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Abstract. We derive higher order variational formulas for the Yamabe functional,
and give an example of infinitesimal deformation of a solution of the Yamabe problem
which does not come from conformal vector field.

The Yamabe theorem, which was proved by Schoen [7], states that for any
conformal class on a compact cnnected manifold there exists a metric of constant
scalar curvature which minimizes the Yamabe functional (see § 1) defined on the
conformal class. In this paper, we are interested in the space of solutions of the
Yamabe problem, that is, the space of minimizers for the Yamabe functional. The
conformal transformation group acts naturally on this space, and a naive question
will be whether this action is transitive (up to homothety) or not. We shall show new
necessary conditions for a vector field to be conformal, and give examples which
negatively answer the question at the infinitesimal level.

1. The space of Yamabe metrics. Let M be a compact connected ^-manifold,
and C a conformal class of Riemannian metrics of M, i.e., C—{e2ug; ueCςc{M)} for
any fixed metric geC. Throughout this paper, we assume that the dimension n is at
least 3. The Yamabe functional I: C-+R is defined as

for ge C,

where Rg is the scalar curvature function of a metric geC. We set

S(M, C) = {geC; I(g) = μ(M, C)} ,

where

μ(M,C) = inf{%); geC} .

We call a metric in S(M, C) a solution of the Yamabe problem, or simply a Yamabe
metric. Since a Yamabe metric is a minimizer of /: C->/?, variational formulas show
the following properties for geS(M, C):

(1.1) Rg = const.
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(1.2) ^(-^y

where λx( — Ag) is the first nonzero (positive) eigenvalue of the Laplacian. Moreover,
it is also known that for g e S(M, C),

(1.3) μ(M, C) = Rg Vo\(M,g)2/n^n(n-\)Vo\(Sn(\))2/n,

where Sn(l) is the Euclidean w-sphere of radius 1 (cf. [1]).
Since S(M, C) is closed under multiplication by positive constants, it is convenient

to consider

Sγ(M9 C) = {ge S(M9 C); Vol(M, g) = 1}

instead of S(M, C). SX(M9 C) is not empty because of the Yamabe theorem.
Let Conf(M, C) denote the conformal transformation group of (M, C). It is

obvious that φ^geS^M, C) if φeConf(M, C) and geS^M, C). In this way,
Conf(M, C) acts on S^M.C). The stabilizer of this action at geS^M^C) is
Isom(M, g), the isometry group of (M,g). Hence for each geS^M, C) we have an
inclusion map

ig\ Conf(M, C)/Isom(M, g^S^M, C).

This trivial observation gives us examples of (M, C) for which a solution of the
Yamabe problem is not unique.

PROPOSITION 1.1 (cf. [6]). Let (Mh g^ i= 1, 2, be compact connected Riemannian
manifolds with constant scalar curvature. Assume that d i m M ^ l , / ^ ^ O , R2>0 and
that lsom(Mhgι) acts transitively on Mt for i=\,2. Let Cr be the conformal class
on M=Mxx M2 that contains the metric r2g1+g2 Then for sufficiently large r,
Conf(M, Cr) is strictly larger than Isom(M, #), where geS^M, Cr).

PROOF. Suppose on the contrary that Conf(M, Cr) = Isom(Λf, g). Then

Isom(M, #) = Conf(M, Cr) => Isom(M, r2gx +02)=>Isom(M1, gλ) x Isom(M2, g2).

Therefore g is Isom(Mf, gf^-invariant, /= 1, 2. In view of the transitivity of IsomίM^ in-
actions, this implies that g is homothetic to r2g1-\-g2. Hence the metric r2gx+g2 must
be a Yamabe metric. On the other hand, it is easy to see that the metric r2g1+g2

violates the conditions (1.2) and/or (1.3) for sufficiently large r, though its scalar
curvature is constant, a contradiction.

REMARK. This result is an extension of [2]. See also [4].

We formulate our question as follows:
Q.I. Is ig bijective?
Since a Yamabe metric has constant scalar curvature, we may pose the following
more general question:
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Q.2. For g1, g2eC such that Rgί=Rg2 = const and Vol(M, gί) = Vo\(M9 g2), is there a
conformal transformation φeConf(M, C) such that φ*gi=g2Ί

For each geC, we have a bijection

and can regard SX(M, C) as a subset of C°°(M):

5 1(M,C)^{WeC 0 0(M); Re2ug = μ(M, C\ Vo\(M,e2ug)=\} .

Differentiating the equations, we formally compute the tangent space, denoted by
^(M, C)β, to ^ ( M , C) at geS^M, C) as

JM

As we shall see later, this formal tangent space can differ from the actual tangent
space. Let conf(M, C) and isom(M, g) denote the Lie algebras of Conf(M, C) and
Isom(M, g), respectively. We have the following identification:

conf(M, C)/isom(M, g) = \ —*-diva X; Xeconf(Af, C) 1 c C°°(M).

I n J

With these identifications we see that the differential ( i ^ of ig is the inclusion map:

(iβ)φ :conf(M, C)/isom(M, g)^Sl(M9 C\ ,

where geSx{M, C). This inclusion is also a consequence of the well-known formula
— Δ,,div^X= (Rg/(n — 1)) div3X for a conformal vector field X and geC with constant
scalar curvature.

In this setting, the following correspond to Q.I and Q.2, respectively:
Q. 1\ Is (ιχ bijective for g e S^M, C) ?
Q.2'. If g has constant scalar curvature and ueCco{M) satisfies

then is there a conformal vector field whose divergence is equal tow?
In §3 we shall answer these two questions negatively.

