~ 1 hhί2=-—x~1y~1 , h22 = -—=y~2

4 / T 4/λ

The Christoffel symbols of the connection V are given by

— ? — ? — 1

Γ1 - x'1 Γ2 - Ύ~2V Γ1 - v" 1

Γ2 — I l l v " 1 Γ1 - " γ i Γ 2 Γ2 — ~ y-l

Computing C = Vh we find its components to be

C l u = 0 , C1 1 2 = - — χ-2y-\ Cί22=-—χ-1y-2, C222 = 0.

~2v~2

We further obtain

4 2 2
r ~4 r " 3 " 1 r

2

Using S — Xf^hlβ we can now check that all the components of Q are equal to 0.
With this we conclude the proof of Theorem 2.
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PROOF OF THEOREM 3. By Lemmas 5 and 6 we have S°= —JI. But trace 5° = 0,
thus / = 0 , S° = 0, and S=HL

Case (i): C = 0. The surface is a quadric. Conversely, every quadric has J=0 and
S° = 0, which imply C/° = 0.

Case (ii): C^O. In this case, h must be indefinite. Depending on whether the surface
is an improper affine sphere or a proper affine sphere, it belongs to the class of surfaces
(IV) or to the class of surfaces (V). Conversely, these classes of surfaces satisfy 7=0
and S° = 0 and hence U° = 0 as well.

PROOF OF THEOREM 4. By (22) and (23) Q° = 0 implies U° = 0 and hence / = 0 ,
S° = 0. By (23) and (18) we get VC = 0. Now if C = 0, the surface is a quadric. Otherwise,
it is a Cayley surface (IV*) by a result in [N-P3]. Conversely, these surfaces satisfy

4. Characterization of quadrics in RPn + 1. In this section, we follow Section 5 of
[N-P4] in order to consider a nondegenerate immersion / of a differentiate manifold
M1 into the real projective space RPn + ι. The space RPn + 1 admits a flat projective
structure, which we can describe as follows. By using any homogeneous coordinates
(x\ ...,xn + 2) in RPn+1 we take n+l open subsets Vk = {xkΦU], where 1 <k<n + 1.
We may consider each Vk as an affine space Rn+1 by regarding {y^x1/*?}, where
1 <i<n+ 1, iφk, as affine coordinates, thus providing Vk with a flat affine connection
Dk. In the intersection Vk n Fm of two open subsets the affine connections Dk

and Dm are projectively related, that is, there is a 1-form μ such that DkXY=
DmXY+μ(X)Y+μ(Y)X for all vector fields X and Y.

We may actually consider an atlas of all locally defined affine connections which
are projectively related to any local affine connection obtained in the manner above.
Moreover, we may restrict ourselves to an atlas of such local affine connections which
are equiaffine (that is, having a parallel volume element).

We now consider an immersion / of a differentiable manifold M" into RPn+1. For
each point p of ΛΓ we may consider the restriction of/to a neighborhood U of p into
some open subset V with an affine connection D belonging to the flat projective structure
of RPn + 1. We know what it means to say that/is nondegenerate on U, and this notion
does not depend on the choice of (V, D). Thus it makes sense to say that / is non-
degenerate at p. If this is the case for every /?, we say that /is nondegenerate. We may
further say that/is locally an affine hypersphere if the following condition is satisfied:
If a neighborhood U of each point p is mapped into an open subset V with an affine
connection D belonging to the flat projective structure of RPn+ί, then/: TJ-*V is
an affine hypersphere in the sense of Blaschke. Note that we require this condition
no matter how (F, D) is chosen. We may now state

THEOREM 5. If a nondegenerate immersion f: .M"-*RPn + 1 is locally an affine
hypersphere, then /(Af) lies in a quadric in RPn + 1.
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We may formulate Theorem 5 as follows. The proof of the equivalence of the two

results is left to the reader.

THEOREM 6. Letf: Mn—•/?" + 1 be a nondegenerate immersion. If for every projective

transformation ΦofRn + 1 the immersion Φ-fis an affine hyper sphere, then f(Mn) lies on

a quadric in Rn+1.

PROOF OF THEOREM 5. We follow the same kind of computation for a projective

change of local connections D^D' in [N-P4, Section 5]. Suppose the connections and

the parallel volume elements are related by D'xY=DxY+μ(X)Y+μ(Y)X, ω' = φω,

where μ = d(\og φ)/(n + 2).

The affine metric h, the affine normal ξ, and the affine shape operator S relative

to D are related to hf, ξ\ and Sf relative to D' as follows:

where Z is determined by h(X, Z) = φ~2Kn +

φ2/in + 2)S'X=SX-VxU+μ(X)U-μ(ξ+U)X.

We define a vector field U by h(U, X) = μ(X) for all X. By computation we obtain

(25) (ViC'Xr, Z, W)/φ2«n + 2) = (VxC)(Y, Z, W)-±rSym[β(X)C(Y, Z,
6

where Sym denotes the symmetric sum over X, Y, Z, W and £f the cyclic sum over 7,

Z, W.

Now by assumption/is an affine hypersphere relative to D and D'. Thus both VC

and VC are totally symmetric (cf. Remark preceding Lemma 2). From (25) it follows

that Sf\h(X, Y)C(U, Z, W)~\ is symmetric in X and Y. Hence we have

(26) h(X, Z)C(U, W, Y) + h(X, W)C(U, Y, Z) = h( Y, Z)C(U, JV, X) + h( Y, W)C{ U, X, Z).

Taking the trace with respect to X, Z relative to h, we obtain C(U, Y, W) = 0. Here Y,

W are arbitrary. Now given a point JC0 of M and given any nonzero vector U at x0,

take the corresponding covector μ0 at x0 (now identified with/(x0) in RPn + 1). We may

find a function φ > 0 in a neighborhood V (say, with a flat connection D) such that

μ = d(\og φ)/(n + 2) equals μ0 at x0 and such that the Hessian of φ relative to the

connection D is 0. Then the connection Df

xY=DxY+μ(X)Y+μ(Y)Xis flat, projectively

related to D. Relative to Z), D' our previous argument shows that C(ί/, Y, W) = 0 at

x0. We have thus established that C = 0 at x 0 and hence everywhere. It is now clear

that f(M) lies on a quadric in RPn+ί, completing the proof of Theorem 5.
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