2. Conformal vector fields and higher order variations of the Yamabe functional.

THEOREM 2.1. Let (M, g) be a compact Riemannian manifold of dimension n ̂  3
with constant scalar curvature Rg. Let X be a conformal vector field and u = divgX. Then,
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is solvable for υ;

(ϋ)
J M n—2]M

where v is as in (i).

PROOF. First we note that all are trivial when Ra<0, because div f lΛ
r=0 if Ra<0.

Secondly, if some solution υ of the equation in (i) satisfies the equality in (ii), then any

other solution, say υ', satisfies the equality, because then

v)(υ-v')dυg

M

n-ί 7

Let {φ,} be the one-parameter transformation group generated by X. Since X is a

conformal vector field, gt: — φ*g is conformal to g. Define w (eC°°(M) by

(2.1) ft = wj"-2)/4ff, w r >0.

Then u=άi\gX=(2nlin — 2))w0, where stands for djdt. The scalar curvature R, of g,

is written as

(2.2) R, = wΓ Lβwt,

where q=(n + 2)/(n-2) and Lg= -4((n-l)/(n~2))Ag + Rg. Hence we have

(2-3) A = wr'

Differentiating this repeatedly, we get

(2.4)

Since Λg is constant, Rt = φ*Rg is a constant independent of /. Thus the left hand side

of (2.4) is identically equal to 0. So we expand (2.4) explicitly at t = 0 for m— 1, 2 and

3, respectively as follows:

(2.5) ΛA> = 0>

(2.6) Pgw0 = q(q-\)Rgw
2

0,

(2.7) Pgw0 = q(q-\)Rg(3w0w0 + (q-2)w3

0),

where Pg = Lg-qRg= -4((n-\)/(n-2))(Δg + Rg/(n-\)). Thus we have

(2.8) q{q~\)Rg\ w%ώ)g=\ woPgwodvg=\ woPgwodυg = 0,
JM J M JM
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and

(2.9) q(q-l)Rg\ (3wowo + (q-2)wl)dvg = woPgwodvg = woPgwodvg = 0 .
JM JM JM

Recall that u = (2n/(n — 2))w0, and we see that our assertions follow from (2.6), (2.8)
and (2.9) by putting v = (2n/(n-2))2w0.

The above result is related to higher order variational formulas for the Yamabe
functional. If the Yamabe functional /: C->/? has a relative minimum at g, then the
first and the second variational formulas say that the metric g has the properties (1.1)
and (1.2). As for the third and the fourth variational formulas we have the following:

THEOREM 2.2. Suppose g has positive constant scalar curvature and that the
Yamabe functional I: C^R has a relative minimum at g. Then,
(i) If uu u2eKQr(Ag + Rg/(n— 1)), then SM

ulu2dvg = O. In particular, for any

n + 2

' n-\ y

is solvable for v;
(ii) For u, v as above, the inequality

(„_!)(„_ 2)

3 f u1

JM

holds.

PROOF. Let u be an arbitrary function satisfying

1
(2.10)

We set

(2.H) gt=

where v is any function such that

(2.12)

n-\

t2v
4/(n-2)

vdvg=-q\ u2dvg,
J M J Xί

where q = {n + 2)j{n — 2). Then it is straightforward to see that

—Vol(M, gt)dt dt
Vol(M, gt)

dt
M

= 0,
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where Rt and dvt are, respectively, the scalar curvature and the volume element of the

metric gt. Then it is easy to see that

(2.13) ( ^ r Rtdvt Vol(M, gt)
-(n-2)/n

ί = 0

Vol(M, g) -(«-2)/n.

ί = 0. dt / \ j M

= -2Rgq{q- l)Vol(M, g)^-^ ί

- (Vol(M,,

M

Since / takes a relative minimum at g, we have

(2.14) u3dvg = 0.
JM

(«—1)),This holds for any ueKer(Δg4-Rg/(n — 1)). Hence for any wl5 u2

we have

f 2 _ 1 f 3_ _ 3_ 3
JM 6 JM

which implies u2elm(Ag + Rg/(n—\)) for any weKer(Δg +/?9/(« — 1)). Hence the equa-

tion

(2.16)
1 n + 2

(Λ-iX/ι-2)

is solvable for y. It is easy to see that this v also satisfies the condition (2.12). So we

assume that the v in (2.11) satisfies the equation (2.16). Then we easily get

(2.17) fyt) = -4/VK?- l)Vol(M, 0)-o-2>/» Γ (3W

2t; + ( ^ - 2 ) M

4 ) ^ .
t = o JM

(d/dt)*I(gt)\t = 0 is nonnegative by our assumption, and we get the desired inequality.

3. Examples. By Sn(r) we denote the ^-dimensional Euclidean sphere of radius

r. We suppose (M, g) = Sp(yfip) x Sn~pQ n-p-1 ). Let

be the canonical isometric embedding, and M6C°°(M) be any one of the first p+\

coordinate functions of Rp+1 x Rn~p+1 restricted to M. Then,
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Moreover, u satisfies the equation

u2+p\du\2=p.

Hence putting

we have

and

)M
 9 P+l

It is also easy to see that

Γ
 u
*dv, = -^- ί u

2
dυ =

Consequently, we get

—rVol(M,0)LO n-2

This is negative if «^3 and 0<p<n. Therefore it follows from Theorem 2.1 that the
function u cannot be the divergence of any conformal vector field. Thus the answer
to Q.2r is negative.

If «^3 and p=l, then it can be shown, by using a theorem of Gidas, Ni and
Nirenberg [3], that the metric g is a solution of the Yamabe problem (cf. [5], [8]).
Hence in this case (M,g) is a counterexample to Q.Γ. In this case, however, ig is
bijective (cf. [5], [8]), and the question Q.I and Q.2 remain open.
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